Step | Hyp | Ref
| Expression |
1 | | simpll 763 |
. . . 4
⊢ (((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) → 𝐴 ∈ dom vol) |
2 | | mnfxr 10963 |
. . . . . 6
⊢ -∞
∈ ℝ* |
3 | 2 | a1i 11 |
. . . . 5
⊢ (((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) → -∞ ∈
ℝ*) |
4 | | iccssxr 13091 |
. . . . . . 7
⊢
(0[,](vol‘𝐴))
⊆ ℝ* |
5 | | simpr 484 |
. . . . . . 7
⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) → 𝐵 ∈ (0[,](vol‘𝐴))) |
6 | 4, 5 | sselid 3915 |
. . . . . 6
⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) → 𝐵 ∈
ℝ*) |
7 | 6 | adantr 480 |
. . . . 5
⊢ (((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) → 𝐵 ∈
ℝ*) |
8 | | iccssxr 13091 |
. . . . . . . 8
⊢
(0[,]+∞) ⊆ ℝ* |
9 | | volf 24598 |
. . . . . . . . 9
⊢ vol:dom
vol⟶(0[,]+∞) |
10 | 9 | ffvelrni 6942 |
. . . . . . . 8
⊢ (𝐴 ∈ dom vol →
(vol‘𝐴) ∈
(0[,]+∞)) |
11 | 8, 10 | sselid 3915 |
. . . . . . 7
⊢ (𝐴 ∈ dom vol →
(vol‘𝐴) ∈
ℝ*) |
12 | 11 | adantr 480 |
. . . . . 6
⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) → (vol‘𝐴) ∈
ℝ*) |
13 | 12 | adantr 480 |
. . . . 5
⊢ (((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) → (vol‘𝐴) ∈
ℝ*) |
14 | | 0xr 10953 |
. . . . . . . . . 10
⊢ 0 ∈
ℝ* |
15 | | elicc1 13052 |
. . . . . . . . . 10
⊢ ((0
∈ ℝ* ∧ (vol‘𝐴) ∈ ℝ*) → (𝐵 ∈ (0[,](vol‘𝐴)) ↔ (𝐵 ∈ ℝ* ∧ 0 ≤
𝐵 ∧ 𝐵 ≤ (vol‘𝐴)))) |
16 | 14, 12, 15 | sylancr 586 |
. . . . . . . . 9
⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) → (𝐵 ∈ (0[,](vol‘𝐴)) ↔ (𝐵 ∈ ℝ* ∧ 0 ≤
𝐵 ∧ 𝐵 ≤ (vol‘𝐴)))) |
17 | 5, 16 | mpbid 231 |
. . . . . . . 8
⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) → (𝐵 ∈ ℝ* ∧ 0 ≤
𝐵 ∧ 𝐵 ≤ (vol‘𝐴))) |
18 | 17 | simp2d 1141 |
. . . . . . 7
⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) → 0 ≤ 𝐵) |
19 | 18 | adantr 480 |
. . . . . 6
⊢ (((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) → 0 ≤ 𝐵) |
20 | | mnflt0 12790 |
. . . . . . . 8
⊢ -∞
< 0 |
21 | | xrltletr 12820 |
. . . . . . . 8
⊢
((-∞ ∈ ℝ* ∧ 0 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → ((-∞ < 0 ∧ 0 ≤ 𝐵) → -∞ < 𝐵)) |
22 | 20, 21 | mpani 692 |
. . . . . . 7
⊢
