MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mapfi Structured version   Visualization version   GIF version

Theorem mapfi 9386
Description: Set exponentiation of finite sets is finite. (Contributed by Jeff Madsen, 19-Jun-2011.)
Assertion
Ref Expression
mapfi ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴m 𝐵) ∈ Fin)

Proof of Theorem mapfi
StepHypRef Expression
1 xpfi 9356 . . . 4 ((𝐵 ∈ Fin ∧ 𝐴 ∈ Fin) → (𝐵 × 𝐴) ∈ Fin)
21ancoms 458 . . 3 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐵 × 𝐴) ∈ Fin)
3 pwfi 9355 . . 3 ((𝐵 × 𝐴) ∈ Fin ↔ 𝒫 (𝐵 × 𝐴) ∈ Fin)
42, 3sylib 218 . 2 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → 𝒫 (𝐵 × 𝐴) ∈ Fin)
5 mapsspw 8917 . 2 (𝐴m 𝐵) ⊆ 𝒫 (𝐵 × 𝐴)
6 ssfi 9212 . 2 ((𝒫 (𝐵 × 𝐴) ∈ Fin ∧ (𝐴m 𝐵) ⊆ 𝒫 (𝐵 × 𝐴)) → (𝐴m 𝐵) ∈ Fin)
74, 5, 6sylancl 586 1 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴m 𝐵) ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2106  wss 3963  𝒫 cpw 4605   × cxp 5687  (class class class)co 7431  m cmap 8865  Fincfn 8984
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-1o 8505  df-map 8867  df-pm 8868  df-en 8985  df-dom 8986  df-fin 8988
This theorem is referenced by:  ixpfi  9387  hashmap  14471  hashpw  14472  hashf1lem2  14492  prmreclem2  16951  vdwlem10  17024  efmndbasfi  18903  symgbasfi  19411  aannenlem1  26385  birthdaylem1  27009  dchrfi  27314  reprfi  34610  deranglem  35151  poimirlem9  37616  poimirlem26  37633  poimirlem27  37634  poimirlem28  37635  poimirlem32  37639  dvnprodlem2  45903  etransclem16  46206  etransclem33  46223
  Copyright terms: Public domain W3C validator