MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  volivth Structured version   Visualization version   GIF version

Theorem volivth 25655
Description: The Intermediate Value Theorem for the Lebesgue volume function. For any positive 𝐵 ≤ (vol‘𝐴), there is a measurable subset of 𝐴 whose volume is 𝐵. (Contributed by Mario Carneiro, 30-Aug-2014.)
Assertion
Ref Expression
volivth ((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) → ∃𝑥 ∈ dom vol(𝑥𝐴 ∧ (vol‘𝑥) = 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem volivth
Dummy variables 𝑢 𝑛 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 767 . . . 4 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) → 𝐴 ∈ dom vol)
2 mnfxr 11315 . . . . . 6 -∞ ∈ ℝ*
32a1i 11 . . . . 5 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) → -∞ ∈ ℝ*)
4 iccssxr 13466 . . . . . . 7 (0[,](vol‘𝐴)) ⊆ ℝ*
5 simpr 484 . . . . . . 7 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) → 𝐵 ∈ (0[,](vol‘𝐴)))
64, 5sselid 3992 . . . . . 6 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) → 𝐵 ∈ ℝ*)
76adantr 480 . . . . 5 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) → 𝐵 ∈ ℝ*)
8 iccssxr 13466 . . . . . . . 8 (0[,]+∞) ⊆ ℝ*
9 volf 25577 . . . . . . . . 9 vol:dom vol⟶(0[,]+∞)
109ffvelcdmi 7102 . . . . . . . 8 (𝐴 ∈ dom vol → (vol‘𝐴) ∈ (0[,]+∞))
118, 10sselid 3992 . . . . . . 7 (𝐴 ∈ dom vol → (vol‘𝐴) ∈ ℝ*)
1211adantr 480 . . . . . 6 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) → (vol‘𝐴) ∈ ℝ*)
1312adantr 480 . . . . 5 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) → (vol‘𝐴) ∈ ℝ*)
14 0xr 11305 . . . . . . . . . 10 0 ∈ ℝ*
15 elicc1 13427 . . . . . . . . . 10 ((0 ∈ ℝ* ∧ (vol‘𝐴) ∈ ℝ*) → (𝐵 ∈ (0[,](vol‘𝐴)) ↔ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵𝐵 ≤ (vol‘𝐴))))
1614, 12, 15sylancr 587 . . . . . . . . 9 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) → (𝐵 ∈ (0[,](vol‘𝐴)) ↔ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵𝐵 ≤ (vol‘𝐴))))
175, 16mpbid 232 . . . . . . . 8 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) → (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵𝐵 ≤ (vol‘𝐴)))
1817simp2d 1142 . . . . . . 7 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) → 0 ≤ 𝐵)
1918adantr 480 . . . . . 6 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) → 0 ≤ 𝐵)
20 mnflt0 13164 . . . . . . . 8 -∞ < 0
21 xrltletr 13195 . . . . . . . 8 ((-∞ ∈ ℝ* ∧ 0 ∈ ℝ*𝐵 ∈ ℝ*) → ((-∞ < 0 ∧ 0 ≤ 𝐵) → -∞ < 𝐵))
