MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmvalg Structured version   Visualization version   GIF version

Theorem pmvalg 8895
Description: The value of the partial mapping operation. (𝐴pm 𝐵) is the set of all partial functions that map from 𝐵 to 𝐴. (Contributed by NM, 15-Nov-2007.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
pmvalg ((𝐴𝐶𝐵𝐷) → (𝐴pm 𝐵) = {𝑓 ∈ 𝒫 (𝐵 × 𝐴) ∣ Fun 𝑓})
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓
Allowed substitution hints:   𝐶(𝑓)   𝐷(𝑓)

Proof of Theorem pmvalg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssrab2 4103 . . 3 {𝑓 ∈ 𝒫 (𝐵 × 𝐴) ∣ Fun 𝑓} ⊆ 𝒫 (𝐵 × 𝐴)
2 xpexg 7785 . . . . 5 ((𝐵𝐷𝐴𝐶) → (𝐵 × 𝐴) ∈ V)
32ancoms 458 . . . 4 ((𝐴𝐶𝐵𝐷) → (𝐵 × 𝐴) ∈ V)
43pwexd 5397 . . 3 ((𝐴𝐶𝐵𝐷) → 𝒫 (𝐵 × 𝐴) ∈ V)
5 ssexg 5341 . . 3 (({𝑓 ∈ 𝒫 (𝐵 × 𝐴) ∣ Fun 𝑓} ⊆ 𝒫 (𝐵 × 𝐴) ∧ 𝒫 (𝐵 × 𝐴) ∈ V) → {𝑓 ∈ 𝒫 (𝐵 × 𝐴) ∣ Fun 𝑓} ∈ V)
61, 4, 5sylancr 586 . 2 ((𝐴𝐶𝐵𝐷) → {𝑓 ∈ 𝒫 (𝐵 × 𝐴) ∣ Fun 𝑓} ∈ V)
7 elex 3509 . . 3 (𝐴𝐶𝐴 ∈ V)
8 elex 3509 . . 3 (𝐵𝐷𝐵 ∈ V)
9 xpeq2 5721 . . . . . . 7 (𝑥 = 𝐴 → (𝑦 × 𝑥) = (𝑦 × 𝐴))
109pweqd 4639 . . . . . 6 (𝑥 = 𝐴 → 𝒫 (𝑦 × 𝑥) = 𝒫 (𝑦 × 𝐴))
1110rabeqdv 3459 . . . . 5 (𝑥 = 𝐴 → {𝑓 ∈ 𝒫 (𝑦 × 𝑥) ∣ Fun 𝑓} = {𝑓 ∈ 𝒫 (𝑦 × 𝐴) ∣ Fun 𝑓})
12 xpeq1 5714 . . . . . . 7 (𝑦 = 𝐵 → (𝑦 × 𝐴) = (𝐵 × 𝐴))
1312pweqd 4639 . . . . . 6 (𝑦 = 𝐵 → 𝒫 (𝑦 × 𝐴) = 𝒫 (𝐵 × 𝐴))
1413rabeqdv 3459 . . . . 5 (𝑦 = 𝐵 → {𝑓 ∈ 𝒫 (𝑦 × 𝐴) ∣ Fun 𝑓} = {𝑓 ∈ 𝒫 (𝐵 × 𝐴) ∣ Fun 𝑓})
15 df-pm 8887 . . . . 5 pm = (𝑥 ∈ V, 𝑦 ∈ V ↦ {𝑓 ∈ 𝒫 (𝑦 × 𝑥) ∣ Fun 𝑓})
1611, 14, 15ovmpog 7609 . . . 4 ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ {𝑓 ∈ 𝒫 (𝐵 × 𝐴) ∣ Fun 𝑓} ∈ V) → (𝐴pm 𝐵) = {𝑓 ∈ 𝒫 (𝐵 × 𝐴) ∣ Fun 𝑓})
17163expia 1121 . . 3 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ({𝑓 ∈ 𝒫 (𝐵 × 𝐴) ∣ Fun 𝑓} ∈ V → (𝐴pm 𝐵) = {𝑓 ∈ 𝒫 (𝐵 × 𝐴) ∣ Fun 𝑓}))
187, 8, 17syl2an 595 . 2 ((𝐴𝐶𝐵𝐷) → ({𝑓 ∈ 𝒫 (𝐵 × 𝐴) ∣ Fun 𝑓} ∈ V → (𝐴pm 𝐵) = {𝑓 ∈ 𝒫 (𝐵 × 𝐴) ∣ Fun 𝑓}))
196, 18mpd 15 1 ((𝐴𝐶𝐵𝐷) → (𝐴pm 𝐵) = {𝑓 ∈ 𝒫 (𝐵 × 𝐴) ∣ Fun 𝑓})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  {crab 3443  Vcvv 3488  wss 3976  𝒫 cpw 4622   × cxp 5698  Fun wfun 6567  (class class class)co 7448  pm cpm 8885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fun 6575  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-pm 8887
This theorem is referenced by:  elpmg  8901
  Copyright terms: Public domain W3C validator