| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mapfi | Structured version Visualization version GIF version | ||
| Description: Set exponentiation of finite sets is finite. (Contributed by Jeff Madsen, 19-Jun-2011.) |
| Ref | Expression |
|---|---|
| mapfi | ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴 ↑m 𝐵) ∈ Fin) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpfi 9204 | . . . 4 ⊢ ((𝐵 ∈ Fin ∧ 𝐴 ∈ Fin) → (𝐵 × 𝐴) ∈ Fin) | |
| 2 | 1 | ancoms 458 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐵 × 𝐴) ∈ Fin) |
| 3 | pwfi 9203 | . . 3 ⊢ ((𝐵 × 𝐴) ∈ Fin ↔ 𝒫 (𝐵 × 𝐴) ∈ Fin) | |
| 4 | 2, 3 | sylib 218 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → 𝒫 (𝐵 × 𝐴) ∈ Fin) |
| 5 | mapsspw 8802 | . 2 ⊢ (𝐴 ↑m 𝐵) ⊆ 𝒫 (𝐵 × 𝐴) | |
| 6 | ssfi 9082 | . 2 ⊢ ((𝒫 (𝐵 × 𝐴) ∈ Fin ∧ (𝐴 ↑m 𝐵) ⊆ 𝒫 (𝐵 × 𝐴)) → (𝐴 ↑m 𝐵) ∈ Fin) | |
| 7 | 4, 5, 6 | sylancl 586 | 1 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴 ↑m 𝐵) ∈ Fin) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2111 ⊆ wss 3897 𝒫 cpw 4547 × cxp 5612 (class class class)co 7346 ↑m cmap 8750 Fincfn 8869 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-1o 8385 df-map 8752 df-pm 8753 df-en 8870 df-dom 8871 df-fin 8873 |
| This theorem is referenced by: ixpfi 9233 hashmap 14342 hashpw 14343 hashf1lem2 14363 prmreclem2 16829 vdwlem10 16902 efmndbasfi 18785 symgbasfi 19291 aannenlem1 26263 birthdaylem1 26888 dchrfi 27193 reprfi 34629 deranglem 35210 poimirlem9 37679 poimirlem26 37696 poimirlem27 37697 poimirlem28 37698 poimirlem32 37702 dvnprodlem2 46055 etransclem16 46358 etransclem33 46375 |
| Copyright terms: Public domain | W3C validator |