2220, 21mpani 696 . . . . . . 7 ((-∞ ∈ ℝ* ∧ 0 ∈ ℝ*𝐵 ∈ ℝ*) → (0 ≤ 𝐵 → -∞ < 𝐵))
232, 14, 22mp3an12 1450 . . . . . 6 (𝐵 ∈ ℝ* → (0 ≤ 𝐵 → -∞ < 𝐵))
247, 19, 23sylc 65 . . . . 5 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) → -∞ < 𝐵)
25 simpr 484 . . . . 5 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) → 𝐵 < (vol‘𝐴))
26 xrre2 13208 . . . . 5 (((-∞ ∈ ℝ*𝐵 ∈ ℝ* ∧ (vol‘𝐴) ∈ ℝ*) ∧ (-∞ < 𝐵𝐵 < (vol‘𝐴))) → 𝐵 ∈ ℝ)
273, 7, 13, 24, 25, 26syl32anc 1377 . . . 4 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) → 𝐵 ∈ ℝ)
28 volsup2 25653 . . . 4 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) → ∃𝑛 ∈ ℕ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))
291, 27, 25, 28syl3anc 1370 . . 3 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) → ∃𝑛 ∈ ℕ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))
30 nnre 12270 . . . . . . 7 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ)
3130ad2antrl 728 . . . . . 6 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → 𝑛 ∈ ℝ)
3231renegcld 11687 . . . . 5 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → -𝑛 ∈ ℝ)
3327adantr 480 . . . . 5 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → 𝐵 ∈ ℝ)
34 0red 11261 . . . . . 6 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → 0 ∈ ℝ)
35 nngt0 12294 . . . . . . . 8 (𝑛 ∈ ℕ → 0 < 𝑛)
3635ad2antrl 728 . . . . . . 7 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → 0 < 𝑛)
3731lt0neg2d 11830 . . . . . . 7 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → (0 < 𝑛 ↔ -𝑛 < 0))
3836, 37mpbid 232 . . . . . 6 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → -𝑛 < 0)
3932, 34, 31, 38, 36lttrd 11419 . . . . 5 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → -𝑛 < 𝑛)
40 iccssre 13465 . . . . . 6 ((-𝑛 ∈ ℝ ∧ 𝑛 ∈ ℝ) → (-𝑛[,]𝑛) ⊆ ℝ)
4132, 31, 40syl2anc 584 . . . . 5 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → (-𝑛[,]𝑛) ⊆ ℝ)
42 ax-resscn 11209 . . . . . . 7 ℝ ⊆ ℂ
43 ssid 4017 . . . . . . 7 ℂ ⊆ ℂ
44 cncfss 24938 . . . . . . 7 ((ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (ℝ–cn→ℝ) ⊆ (ℝ–cn→ℂ))
4542, 43, 44mp2an 692 . . . . . 6 (ℝ–cn→ℝ) ⊆ (ℝ–cn→ℂ)
461adantr 480 . . . . . . 7 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → 𝐴 ∈ dom vol)
47 eqid 2734 . . . . . . . 8 (𝑦 ∈ ℝ ↦ (vol‘(𝐴 ∩ (-𝑛[,]𝑦)))) = (𝑦 ∈ ℝ ↦ (vol‘(𝐴 ∩ (-𝑛[,]𝑦))))
4847volcn 25654 . . . . . . 7 ((𝐴 ∈ dom vol ∧ -𝑛 ∈ ℝ) → (𝑦 ∈ ℝ ↦ (vol‘(𝐴 ∩ (-𝑛[,]𝑦)))) ∈ (ℝ–cn→ℝ))
4946, 32, 48syl2anc 584 . . . . . 6 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → (𝑦 ∈ ℝ ↦ (vol‘(𝐴 ∩ (-𝑛[,]𝑦)))) ∈ (ℝ–cn→ℝ))
5045, 49sselid 3992 . . . . 5 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → (𝑦 ∈ ℝ ↦ (vol‘(𝐴 ∩ (-𝑛[,]𝑦)))) ∈ (ℝ–cn→ℂ))
5141sselda 3994 . . . . . 6 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) ∧ 𝑢 ∈ (-𝑛[,]𝑛)) → 𝑢 ∈ ℝ)
52 cncff 24932 . . . . . . . 8 ((𝑦 ∈ ℝ ↦ (vol‘(𝐴 ∩ (-𝑛[,]𝑦)))) ∈ (ℝ–cn→ℝ) → (𝑦 ∈ ℝ ↦ (vol‘(𝐴 ∩ (-𝑛[,]𝑦)))):ℝ⟶ℝ)
5349, 52syl 17 . . . . . . 7 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → (𝑦 ∈ ℝ ↦ (vol‘(𝐴 ∩ (-𝑛[,]𝑦)))):ℝ⟶ℝ)
5453ffvelcdmda 7103 . . . . . 6 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) ∧ 𝑢 ∈ ℝ) → ((𝑦 ∈ ℝ ↦ (vol‘(𝐴 ∩ (-𝑛[,]𝑦))))‘𝑢) ∈ ℝ)
5551, 54syldan 591 . . . . 5 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) ∧ 𝑢 ∈ (-𝑛[,]𝑛)) → ((𝑦 ∈ ℝ ↦ (vol‘(𝐴 ∩ (-𝑛[,]𝑦))))‘𝑢) ∈ ℝ)
56 oveq2 7438 . . . . . . . . . . . 12 (𝑦 = -𝑛 → (-𝑛[,]𝑦) = (-𝑛[,]-𝑛))
5756ineq2d 4227 . . . . . . . . . . 11 (𝑦 = -𝑛 → (𝐴 ∩ (-𝑛[,]𝑦)) = (𝐴 ∩ (-𝑛[,]-𝑛)))
5857fveq2d 6910 . . . . . . . . . 10 (𝑦 = -𝑛 → (vol‘(𝐴 ∩ (-𝑛[,]𝑦))) = (vol‘(𝐴 ∩ (-𝑛[,]-𝑛))))
59 fvex 6919 . . . . . . . . . 10 (vol‘(𝐴 ∩ (-𝑛[,]-𝑛))) ∈ V
6058, 47, 59fvmpt 7015 . . . . . . . . 9 (-𝑛 ∈ ℝ → ((𝑦 ∈ ℝ ↦ (vol‘(𝐴 ∩ (-𝑛[,]𝑦))))‘-𝑛) = (vol‘(𝐴 ∩ (-𝑛[,]-𝑛))))
6132, 60syl 17 . . . . . . . 8 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → ((𝑦 ∈ ℝ ↦ (vol‘(𝐴 ∩ (-𝑛[,]𝑦))))‘-𝑛) = (vol‘(𝐴 ∩ (-𝑛[,]-𝑛))))
62 inss2 4245 . . . . . . . . . . . 12 (𝐴 ∩ (-𝑛[,]-𝑛)) ⊆ (-𝑛[,]-𝑛)
6332rexrd 11308 . . . . . . . . . . . . 13 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → -𝑛 ∈ ℝ*)
64 iccid 13428 . . . . . . . . . . . . 13 (-𝑛 ∈ ℝ* → (-𝑛[,]-𝑛) = {-𝑛})
6563, 64syl 17 . . . . . . . . . . . 12 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → (-𝑛[,]-𝑛) = {-𝑛})
6662, 65sseqtrid 4047 . . . . . . . . . . 11 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → (𝐴 ∩ (-𝑛[,]-𝑛)) ⊆ {-𝑛})
6732snssd 4813 . . . . . . . . . . 11 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → {-𝑛} ⊆ ℝ)
6866, 67sstrd 4005 . . . . . . . . . 10 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → (𝐴 ∩ (-𝑛[,]-𝑛)) ⊆ ℝ)
69 ovolsn 25543 . . . . . . . . . . . 12 (-𝑛 ∈ ℝ → (vol*‘{-𝑛}) = 0)
7032, 69syl 17 . . . . . . . . . . 11 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → (vol*‘{-𝑛}) = 0)
71 ovolssnul 25535 . . . . . . . . . . 11 (((𝐴 ∩ (-𝑛[,]-𝑛)) ⊆ {-𝑛} ∧ {-𝑛} ⊆ ℝ ∧ (vol*‘{-𝑛}) = 0) → (vol*‘(𝐴 ∩ (-𝑛[,]-𝑛))) = 0)
