| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pmvalg | Structured version Visualization version GIF version | ||
| Description: The value of the partial mapping operation. (𝐴 ↑pm 𝐵) is the set of all partial functions that map from 𝐵 to 𝐴. (Contributed by NM, 15-Nov-2007.) (Revised by Mario Carneiro, 8-Sep-2013.) |
| Ref | Expression |
|---|---|
| pmvalg | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴 ↑pm 𝐵) = {𝑓 ∈ 𝒫 (𝐵 × 𝐴) ∣ Fun 𝑓}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrab2 4033 | . . 3 ⊢ {𝑓 ∈ 𝒫 (𝐵 × 𝐴) ∣ Fun 𝑓} ⊆ 𝒫 (𝐵 × 𝐴) | |
| 2 | xpexg 7690 | . . . . 5 ⊢ ((𝐵 ∈ 𝐷 ∧ 𝐴 ∈ 𝐶) → (𝐵 × 𝐴) ∈ V) | |
| 3 | 2 | ancoms 458 | . . . 4 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐵 × 𝐴) ∈ V) |
| 4 | 3 | pwexd 5321 | . . 3 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → 𝒫 (𝐵 × 𝐴) ∈ V) |
| 5 | ssexg 5265 | . . 3 ⊢ (({𝑓 ∈ 𝒫 (𝐵 × 𝐴) ∣ Fun 𝑓} ⊆ 𝒫 (𝐵 × 𝐴) ∧ 𝒫 (𝐵 × 𝐴) ∈ V) → {𝑓 ∈ 𝒫 (𝐵 × 𝐴) ∣ Fun 𝑓} ∈ V) | |
| 6 | 1, 4, 5 | sylancr 587 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → {𝑓 ∈ 𝒫 (𝐵 × 𝐴) ∣ Fun 𝑓} ∈ V) |
| 7 | elex 3459 | . . 3 ⊢ (𝐴 ∈ 𝐶 → 𝐴 ∈ V) | |
| 8 | elex 3459 | . . 3 ⊢ (𝐵 ∈ 𝐷 → 𝐵 ∈ V) | |
| 9 | xpeq2 5644 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → (𝑦 × 𝑥) = (𝑦 × 𝐴)) | |
| 10 | 9 | pweqd 4570 | . . . . . 6 ⊢ (𝑥 = 𝐴 → 𝒫 (𝑦 × 𝑥) = 𝒫 (𝑦 × 𝐴)) |
| 11 | 10 | rabeqdv 3412 | . . . . 5 ⊢ (𝑥 = 𝐴 → {𝑓 ∈ 𝒫 (𝑦 × 𝑥) ∣ Fun 𝑓} = {𝑓 ∈ 𝒫 (𝑦 × 𝐴) ∣ Fun 𝑓}) |
| 12 | xpeq1 5637 | . . . . . . 7 ⊢ (𝑦 = 𝐵 → (𝑦 × 𝐴) = (𝐵 × 𝐴)) | |
| 13 | 12 | pweqd 4570 | . . . . . 6 ⊢ (𝑦 = 𝐵 → 𝒫 (𝑦 × 𝐴) = 𝒫 (𝐵 × 𝐴)) |
| 14 | 13 | rabeqdv 3412 | . . . . 5 ⊢ (𝑦 = 𝐵 → {𝑓 ∈ 𝒫 (𝑦 × 𝐴) ∣ Fun 𝑓} = {𝑓 ∈ 𝒫 (𝐵 × 𝐴) ∣ Fun 𝑓}) |
| 15 | df-pm 8763 | . . . . 5 ⊢ ↑pm = (𝑥 ∈ V, 𝑦 ∈ V ↦ {𝑓 ∈ 𝒫 (𝑦 × 𝑥) ∣ Fun 𝑓}) | |
| 16 | 11, 14, 15 | ovmpog 7512 | . . . 4 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ {𝑓 ∈ 𝒫 (𝐵 × 𝐴) ∣ Fun 𝑓} ∈ V) → (𝐴 ↑pm 𝐵) = {𝑓 ∈ 𝒫 (𝐵 × 𝐴) ∣ Fun 𝑓}) |
| 17 | 16 | 3expia 1121 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ({𝑓 ∈ 𝒫 (𝐵 × 𝐴) ∣ Fun 𝑓} ∈ V → (𝐴 ↑pm 𝐵) = {𝑓 ∈ 𝒫 (𝐵 × 𝐴) ∣ Fun 𝑓})) |
| 18 | 7, 8, 17 | syl2an 596 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → ({𝑓 ∈ 𝒫 (𝐵 × 𝐴) ∣ Fun 𝑓} ∈ V → (𝐴 ↑pm 𝐵) = {𝑓 ∈ 𝒫 (𝐵 × 𝐴) ∣ Fun 𝑓})) |
| 19 | 6, 18 | mpd 15 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴 ↑pm 𝐵) = {𝑓 ∈ 𝒫 (𝐵 × 𝐴) ∣ Fun 𝑓}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3396 Vcvv 3438 ⊆ wss 3905 𝒫 cpw 4553 × cxp 5621 Fun wfun 6480 (class class class)co 7353 ↑pm cpm 8761 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-iota 6442 df-fun 6488 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-pm 8763 |
| This theorem is referenced by: elpmg 8777 |
| Copyright terms: Public domain | W3C validator |