MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mapsspw Structured version   Visualization version   GIF version

Theorem mapsspw 8438
Description: Set exponentiation is a subset of the power set of the Cartesian product of its arguments. (Contributed by NM, 8-Dec-2006.) (Revised by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
mapsspw (𝐴m 𝐵) ⊆ 𝒫 (𝐵 × 𝐴)

Proof of Theorem mapsspw
StepHypRef Expression
1 mapsspm 8436 . 2 (𝐴m 𝐵) ⊆ (𝐴pm 𝐵)
2 pmsspw 8437 . 2 (𝐴pm 𝐵) ⊆ 𝒫 (𝐵 × 𝐴)
31, 2sstri 3962 1 (𝐴m 𝐵) ⊆ 𝒫 (𝐵 × 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wss 3919  𝒫 cpw 4522   × cxp 5540  (class class class)co 7149  m cmap 8402  pm cpm 8403
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-ral 3138  df-rex 3139  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-op 4557  df-uni 4825  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-id 5447  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-fv 6351  df-ov 7152  df-oprab 7153  df-mpo 7154  df-1st 7684  df-2nd 7685  df-map 8404  df-pm 8405
This theorem is referenced by:  mapfi  8817  rankmapu  9304  grumap  10228  wunfunc  17169
  Copyright terms: Public domain W3C validator