7266, 67, 70, 71syl3anc 1370 . . . . . . . . . 10 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → (vol*‘(𝐴 ∩ (-𝑛[,]-𝑛))) = 0)
73 nulmbl 25583 . . . . . . . . . 10 (((𝐴 ∩ (-𝑛[,]-𝑛)) ⊆ ℝ ∧ (vol*‘(𝐴 ∩ (-𝑛[,]-𝑛))) = 0) → (𝐴 ∩ (-𝑛[,]-𝑛)) ∈ dom vol)
7468, 72, 73syl2anc 584 . . . . . . . . 9 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → (𝐴 ∩ (-𝑛[,]-𝑛)) ∈ dom vol)
75 mblvol 25578 . . . . . . . . 9 ((𝐴 ∩ (-𝑛[,]-𝑛)) ∈ dom vol → (vol‘(𝐴 ∩ (-𝑛[,]-𝑛))) = (vol*‘(𝐴 ∩ (-𝑛[,]-𝑛))))
7674, 75syl 17 . . . . . . . 8 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → (vol‘(𝐴 ∩ (-𝑛[,]-𝑛))) = (vol*‘(𝐴 ∩ (-𝑛[,]-𝑛))))
7761, 76, 723eqtrd 2778 . . . . . . 7 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → ((𝑦 ∈ ℝ ↦ (vol‘(𝐴 ∩ (-𝑛[,]𝑦))))‘-𝑛) = 0)
7819adantr 480 . . . . . . 7 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → 0 ≤ 𝐵)
7977, 78eqbrtrd 5169 . . . . . 6 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → ((𝑦 ∈ ℝ ↦ (vol‘(𝐴 ∩ (-𝑛[,]𝑦))))‘-𝑛) ≤ 𝐵)
807adantr 480 . . . . . . . 8 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → 𝐵 ∈ ℝ*)
81 iccmbl 25614 . . . . . . . . . . 11 ((-𝑛 ∈ ℝ ∧ 𝑛 ∈ ℝ) → (-𝑛[,]𝑛) ∈ dom vol)
8232, 31, 81syl2anc 584 . . . . . . . . . 10 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → (-𝑛[,]𝑛) ∈ dom vol)
83 inmbl 25590 . . . . . . . . . 10 ((𝐴 ∈ dom vol ∧ (-𝑛[,]𝑛) ∈ dom vol) → (𝐴 ∩ (-𝑛[,]𝑛)) ∈ dom vol)
8446, 82, 83syl2anc 584 . . . . . . . . 9 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → (𝐴 ∩ (-𝑛[,]𝑛)) ∈ dom vol)
859ffvelcdmi 7102 . . . . . . . . . 10 ((𝐴 ∩ (-𝑛[,]𝑛)) ∈ dom vol → (vol‘(𝐴 ∩ (-𝑛[,]𝑛))) ∈ (0[,]+∞))
868, 85sselid 3992 . . . . . . . . 9 ((𝐴 ∩ (-𝑛[,]𝑛)) ∈ dom vol → (vol‘(𝐴 ∩ (-𝑛[,]𝑛))) ∈ ℝ*)
8784, 86syl 17 . . . . . . . 8 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → (vol‘(𝐴 ∩ (-𝑛[,]𝑛))) ∈ ℝ*)
88 simprr 773 . . . . . . . 8 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))
8980, 87, 88xrltled 13188 . . . . . . 7 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → 𝐵 ≤ (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))
90 oveq2 7438 . . . . . . . . . . 11 (𝑦 = 𝑛 → (-𝑛[,]𝑦) = (-𝑛[,]𝑛))
9190ineq2d 4227 . . . . . . . . . 10 (𝑦 = 𝑛 → (𝐴 ∩ (-𝑛[,]𝑦)) = (𝐴 ∩ (-𝑛[,]𝑛)))
9291fveq2d 6910 . . . . . . . . 9 (𝑦 = 𝑛 → (vol‘(𝐴 ∩ (-𝑛[,]𝑦))) = (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))
93 fvex 6919 . . . . . . . . 9 (vol‘(𝐴 ∩ (-𝑛[,]𝑛))) ∈ V
9492, 47, 93fvmpt 7015 . . . . . . . 8 (𝑛 ∈ ℝ → ((𝑦 ∈ ℝ ↦ (vol‘(𝐴 ∩ (-𝑛[,]𝑦))))‘𝑛) = (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))