((-∞ ∈ ℝ* ∧ 0 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → (0 ≤ 𝐵 → -∞ < 𝐵)) |
23 | 2, 14, 22 | mp3an12 1449 |
. . . . . 6
⊢ (𝐵 ∈ ℝ*
→ (0 ≤ 𝐵 →
-∞ < 𝐵)) |
24 | 7, 19, 23 | sylc 65 |
. . . . 5
⊢ (((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) → -∞ < 𝐵) |
25 | | simpr 484 |
. . . . 5
⊢ (((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) → 𝐵 < (vol‘𝐴)) |
26 | | xrre2 12833 |
. . . . 5
⊢
(((-∞ ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧
(vol‘𝐴) ∈
ℝ*) ∧ (-∞ < 𝐵 ∧ 𝐵 < (vol‘𝐴))) → 𝐵 ∈ ℝ) |
27 | 3, 7, 13, 24, 25, 26 | syl32anc 1376 |
. . . 4
⊢ (((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) → 𝐵 ∈ ℝ) |
28 | | volsup2 24674 |
. . . 4
⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) → ∃𝑛 ∈ ℕ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛)))) |
29 | 1, 27, 25, 28 | syl3anc 1369 |
. . 3
⊢ (((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) → ∃𝑛 ∈ ℕ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛)))) |
30 | | nnre 11910 |
. . . . . . 7
⊢ (𝑛 ∈ ℕ → 𝑛 ∈
ℝ) |
31 | 30 | ad2antrl 724 |
. . . . . 6
⊢ ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → 𝑛 ∈ ℝ) |
32 | 31 | renegcld 11332 |
. . . . 5
⊢ ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → -𝑛 ∈ ℝ) |
33 | 27 | adantr 480 |
. . . . 5
⊢ ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → 𝐵 ∈ ℝ) |
34 | | 0red 10909 |
. . . . . 6
⊢ ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → 0 ∈
ℝ) |
35 | | nngt0 11934 |
. . . . . . . 8
⊢ (𝑛 ∈ ℕ → 0 <
𝑛) |
36 | 35 | ad2antrl 724 |
. . . . . . 7
⊢ ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → 0 < 𝑛) |
37 | 31 | lt0neg2d 11475 |
. . . . . . 7
⊢ ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → (0 < 𝑛 ↔ -𝑛 < 0)) |
38 | 36, 37 | mpbid 231 |
. . . . . 6
⊢ ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → -𝑛 < 0) |
39 | 32, 34, 31, 38, 36 | lttrd 11066 |
. . . . 5
⊢ ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → -𝑛 < 𝑛) |
40 | | iccssre 13090 |
. . . . . 6
⊢ ((-𝑛 ∈ ℝ ∧ 𝑛 ∈ ℝ) → (-𝑛[,]𝑛) ⊆ ℝ) |
41 | 32, 31, 40 | syl2anc 583 |
. . . . 5
⊢ ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → (-𝑛[,]𝑛) ⊆ ℝ) |
42 | | ax-resscn 10859 |
. . . . . . 7
⊢ ℝ
⊆ ℂ |
43 | | ssid 3939 |
. . . . . . 7
⊢ ℂ
⊆ ℂ |
44 | | cncfss 23968 |
. . . . . . 7
⊢ ((ℝ
⊆ ℂ ∧ ℂ ⊆ ℂ) → (ℝ–cn→ℝ) ⊆ (ℝ–cn→ℂ)) |
45 | 42, 43, 44 | mp2an 688 |
. . . . . 6
⊢
(ℝ–cn→ℝ)
⊆ (ℝ–cn→ℂ) |
46 | 1 | adantr 480 |
. . . . . . 7
⊢ ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → 𝐴 ∈ dom vol) |
47 | | eqid 2738 |
. . . . . . . 8
⊢ (𝑦 ∈ ℝ ↦
(vol‘(𝐴 ∩ (-𝑛[,]𝑦)))) = (𝑦 ∈ ℝ ↦ (vol‘(𝐴 ∩ (-𝑛[,]𝑦)))) |
48 | 47 | volcn 24675 |
. . . . . . 7
⊢ ((𝐴 ∈ dom vol ∧ -𝑛 ∈ ℝ) → (𝑦 ∈ ℝ ↦
(vol‘(𝐴 ∩ (-𝑛[,]𝑦)))) ∈ (ℝ–cn→ℝ)) |
49 | 46, 32, 48 | syl2anc 583 |
. . . . . 6
⊢ ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → (𝑦 ∈ ℝ ↦ (vol‘(𝐴 ∩ (-𝑛[,]𝑦)))) ∈ (ℝ–cn→ℝ)) |
50 | 45, 49 | sselid 3915 |
. . . . 5
⊢ ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → (𝑦 ∈ ℝ ↦ (vol‘(𝐴 ∩ (-𝑛[,]𝑦)))) ∈ (ℝ–cn→ℂ)) |
51 | 41 | sselda 3917 |
. . . . . 6
⊢
(((((𝐴 ∈ dom
vol ∧ 𝐵 ∈
(0[,](vol‘𝐴))) ∧
𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) ∧ 𝑢 ∈ (-𝑛[,]𝑛)) → 𝑢 ∈ ℝ) |
52 | | cncff 23962 |
. . . . . . . 8
⊢ ((𝑦 ∈ ℝ ↦
(vol‘(𝐴 ∩ (-𝑛[,]𝑦)))) ∈ (ℝ–cn→ℝ) → (𝑦 ∈ ℝ ↦ (vol‘(𝐴 ∩ (-𝑛[,]𝑦)))):ℝ⟶ℝ) |
53 | 49, 52 | syl 17 |
. . . . . . 7
⊢ ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → (𝑦 ∈ ℝ ↦ (vol‘(𝐴 ∩ (-𝑛[,]𝑦)))):ℝ⟶ℝ) |
54 | 53 | ffvelrnda 6943 |
. . . . . 6
⊢
(((((𝐴 ∈ dom
vol ∧ 𝐵 ∈
(0[,](vol‘𝐴))) ∧
𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) ∧ 𝑢 ∈ ℝ) → ((𝑦 ∈ ℝ ↦ (vol‘(𝐴 ∩ (-𝑛[,]𝑦))))‘𝑢) ∈ ℝ) |
55 | 51, 54 | syldan 590 |
. . . . 5
⊢
(((((𝐴 ∈ dom
vol ∧ 𝐵 ∈
(0[,](vol‘𝐴))) ∧
𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) ∧ 𝑢 ∈ (-𝑛[,]𝑛)) → ((𝑦 ∈ ℝ ↦ (vol‘(𝐴 ∩ (-𝑛[,]𝑦))))‘𝑢) ∈ ℝ) |
56 | | oveq2 7263 |
. . . . . . . . . . . 12
⊢ (𝑦 = -𝑛 → (-𝑛[,]𝑦) = (-𝑛[,]-𝑛)) |
57 | 56 | ineq2d 4143 |
. . . . . . . . . . 11
⊢ (𝑦 = -𝑛 → (𝐴 ∩ (-𝑛[,]𝑦)) = (𝐴 ∩ (-𝑛[,]-𝑛))) |
58 | 57 | fveq2d 6760 |
. . . . . . . . . 10
⊢ (𝑦 = -𝑛 → (vol‘(𝐴 ∩ (-𝑛[,]𝑦))) = (vol‘(𝐴 ∩ (-𝑛[,]-𝑛)))) |
59 | | fvex 6769 |
. . . . . . . . . 10
⊢
(vol‘(𝐴 ∩
(-𝑛[,]-𝑛))) ∈ V |
60 | 58, 47, 59 | fvmpt 6857 |
. . . . . . . . 9
⊢ (-𝑛 ∈ ℝ → ((𝑦 ∈ ℝ ↦
(vol‘(𝐴 ∩ (-𝑛[,]𝑦))))‘-𝑛) = (vol‘(𝐴 ∩ (-𝑛[,]-𝑛)))) |
61 | 32, 60 | syl 17 |
. . . . . . . 8
⊢ ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → ((𝑦 ∈ ℝ ↦ (vol‘(𝐴 ∩ (-𝑛[,]𝑦))))‘-𝑛) = (vol‘(𝐴 ∩ (-𝑛[,]-𝑛)))) |
62 | | inss2 4160 |
. . . . . . . . . . . 12
⊢ (𝐴 ∩ (-𝑛[,]-𝑛)) ⊆ (-𝑛[,]-𝑛) |
63 | 32 | rexrd 10956 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → -𝑛 ∈ ℝ*) |
64 | | iccid 13053 |
. . . . . . . . . . . . 13
⊢ (-𝑛 ∈ ℝ*
→ (-𝑛[,]-𝑛) = {-𝑛}) |
65 | 63, 64 | syl 17 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → (-𝑛[,]-𝑛) = {-𝑛}) |
66 | 62, 65 | sseqtrid 3969 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → (𝐴 ∩ (-𝑛[,]-𝑛)) ⊆ {-𝑛}) |
67 | 32 | snssd 4739 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → {-𝑛} ⊆ ℝ) |
68 | 66, 67 | sstrd 3927 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → (𝐴 ∩ (-𝑛[,]-𝑛)) ⊆ ℝ) |
69 | | ovolsn 24564 |
. . . . . . . . . . . 12
⊢ (-𝑛 ∈ ℝ →
(vol*‘{-𝑛}) =
0) |
70 | 32, 69 | syl 17 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → (vol*‘{-𝑛}) = 0) |
71 | | ovolssnul 24556 |
. . . . . . . . . . 11
⊢ (((𝐴 ∩ (-𝑛[,]-𝑛)) ⊆ {-𝑛} ∧ {-𝑛} ⊆ ℝ ∧ (vol*‘{-𝑛}) = 0) →
(vol*‘(𝐴 ∩
(-𝑛[,]-𝑛))) = 0) |
72 | 66, 67, 70, 71 | syl3anc 1369 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → (vol*‘(𝐴 ∩ (-𝑛[,]-𝑛))) = 0) |
73 | | nulmbl 24604 |
. . . . . . . . . 10
⊢ (((𝐴 ∩ (-𝑛[,]-𝑛)) ⊆ ℝ ∧ (vol*‘(𝐴 ∩ (-𝑛[,]-𝑛))) = 0) → (𝐴 ∩ (-𝑛[,]-𝑛)) ∈ dom vol) |
74 | 68, 72, 73 | syl2anc 583 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → (𝐴 ∩ (-𝑛[,]-𝑛)) ∈ dom vol) |
75 | | mblvol 24599 |
. . . . . . . . 9
⊢ ((𝐴 ∩ (-𝑛[,]-𝑛)) ∈ dom vol → (vol‘(𝐴 ∩ (-𝑛[,]-𝑛))) = (vol*‘(𝐴 ∩ (-𝑛[,]-𝑛)))) |
76 | 74, 75 | syl 17 |
. . . . . . . 8
⊢ ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → (vol‘(𝐴 ∩ (-𝑛[,]-𝑛))) = (vol*‘(𝐴 ∩ (-𝑛[,]-𝑛)))) |
77 | 61, 76, 72 | 3eqtrd 2782 |
. . . . . . 7
⊢ ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → ((𝑦 ∈ ℝ ↦ (vol‘(𝐴 ∩ (-𝑛[,]𝑦))))‘-𝑛) = 0) |
78 | 19 | adantr 480 |
. . . . . . 7
⊢ ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → 0 ≤ 𝐵) |
79 | 77, 78 | eqbrtrd 5092 |
. . . . . 6
⊢ ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → ((𝑦 ∈ ℝ ↦ (vol‘(𝐴 ∩ (-𝑛[,]𝑦))))‘-𝑛) ≤ 𝐵) |
