MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sgnmnf Structured version   Visualization version   GIF version

Theorem sgnmnf 14796
Description: The signum of -∞ is -1. (Contributed by David A. Wheeler, 26-Jun-2016.)
Assertion
Ref Expression
sgnmnf (sgn‘-∞) = -1

Proof of Theorem sgnmnf
StepHypRef Expression
1 mnfxr 11025 . 2 -∞ ∈ ℝ*
2 mnflt0 12852 . 2 -∞ < 0
3 sgnn 14795 . 2 ((-∞ ∈ ℝ* ∧ -∞ < 0) → (sgn‘-∞) = -1)
41, 2, 3mp2an 689 1 (sgn‘-∞) = -1
Colors of variables: wff setvar class
Syntax hints:   = wceq 1542  wcel 2110   class class class wbr 5079  cfv 6431  0cc0 10864  1c1 10865  -∞cmnf 11000  *cxr 11001   < clt 11002  -cneg 11198  sgncsgn 14787
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7580  ax-cnex 10920  ax-resscn 10921  ax-1cn 10922  ax-icn 10923  ax-addcl 10924  ax-addrcl 10925  ax-mulcl 10926  ax-i2m1 10932  ax-rnegex 10935  ax-cnre 10937  ax-pre-lttri 10938  ax-pre-lttrn 10939
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-br 5080  df-opab 5142  df-mpt 5163  df-id 5489  df-po 5503  df-so 5504  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6389  df-fun 6433  df-fn 6434  df-f 6435  df-f1 6436  df-fo 6437  df-f1o 6438  df-fv 6439  df-ov 7272  df-er 8473  df-en 8709  df-dom 8710  df-sdom 8711  df-pnf 11004  df-mnf 11005  df-xr 11006  df-ltxr 11007  df-neg 11200  df-sgn 14788
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator