![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mapfi | Structured version Visualization version GIF version |
Description: Set exponentiation of finite sets is finite. (Contributed by Jeff Madsen, 19-Jun-2011.) |
Ref | Expression |
---|---|
mapfi | ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴 ↑m 𝐵) ∈ Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpfi 9323 | . . . 4 ⊢ ((𝐵 ∈ Fin ∧ 𝐴 ∈ Fin) → (𝐵 × 𝐴) ∈ Fin) | |
2 | 1 | ancoms 458 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐵 × 𝐴) ∈ Fin) |
3 | pwfi 9184 | . . 3 ⊢ ((𝐵 × 𝐴) ∈ Fin ↔ 𝒫 (𝐵 × 𝐴) ∈ Fin) | |
4 | 2, 3 | sylib 217 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → 𝒫 (𝐵 × 𝐴) ∈ Fin) |
5 | mapsspw 8878 | . 2 ⊢ (𝐴 ↑m 𝐵) ⊆ 𝒫 (𝐵 × 𝐴) | |
6 | ssfi 9179 | . 2 ⊢ ((𝒫 (𝐵 × 𝐴) ∈ Fin ∧ (𝐴 ↑m 𝐵) ⊆ 𝒫 (𝐵 × 𝐴)) → (𝐴 ↑m 𝐵) ∈ Fin) | |
7 | 4, 5, 6 | sylancl 585 | 1 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴 ↑m 𝐵) ∈ Fin) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2105 ⊆ wss 3948 𝒫 cpw 4602 × cxp 5674 (class class class)co 7412 ↑m cmap 8826 Fincfn 8945 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-1st 7979 df-2nd 7980 df-1o 8472 df-map 8828 df-pm 8829 df-en 8946 df-fin 8949 |
This theorem is referenced by: ixpfi 9355 hashmap 14402 hashpw 14403 hashf1lem2 14424 prmreclem2 16857 vdwlem10 16930 efmndbasfi 18800 symgbasfi 19294 aannenlem1 26179 birthdaylem1 26796 dchrfi 27100 reprfi 34091 deranglem 34620 poimirlem9 36960 poimirlem26 36977 poimirlem27 36978 poimirlem28 36979 poimirlem32 36983 dvnprodlem2 45121 etransclem16 45424 etransclem33 45441 |
Copyright terms: Public domain | W3C validator |