80 | 7 | adantr 480 |
. . . . . . . 8
⊢ ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → 𝐵 ∈
ℝ*) |
81 | | iccmbl 24635 |
. . . . . . . . . . 11
⊢ ((-𝑛 ∈ ℝ ∧ 𝑛 ∈ ℝ) → (-𝑛[,]𝑛) ∈ dom vol) |
82 | 32, 31, 81 | syl2anc 583 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → (-𝑛[,]𝑛) ∈ dom vol) |
83 | | inmbl 24611 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ dom vol ∧ (-𝑛[,]𝑛) ∈ dom vol) → (𝐴 ∩ (-𝑛[,]𝑛)) ∈ dom vol) |
84 | 46, 82, 83 | syl2anc 583 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → (𝐴 ∩ (-𝑛[,]𝑛)) ∈ dom vol) |
85 | 9 | ffvelrni 6942 |
. . . . . . . . . 10
⊢ ((𝐴 ∩ (-𝑛[,]𝑛)) ∈ dom vol → (vol‘(𝐴 ∩ (-𝑛[,]𝑛))) ∈ (0[,]+∞)) |
86 | 8, 85 | sselid 3915 |
. . . . . . . . 9
⊢ ((𝐴 ∩ (-𝑛[,]𝑛)) ∈ dom vol → (vol‘(𝐴 ∩ (-𝑛[,]𝑛))) ∈
ℝ*) |
87 | 84, 86 | syl 17 |
. . . . . . . 8
⊢ ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → (vol‘(𝐴 ∩ (-𝑛[,]𝑛))) ∈
ℝ*) |
88 | | simprr 769 |
. . . . . . . 8
⊢ ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛)))) |
89 | 80, 87, 88 | xrltled 12813 |
. . . . . . 7
⊢ ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → 𝐵 ≤ (vol‘(𝐴 ∩ (-𝑛[,]𝑛)))) |
90 | | oveq2 7263 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑛 → (-𝑛[,]𝑦) = (-𝑛[,]𝑛)) |
91 | 90 | ineq2d 4143 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑛 → (𝐴 ∩ (-𝑛[,]𝑦)) = (𝐴 ∩ (-𝑛[,]𝑛))) |
92 | 91 | fveq2d 6760 |
. . . . . . . . 9
⊢ (𝑦 = 𝑛 → (vol‘(𝐴 ∩ (-𝑛[,]𝑦))) = (vol‘(𝐴 ∩ (-𝑛[,]𝑛)))) |
93 | | fvex 6769 |
. . . . . . . . 9
⊢
(vol‘(𝐴 ∩
(-𝑛[,]𝑛))) ∈ V |
94 | 92, 47, 93 | fvmpt 6857 |
. . . . . . . 8
⊢ (𝑛 ∈ ℝ → ((𝑦 ∈ ℝ ↦
(vol‘(𝐴 ∩ (-𝑛[,]𝑦))))‘𝑛) = (vol‘(𝐴 ∩ (-𝑛[,]𝑛)))) |
95 | 31, 94 | syl 17 |
. . . . . . 7
⊢ ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → ((𝑦 ∈ ℝ ↦ (vol‘(𝐴 ∩ (-𝑛[,]𝑦))))‘𝑛) = (vol‘(𝐴 ∩ (-𝑛[,]𝑛)))) |
96 | 89, 95 | breqtrrd 5098 |
. . . . . 6
⊢ ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → 𝐵 ≤ ((𝑦 ∈ ℝ ↦ (vol‘(𝐴 ∩ (-𝑛[,]𝑦))))‘𝑛)) |
97 | 79, 96 | jca 511 |
. . . . 5
⊢ ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → (((𝑦 ∈ ℝ ↦ (vol‘(𝐴 ∩ (-𝑛[,]𝑦))))‘-𝑛) ≤ 𝐵 ∧ 𝐵 ≤ ((𝑦 ∈ ℝ ↦ (vol‘(𝐴 ∩ (-𝑛[,]𝑦))))‘𝑛))) |
