MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mapfi Structured version   Visualization version   GIF version

Theorem mapfi 8822
Description: Set exponentiation of finite sets is finite. (Contributed by Jeff Madsen, 19-Jun-2011.)
Assertion
Ref Expression
mapfi ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴m 𝐵) ∈ Fin)

Proof of Theorem mapfi
StepHypRef Expression
1 xpfi 8791 . . . 4 ((𝐵 ∈ Fin ∧ 𝐴 ∈ Fin) → (𝐵 × 𝐴) ∈ Fin)
21ancoms 461 . . 3 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐵 × 𝐴) ∈ Fin)
3 pwfi 8821 . . 3 ((𝐵 × 𝐴) ∈ Fin ↔ 𝒫 (𝐵 × 𝐴) ∈ Fin)
42, 3sylib 220 . 2 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → 𝒫 (𝐵 × 𝐴) ∈ Fin)
5 mapsspw 8444 . 2 (𝐴m 𝐵) ⊆ 𝒫 (𝐵 × 𝐴)
6 ssfi 8740 . 2 ((𝒫 (𝐵 × 𝐴) ∈ Fin ∧ (𝐴m 𝐵) ⊆ 𝒫 (𝐵 × 𝐴)) → (𝐴m 𝐵) ∈ Fin)
74, 5, 6sylancl 588 1 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴m 𝐵) ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  wcel 2114  wss 3938  𝒫 cpw 4541   × cxp 5555  (class class class)co 7158  m cmap 8408  Fincfn 8511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-2o 8105  df-oadd 8108  df-er 8291  df-map 8410  df-pm 8411  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515
This theorem is referenced by:  ixpfi  8823  hashmap  13799  hashpw  13800  hashf1lem2  13817  prmreclem2  16255  vdwlem10  16328  efmndbasfi  18044  symgbasfi  18509  aannenlem1  24919  birthdaylem1  25531  dchrfi  25833  reprfi  31889  deranglem  32415  poimirlem9  34903  poimirlem26  34920  poimirlem27  34921  poimirlem28  34922  poimirlem32  34926  dvnprodlem2  42239  etransclem16  42542  etransclem33  42559
  Copyright terms: Public domain W3C validator