9531, 94syl 17 . . . . . . 7 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → ((𝑦 ∈ ℝ ↦ (vol‘(𝐴 ∩ (-𝑛[,]𝑦))))‘𝑛) = (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))
9689, 95breqtrrd 5175 . . . . . 6 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → 𝐵 ≤ ((𝑦 ∈ ℝ ↦ (vol‘(𝐴 ∩ (-𝑛[,]𝑦))))‘𝑛))
9779, 96jca 511 . . . . 5 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → (((𝑦 ∈ ℝ ↦ (vol‘(𝐴 ∩ (-𝑛[,]𝑦))))‘-𝑛) ≤ 𝐵𝐵 ≤ ((𝑦 ∈ ℝ ↦ (vol‘(𝐴 ∩ (-𝑛[,]𝑦))))‘𝑛)))
9832, 31, 33, 39, 41, 50, 55, 97ivthle 25504 . . . 4 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → ∃𝑧 ∈ (-𝑛[,]𝑛)((𝑦 ∈ ℝ ↦ (vol‘(𝐴 ∩ (-𝑛[,]𝑦))))‘𝑧) = 𝐵)
9941sselda 3994 . . . . . . . 8 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) ∧ 𝑧 ∈ (-𝑛[,]𝑛)) → 𝑧 ∈ ℝ)
100 oveq2 7438 . . . . . . . . . . 11 (𝑦 = 𝑧 → (-𝑛[,]𝑦) = (-𝑛[,]𝑧))
101100ineq2d 4227 . . . . . . . . . 10 (𝑦 = 𝑧 → (𝐴 ∩ (-𝑛[,]𝑦)) = (𝐴 ∩ (-𝑛[,]𝑧)))
102101fveq2d 6910 . . . . . . . . 9 (𝑦 = 𝑧 → (vol‘(𝐴 ∩ (-𝑛[,]𝑦))) = (vol‘(𝐴 ∩ (-𝑛[,]𝑧))))
103 fvex 6919 . . . . . . . . 9 (vol‘(𝐴 ∩ (-𝑛[,]𝑧))) ∈ V
104102, 47, 103fvmpt 7015 . . . . . . . 8 (𝑧 ∈ ℝ → ((𝑦 ∈ ℝ ↦ (vol‘(𝐴 ∩ (-𝑛[,]𝑦))))‘𝑧) = (vol‘(𝐴 ∩ (-𝑛[,]𝑧))))
10599, 104syl 17 . . . . . . 7 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) ∧ 𝑧 ∈ (-𝑛[,]𝑛)) → ((𝑦 ∈ ℝ ↦ (vol‘(𝐴 ∩ (-𝑛[,]𝑦))))‘𝑧) = (vol‘(𝐴 ∩ (-𝑛[,]𝑧))))
106105eqeq1d 2736 . . . . . 6 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) ∧ 𝑧 ∈ (-𝑛[,]𝑛)) → (((𝑦 ∈ ℝ ↦ (vol‘(𝐴 ∩ (-𝑛[,]𝑦))))‘𝑧) = 𝐵 ↔ (vol‘(𝐴 ∩ (-𝑛[,]𝑧))) = 𝐵))
10746adantr 480 . . . . . . . . 9 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) ∧ (𝑧 ∈ (-𝑛[,]𝑛) ∧ (vol‘(𝐴 ∩ (-𝑛[,]𝑧))) = 𝐵)) → 𝐴 ∈ dom vol)
10832adantr 480 . . . . . . . . . 10 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) ∧ (𝑧 ∈ (-𝑛[,]𝑛) ∧ (vol‘(𝐴 ∩ (-𝑛[,]𝑧))) = 𝐵)) → -𝑛 ∈ ℝ)
10999adantrr 717 . . . . . . . . . 10 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) ∧ (𝑧 ∈ (-𝑛[,]𝑛) ∧ (vol‘(𝐴 ∩ (-𝑛[,]𝑧))) = 𝐵)) → 𝑧 ∈ ℝ)
110 iccmbl 25614 . . . . . . . . . 10 ((-𝑛 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (-𝑛[,]𝑧) ∈ dom vol)
111108, 109, 110syl2anc 584 . . . . . . . . 9 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) ∧ (𝑧 ∈ (-𝑛[,]𝑛) ∧ (vol‘(𝐴 ∩ (-𝑛[,]𝑧))) = 𝐵)) → (-𝑛[,]𝑧) ∈ dom vol)
112 inmbl 25590 . . . . . . . . 9 ((𝐴 ∈ dom vol ∧ (-𝑛[,]𝑧) ∈ dom vol) → (𝐴 ∩ (-𝑛[,]𝑧)) ∈ dom vol)
113107, 111, 112syl2anc 584 . . . . . . . 8 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) ∧ (𝑧 ∈ (-𝑛[,]𝑛) ∧ (vol‘(𝐴 ∩ (-𝑛[,]𝑧))) = 𝐵)) → (𝐴 ∩ (-𝑛[,]𝑧)) ∈ dom vol)
