MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mapfi Structured version   Visualization version   GIF version

Theorem mapfi 9124
Description: Set exponentiation of finite sets is finite. (Contributed by Jeff Madsen, 19-Jun-2011.)
Assertion
Ref Expression
mapfi ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴m 𝐵) ∈ Fin)

Proof of Theorem mapfi
StepHypRef Expression
1 xpfi 9094 . . . 4 ((𝐵 ∈ Fin ∧ 𝐴 ∈ Fin) → (𝐵 × 𝐴) ∈ Fin)
21ancoms 459 . . 3 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐵 × 𝐴) ∈ Fin)
3 pwfi 8970 . . 3 ((𝐵 × 𝐴) ∈ Fin ↔ 𝒫 (𝐵 × 𝐴) ∈ Fin)
42, 3sylib 217 . 2 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → 𝒫 (𝐵 × 𝐴) ∈ Fin)
5 mapsspw 8675 . 2 (𝐴m 𝐵) ⊆ 𝒫 (𝐵 × 𝐴)
6 ssfi 8965 . 2 ((𝒫 (𝐵 × 𝐴) ∈ Fin ∧ (𝐴m 𝐵) ⊆ 𝒫 (𝐵 × 𝐴)) → (𝐴m 𝐵) ∈ Fin)
74, 5, 6sylancl 586 1 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴m 𝐵) ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wcel 2107  wss 3888  𝒫 cpw 4534   × cxp 5588  (class class class)co 7284  m cmap 8624  Fincfn 8742
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2710  ax-sep 5224  ax-nul 5231  ax-pow 5289  ax-pr 5353  ax-un 7597
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-reu 3073  df-rab 3074  df-v 3435  df-sbc 3718  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-pss 3907  df-nul 4258  df-if 4461  df-pw 4536  df-sn 4563  df-pr 4565  df-op 4569  df-uni 4841  df-iun 4927  df-br 5076  df-opab 5138  df-mpt 5159  df-tr 5193  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-ord 6273  df-on 6274  df-lim 6275  df-suc 6276  df-iota 6395  df-fun 6439  df-fn 6440  df-f 6441  df-f1 6442  df-fo 6443  df-f1o 6444  df-fv 6445  df-ov 7287  df-oprab 7288  df-mpo 7289  df-om 7722  df-1st 7840  df-2nd 7841  df-1o 8306  df-map 8626  df-pm 8627  df-en 8743  df-fin 8746
This theorem is referenced by:  ixpfi  9125  hashmap  14159  hashpw  14160  hashf1lem2  14179  prmreclem2  16627  vdwlem10  16700  efmndbasfi  18525  symgbasfi  18995  aannenlem1  25497  birthdaylem1  26110  dchrfi  26412  reprfi  32605  deranglem  33137  poimirlem9  35795  poimirlem26  35812  poimirlem27  35813  poimirlem28  35814  poimirlem32  35818  dvnprodlem2  43495  etransclem16  43798  etransclem33  43815
  Copyright terms: Public domain W3C validator