98 | 32, 31, 33, 39, 41, 50, 55, 97 | ivthle 24525 |
. . . 4
⊢ ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → ∃𝑧 ∈ (-𝑛[,]𝑛)((𝑦 ∈ ℝ ↦ (vol‘(𝐴 ∩ (-𝑛[,]𝑦))))‘𝑧) = 𝐵) |
99 | 41 | sselda 3917 |
. . . . . . . 8
⊢
(((((𝐴 ∈ dom
vol ∧ 𝐵 ∈
(0[,](vol‘𝐴))) ∧
𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) ∧ 𝑧 ∈ (-𝑛[,]𝑛)) → 𝑧 ∈ ℝ) |
100 | | oveq2 7263 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑧 → (-𝑛[,]𝑦) = (-𝑛[,]𝑧)) |
101 | 100 | ineq2d 4143 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑧 → (𝐴 ∩ (-𝑛[,]𝑦)) = (𝐴 ∩ (-𝑛[,]𝑧))) |
102 | 101 | fveq2d 6760 |
. . . . . . . . 9
⊢ (𝑦 = 𝑧 → (vol‘(𝐴 ∩ (-𝑛[,]𝑦))) = (vol‘(𝐴 ∩ (-𝑛[,]𝑧)))) |
103 | | fvex 6769 |
. . . . . . . . 9
⊢
(vol‘(𝐴 ∩
(-𝑛[,]𝑧))) ∈ V |
104 | 102, 47, 103 | fvmpt 6857 |
. . . . . . . 8
⊢ (𝑧 ∈ ℝ → ((𝑦 ∈ ℝ ↦
(vol‘(𝐴 ∩ (-𝑛[,]𝑦))))‘𝑧) = (vol‘(𝐴 ∩ (-𝑛[,]𝑧)))) |
105 | 99, 104 | syl 17 |
. . . . . . 7
⊢
(((((𝐴 ∈ dom
vol ∧ 𝐵 ∈
(0[,](vol‘𝐴))) ∧
𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) ∧ 𝑧 ∈ (-𝑛[,]𝑛)) → ((𝑦 ∈ ℝ ↦ (vol‘(𝐴 ∩ (-𝑛[,]𝑦))))‘𝑧) = (vol‘(𝐴 ∩ (-𝑛[,]𝑧)))) |
106 | 105 | eqeq1d 2740 |
. . . . . 6
⊢
(((((𝐴 ∈ dom
vol ∧ 𝐵 ∈
(0[,](vol‘𝐴))) ∧
𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) ∧ 𝑧 ∈ (-𝑛[,]𝑛)) → (((𝑦 ∈ ℝ ↦ (vol‘(𝐴 ∩ (-𝑛[,]𝑦))))‘𝑧) = 𝐵 ↔ (vol‘(𝐴 ∩ (-𝑛[,]𝑧))) = 𝐵)) |
107 | 46 | adantr 480 |
. . . . . . . . 9
⊢
(((((𝐴 ∈ dom
vol ∧ 𝐵 ∈
(0[,](vol‘𝐴))) ∧
𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) ∧ (𝑧 ∈ (-𝑛[,]𝑛) ∧ (vol‘(𝐴 ∩ (-𝑛[,]𝑧))) = 𝐵)) → 𝐴 ∈ dom vol) |
108 | 32 | adantr 480 |
. . . . . . . . . 10
⊢
(((((𝐴 ∈ dom
vol ∧ 𝐵 ∈
(0[,](vol‘𝐴))) ∧
𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) ∧ (𝑧 ∈ (-𝑛[,]𝑛) ∧ (vol‘(𝐴 ∩ (-𝑛[,]𝑧))) = 𝐵)) → -𝑛 ∈ ℝ) |
109 | 99 | adantrr 713 |
. . . . . . . . . 10
⊢
(((((𝐴 ∈ dom
vol ∧ 𝐵 ∈
(0[,](vol‘𝐴))) ∧
𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) ∧ (𝑧 ∈ (-𝑛[,]𝑛) ∧ (vol‘(𝐴 ∩ (-𝑛[,]𝑧))) = 𝐵)) → 𝑧 ∈ ℝ) |
110 | | iccmbl 24635 |
. . . . . . . . . 10
⊢ ((-𝑛 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (-𝑛[,]𝑧) ∈ dom vol) |
111 | 108, 109,
110 | syl2anc 583 |
. . . . . . . . 9
⊢
(((((𝐴 ∈ dom
vol ∧ 𝐵 ∈