114 inss1 4244 . . . . . . . . 9 (𝐴 ∩ (-𝑛[,]𝑧)) ⊆ 𝐴
115114a1i 11 . . . . . . . 8 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) ∧ (𝑧 ∈ (-𝑛[,]𝑛) ∧ (vol‘(𝐴 ∩ (-𝑛[,]𝑧))) = 𝐵)) → (𝐴 ∩ (-𝑛[,]𝑧)) ⊆ 𝐴)
116 simprr 773 . . . . . . . 8 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) ∧ (𝑧 ∈ (-𝑛[,]𝑛) ∧ (vol‘(𝐴 ∩ (-𝑛[,]𝑧))) = 𝐵)) → (vol‘(𝐴 ∩ (-𝑛[,]𝑧))) = 𝐵)
117 sseq1 4020 . . . . . . . . . 10 (𝑥 = (𝐴 ∩ (-𝑛[,]𝑧)) → (𝑥𝐴 ↔ (𝐴 ∩ (-𝑛[,]𝑧)) ⊆ 𝐴))
118 fveqeq2 6915 . . . . . . . . . 10 (𝑥 = (𝐴 ∩ (-𝑛[,]𝑧)) → ((vol‘𝑥) = 𝐵 ↔ (vol‘(𝐴 ∩ (-𝑛[,]𝑧))) = 𝐵))
119117, 118anbi12d 632 . . . . . . . . 9 (𝑥 = (𝐴 ∩ (-𝑛[,]𝑧)) → ((𝑥𝐴 ∧ (vol‘𝑥) = 𝐵) ↔ ((𝐴 ∩ (-𝑛[,]𝑧)) ⊆ 𝐴 ∧ (vol‘(𝐴 ∩ (-𝑛[,]𝑧))) = 𝐵)))
120119rspcev 3621 . . . . . . . 8 (((𝐴 ∩ (-𝑛[,]𝑧)) ∈ dom vol ∧ ((𝐴 ∩ (-𝑛[,]𝑧)) ⊆ 𝐴 ∧ (vol‘(𝐴 ∩ (-𝑛[,]𝑧))) = 𝐵)) → ∃𝑥 ∈ dom vol(𝑥𝐴 ∧ (vol‘𝑥) = 𝐵))
121113, 115, 116, 120syl12anc 837 . . . . . . 7 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) ∧ (𝑧 ∈ (-𝑛[,]𝑛) ∧ (vol‘(𝐴 ∩ (-𝑛[,]𝑧))) = 𝐵)) → ∃𝑥 ∈ dom vol(𝑥𝐴 ∧ (vol‘𝑥) = 𝐵))
122121expr 456 . . . . . 6 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) ∧ 𝑧 ∈ (-𝑛[,]𝑛)) → ((vol‘(𝐴 ∩ (-𝑛[,]𝑧))) = 𝐵 → ∃𝑥 ∈ dom vol(𝑥𝐴 ∧ (vol‘𝑥) = 𝐵)))
123106, 122sylbid 240 . . . . 5 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) ∧ 𝑧 ∈ (-𝑛[,]𝑛)) → (((𝑦 ∈ ℝ ↦ (vol‘(𝐴 ∩ (-𝑛[,]𝑦))))‘𝑧) = 𝐵 → ∃𝑥 ∈ dom vol(𝑥𝐴 ∧ (vol‘𝑥) = 𝐵)))
124123rexlimdva 3152 . . . 4 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → (∃𝑧 ∈ (-𝑛[,]𝑛)((𝑦 ∈ ℝ ↦ (vol‘(𝐴 ∩ (-𝑛[,]𝑦))))‘𝑧) = 𝐵 → ∃𝑥 ∈ dom vol(𝑥𝐴 ∧ (vol‘𝑥) = 𝐵)))
12598, 124mpd 15 . . 3 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → ∃𝑥 ∈ dom vol(𝑥𝐴 ∧ (vol‘𝑥) = 𝐵))
12629, 125rexlimddv 3158 . 2 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) → ∃𝑥 ∈ dom vol(𝑥𝐴 ∧ (vol‘𝑥) = 𝐵))
127 simpll 767 . . 3 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 = (vol‘𝐴)) → 𝐴 ∈ dom vol)
128 ssid 4017 . . . 4 𝐴𝐴
129128a1i 11 . . 3 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 = (vol‘𝐴)) → 𝐴𝐴)
130 simpr 484 . . . 4 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 = (vol‘𝐴)) → 𝐵 = (vol‘𝐴))
131130eqcomd 2740 . . 3 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 = (vol‘𝐴)) → (vol‘𝐴) = 𝐵)
132 sseq1 4020 . . . . 5 (𝑥 = 𝐴 → (𝑥𝐴𝐴𝐴))
133 fveqeq2 6915 . . . . 5 (𝑥 = 𝐴 → ((vol‘𝑥) = 𝐵 ↔ (vol‘𝐴) = 𝐵))
134132, 133anbi12d 632 . . . 4 (𝑥 = 𝐴 → ((𝑥𝐴 ∧ (vol‘𝑥) = 𝐵) ↔ (𝐴𝐴 ∧ (vol‘𝐴) = 𝐵)))
