| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mapfi | Structured version Visualization version GIF version | ||
| Description: Set exponentiation of finite sets is finite. (Contributed by Jeff Madsen, 19-Jun-2011.) |
| Ref | Expression |
|---|---|
| mapfi | ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴 ↑m 𝐵) ∈ Fin) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpfi 9330 | . . . 4 ⊢ ((𝐵 ∈ Fin ∧ 𝐴 ∈ Fin) → (𝐵 × 𝐴) ∈ Fin) | |
| 2 | 1 | ancoms 458 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐵 × 𝐴) ∈ Fin) |
| 3 | pwfi 9329 | . . 3 ⊢ ((𝐵 × 𝐴) ∈ Fin ↔ 𝒫 (𝐵 × 𝐴) ∈ Fin) | |
| 4 | 2, 3 | sylib 218 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → 𝒫 (𝐵 × 𝐴) ∈ Fin) |
| 5 | mapsspw 8892 | . 2 ⊢ (𝐴 ↑m 𝐵) ⊆ 𝒫 (𝐵 × 𝐴) | |
| 6 | ssfi 9187 | . 2 ⊢ ((𝒫 (𝐵 × 𝐴) ∈ Fin ∧ (𝐴 ↑m 𝐵) ⊆ 𝒫 (𝐵 × 𝐴)) → (𝐴 ↑m 𝐵) ∈ Fin) | |
| 7 | 4, 5, 6 | sylancl 586 | 1 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴 ↑m 𝐵) ∈ Fin) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ⊆ wss 3926 𝒫 cpw 4575 × cxp 5652 (class class class)co 7405 ↑m cmap 8840 Fincfn 8959 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-1o 8480 df-map 8842 df-pm 8843 df-en 8960 df-dom 8961 df-fin 8963 |
| This theorem is referenced by: ixpfi 9361 hashmap 14453 hashpw 14454 hashf1lem2 14474 prmreclem2 16937 vdwlem10 17010 efmndbasfi 18855 symgbasfi 19360 aannenlem1 26288 birthdaylem1 26913 dchrfi 27218 reprfi 34648 deranglem 35188 poimirlem9 37653 poimirlem26 37670 poimirlem27 37671 poimirlem28 37672 poimirlem32 37676 dvnprodlem2 45976 etransclem16 46279 etransclem33 46296 |
| Copyright terms: Public domain | W3C validator |