(0[,](vol‘𝐴))) ∧
𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) ∧ (𝑧 ∈ (-𝑛[,]𝑛) ∧ (vol‘(𝐴 ∩ (-𝑛[,]𝑧))) = 𝐵)) → (-𝑛[,]𝑧) ∈ dom vol) |
112 | | inmbl 24611 |
. . . . . . . . 9
⊢ ((𝐴 ∈ dom vol ∧ (-𝑛[,]𝑧) ∈ dom vol) → (𝐴 ∩ (-𝑛[,]𝑧)) ∈ dom vol) |
113 | 107, 111,
112 | syl2anc 583 |
. . . . . . . 8
⊢
(((((𝐴 ∈ dom
vol ∧ 𝐵 ∈
(0[,](vol‘𝐴))) ∧
𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) ∧ (𝑧 ∈ (-𝑛[,]𝑛) ∧ (vol‘(𝐴 ∩ (-𝑛[,]𝑧))) = 𝐵)) → (𝐴 ∩ (-𝑛[,]𝑧)) ∈ dom vol) |
114 | | inss1 4159 |
. . . . . . . . 9
⊢ (𝐴 ∩ (-𝑛[,]𝑧)) ⊆ 𝐴 |
115 | 114 | a1i 11 |
. . . . . . . 8
⊢
(((((𝐴 ∈ dom
vol ∧ 𝐵 ∈
(0[,](vol‘𝐴))) ∧
𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) ∧ (𝑧 ∈ (-𝑛[,]𝑛) ∧ (vol‘(𝐴 ∩ (-𝑛[,]𝑧))) = 𝐵)) → (𝐴 ∩ (-𝑛[,]𝑧)) ⊆ 𝐴) |
116 | | simprr 769 |
. . . . . . . 8
⊢
(((((𝐴 ∈ dom
vol ∧ 𝐵 ∈
(0[,](vol‘𝐴))) ∧
𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) ∧ (𝑧 ∈ (-𝑛[,]𝑛) ∧ (vol‘(𝐴 ∩ (-𝑛[,]𝑧))) = 𝐵)) → (vol‘(𝐴 ∩ (-𝑛[,]𝑧))) = 𝐵) |
117 | | sseq1 3942 |
. . . . . . . . . 10
⊢ (𝑥 = (𝐴 ∩ (-𝑛[,]𝑧)) → (𝑥 ⊆ 𝐴 ↔ (𝐴 ∩ (-𝑛[,]𝑧)) ⊆ 𝐴)) |
118 | | fveqeq2 6765 |
. . . . . . . . . 10
⊢ (𝑥 = (𝐴 ∩ (-𝑛[,]𝑧)) → ((vol‘𝑥) = 𝐵 ↔ (vol‘(𝐴 ∩ (-𝑛[,]𝑧))) = 𝐵)) |
119 | 117, 118 | anbi12d 630 |
. . . . . . . . 9
⊢ (𝑥 = (𝐴 ∩ (-𝑛[,]𝑧)) → ((𝑥 ⊆ 𝐴 ∧ (vol‘𝑥) = 𝐵) ↔ ((𝐴 ∩ (-𝑛[,]𝑧)) ⊆ 𝐴 ∧ (vol‘(𝐴 ∩ (-𝑛[,]𝑧))) = 𝐵))) |
120 | 119 | rspcev 3552 |
. . . . . . . 8
⊢ (((𝐴 ∩ (-𝑛[,]𝑧)) ∈ dom vol ∧ ((𝐴 ∩ (-𝑛[,]𝑧)) ⊆ 𝐴 ∧ (vol‘(𝐴 ∩ (-𝑛[,]𝑧))) = 𝐵)) → ∃𝑥 ∈ dom vol(𝑥 ⊆ 𝐴 ∧ (vol‘𝑥) = 𝐵)) |
121 | 113, 115,
116, 120 | syl12anc 833 |
. . . . . . 7
⊢
(((((𝐴 ∈ dom
vol ∧ 𝐵 ∈
(0[,](vol‘𝐴))) ∧
𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) ∧ (𝑧 ∈ (-𝑛[,]𝑛) ∧ (vol‘(𝐴 ∩ (-𝑛[,]𝑧))) = 𝐵)) → ∃𝑥 ∈ dom vol(𝑥 ⊆ 𝐴 ∧ (vol‘𝑥) = 𝐵)) |
122 | 121 | expr 456 |
. . . . . 6
⊢
(((((𝐴 ∈ dom
vol ∧ 𝐵 ∈
(0[,](vol‘𝐴))) ∧
𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) ∧ 𝑧 ∈ (-𝑛[,]𝑛)) → ((vol‘(𝐴 ∩ (-𝑛[,]𝑧))) = 𝐵 → ∃𝑥 ∈ dom vol(𝑥 ⊆ 𝐴 ∧ (vol‘𝑥) = 𝐵))) |
123 | 106, 122 | sylbid 239 |
. . . . 5
⊢
(((((𝐴 ∈ dom
vol ∧ 𝐵 ∈
(0[,](vol‘𝐴))) ∧
𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) ∧ 𝑧 ∈ (-𝑛[,]𝑛)) → (((𝑦 ∈ ℝ ↦ (vol‘(𝐴 ∩ (-𝑛[,]𝑦))))‘𝑧) = 𝐵 → ∃𝑥 ∈ dom vol(𝑥 ⊆ 𝐴 ∧ (vol‘𝑥) = 𝐵))) |