135134rspcev 3621 . . 3 ((𝐴 ∈ dom vol ∧ (𝐴𝐴 ∧ (vol‘𝐴) = 𝐵)) → ∃𝑥 ∈ dom vol(𝑥𝐴 ∧ (vol‘𝑥) = 𝐵))
136127, 129, 131, 135syl12anc 837 . 2 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 = (vol‘𝐴)) → ∃𝑥 ∈ dom vol(𝑥𝐴 ∧ (vol‘𝑥) = 𝐵))
13717simp3d 1143 . . 3 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) → 𝐵 ≤ (vol‘𝐴))
138 xrleloe 13182 . . . 4 ((𝐵 ∈ ℝ* ∧ (vol‘𝐴) ∈ ℝ*) → (𝐵 ≤ (vol‘𝐴) ↔ (𝐵 < (vol‘𝐴) ∨ 𝐵 = (vol‘𝐴))))
1396, 12, 138syl2anc 584 . . 3 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) → (𝐵 ≤ (vol‘𝐴) ↔ (𝐵 < (vol‘𝐴) ∨ 𝐵 = (vol‘𝐴))))
140137, 139mpbid 232 . 2 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) → (𝐵 < (vol‘𝐴) ∨ 𝐵 = (vol‘𝐴)))
141126, 136, 140mpjaodan 960 1 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) → ∃𝑥 ∈ dom vol(𝑥𝐴 ∧ (vol‘𝑥) = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1536  wcel 2105  wrex 3067  cin 3961  wss 3962  {csn 4630   class class class wbr 5147  cmpt 5230  dom cdm 5688  wf 6558  cfv 6562  (class class class)co 7430  cc 11150  cr 11151  0cc0 11152  +∞cpnf 11289  -∞cmnf 11290  *cxr 11291   < clt 11292  cle 11293  -cneg 11490  cn 12263  [,]cicc 13386  cnccncf 24915  vol*covol 25510  volcvol 25511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-inf2 9678  ax-cc 10472  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-disj 5115  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-se 5641  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-isom 6571  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-of 7696  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-2o 8505  df-er 8743  df-map 8866  df-pm 8867  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-fi 9448  df-sup 9479  df-inf 9480  df-oi 9547  df-dju 9938  df-card 9976  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-n0 12524  df-z 12611  df-uz 12876  df-q 12988  df-rp 13032  df-xneg 13151  df-xadd 13152  df-xmul 13153  df-ioo 13387  df-ico 13389  df-icc 13390  df-fz 13544  df-fzo 13691  df-fl 13828  df-seq 14039  df-exp 14099  df-hash 14366  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271  df-clim 15520  df-rlim 15521  df-sum 15719  df-rest 17468  df-topgen 17489  df-psmet 21373  df-xmet 21374  df-met 21375  df-bl 21376  df-mopn 21377  df-top 22915  df-topon 22932  df-bases 22968  df-cmp 23410  df-cncf 24917  df-ovol 25512  df-vol 25513
This theorem is referenced by:  itg2const2  25790
  Copyright terms: Public domain W3C validator