MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mapfi Structured version   Visualization version   GIF version

Theorem mapfi 9299
Description: Set exponentiation of finite sets is finite. (Contributed by Jeff Madsen, 19-Jun-2011.)
Assertion
Ref Expression
mapfi ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴m 𝐵) ∈ Fin)

Proof of Theorem mapfi
StepHypRef Expression
1 xpfi 9269 . . . 4 ((𝐵 ∈ Fin ∧ 𝐴 ∈ Fin) → (𝐵 × 𝐴) ∈ Fin)
21ancoms 458 . . 3 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐵 × 𝐴) ∈ Fin)
3 pwfi 9268 . . 3 ((𝐵 × 𝐴) ∈ Fin ↔ 𝒫 (𝐵 × 𝐴) ∈ Fin)
42, 3sylib 218 . 2 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → 𝒫 (𝐵 × 𝐴) ∈ Fin)
5 mapsspw 8851 . 2 (𝐴m 𝐵) ⊆ 𝒫 (𝐵 × 𝐴)
6 ssfi 9137 . 2 ((𝒫 (𝐵 × 𝐴) ∈ Fin ∧ (𝐴m 𝐵) ⊆ 𝒫 (𝐵 × 𝐴)) → (𝐴m 𝐵) ∈ Fin)
74, 5, 6sylancl 586 1 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴m 𝐵) ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  wss 3914  𝒫 cpw 4563   × cxp 5636  (class class class)co 7387  m cmap 8799  Fincfn 8918
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-1o 8434  df-map 8801  df-pm 8802  df-en 8919  df-dom 8920  df-fin 8922
This theorem is referenced by:  ixpfi  9300  hashmap  14400  hashpw  14401  hashf1lem2  14421  prmreclem2  16888  vdwlem10  16961  efmndbasfi  18804  symgbasfi  19309  aannenlem1  26236  birthdaylem1  26861  dchrfi  27166  reprfi  34607  deranglem  35153  poimirlem9  37623  poimirlem26  37640  poimirlem27  37641  poimirlem28  37642  poimirlem32  37646  dvnprodlem2  45945  etransclem16  46248  etransclem33  46265
  Copyright terms: Public domain W3C validator