124 | 123 | rexlimdva 3212 |
. . . 4
⊢ ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → (∃𝑧 ∈ (-𝑛[,]𝑛)((𝑦 ∈ ℝ ↦ (vol‘(𝐴 ∩ (-𝑛[,]𝑦))))‘𝑧) = 𝐵 → ∃𝑥 ∈ dom vol(𝑥 ⊆ 𝐴 ∧ (vol‘𝑥) = 𝐵))) |
125 | 98, 124 | mpd 15 |
. . 3
⊢ ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → ∃𝑥 ∈ dom vol(𝑥 ⊆ 𝐴 ∧ (vol‘𝑥) = 𝐵)) |
126 | 29, 125 | rexlimddv 3219 |
. 2
⊢ (((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) → ∃𝑥 ∈ dom vol(𝑥 ⊆ 𝐴 ∧ (vol‘𝑥) = 𝐵)) |
127 | | simpll 763 |
. . 3
⊢ (((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 = (vol‘𝐴)) → 𝐴 ∈ dom vol) |
128 | | ssid 3939 |
. . . 4
⊢ 𝐴 ⊆ 𝐴 |
129 | 128 | a1i 11 |
. . 3
⊢ (((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 = (vol‘𝐴)) → 𝐴 ⊆ 𝐴) |
130 | | simpr 484 |
. . . 4
⊢ (((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 = (vol‘𝐴)) → 𝐵 = (vol‘𝐴)) |
131 | 130 | eqcomd 2744 |
. . 3
⊢ (((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 = (vol‘𝐴)) → (vol‘𝐴) = 𝐵) |
132 | | sseq1 3942 |
. . . . 5
⊢ (𝑥 = 𝐴 → (𝑥 ⊆ 𝐴 ↔ 𝐴 ⊆ 𝐴)) |
133 | | fveqeq2 6765 |
. . . . 5
⊢ (𝑥 = 𝐴 → ((vol‘𝑥) = 𝐵 ↔ (vol‘𝐴) = 𝐵)) |
134 | 132, 133 | anbi12d 630 |
. . . 4
⊢ (𝑥 = 𝐴 → ((𝑥 ⊆ 𝐴 ∧ (vol‘𝑥) = 𝐵) ↔ (𝐴 ⊆ 𝐴 ∧ (vol‘𝐴) = 𝐵))) |
135 | 134 | rspcev 3552 |
. . 3
⊢ ((𝐴 ∈ dom vol ∧ (𝐴 ⊆ 𝐴 ∧ (vol‘𝐴) = 𝐵)) → ∃𝑥 ∈ dom vol(𝑥 ⊆ 𝐴 ∧ (vol‘𝑥) = 𝐵)) |
136 | 127, 129,
131, 135 | syl12anc 833 |
. 2
⊢ (((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 = (vol‘𝐴)) → ∃𝑥 ∈ dom vol(𝑥 ⊆ 𝐴 ∧ (vol‘𝑥) = 𝐵)) |
137 | 17 | simp3d 1142 |
. . 3
⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) → 𝐵 ≤ (vol‘𝐴)) |
138 | | xrleloe 12807 |
. . . 4
⊢ ((𝐵 ∈ ℝ*
∧ (vol‘𝐴) ∈
ℝ*) → (𝐵 ≤ (vol‘𝐴) ↔ (𝐵 < (vol‘𝐴) ∨ 𝐵 = (vol‘𝐴)))) |
139 | 6, 12, 138 | syl2anc 583 |
. . 3
⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) → (𝐵 ≤ (vol‘𝐴) ↔ (𝐵 < (vol‘𝐴) ∨ 𝐵 = (vol‘𝐴)))) |
140 | 137, 139 | mpbid 231 |
. 2
⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) → (𝐵 < (vol‘𝐴) ∨ 𝐵 = (vol‘𝐴))) |
141 | 126, 136,
140 | mpjaodan 955 |
1
⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) → ∃𝑥 ∈ dom vol(𝑥 ⊆ 𝐴 ∧ (vol‘𝑥) = 𝐵)) |