MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mapsspw Structured version   Visualization version   GIF version

Theorem mapsspw 8903
Description: Set exponentiation is a subset of the power set of the Cartesian product of its arguments. (Contributed by NM, 8-Dec-2006.) (Revised by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
mapsspw (𝐴m 𝐵) ⊆ 𝒫 (𝐵 × 𝐴)

Proof of Theorem mapsspw
StepHypRef Expression
1 mapsspm 8901 . 2 (𝐴m 𝐵) ⊆ (𝐴pm 𝐵)
2 pmsspw 8902 . 2 (𝐴pm 𝐵) ⊆ 𝒫 (𝐵 × 𝐴)
31, 2sstri 3991 1 (𝐴m 𝐵) ⊆ 𝒫 (𝐵 × 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wss 3949  𝒫 cpw 4606   × cxp 5680  (class class class)co 7426  m cmap 8851  pm cpm 8852
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-fv 6561  df-ov 7429  df-oprab 7430  df-mpo 7431  df-1st 7999  df-2nd 8000  df-map 8853  df-pm 8854
This theorem is referenced by:  mapfi  9380  rankmapu  9909  grumap  10839  wunfunc  17894  wunfuncOLD  17895
  Copyright terms: Public domain W3C validator