MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  volivth Structured version   Visualization version   GIF version

Theorem volivth 25506
Description: The Intermediate Value Theorem for the Lebesgue volume function. For any positive 𝐵 ≤ (vol‘𝐴), there is a measurable subset of 𝐴 whose volume is 𝐵. (Contributed by Mario Carneiro, 30-Aug-2014.)
Assertion
Ref Expression
volivth ((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) → ∃𝑥 ∈ dom vol(𝑥𝐴 ∧ (vol‘𝑥) = 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem volivth
Dummy variables 𝑢 𝑛 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 766 . . . 4 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) → 𝐴 ∈ dom vol)
2 mnfxr 11172 . . . . . 6 -∞ ∈ ℝ*
32a1i 11 . . . . 5 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) → -∞ ∈ ℝ*)
4 iccssxr 13333 . . . . . . 7 (0[,](vol‘𝐴)) ⊆ ℝ*
5 simpr 484 . . . . . . 7 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) → 𝐵 ∈ (0[,](vol‘𝐴)))
64, 5sselid 3933 . . . . . 6 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) → 𝐵 ∈ ℝ*)
76adantr 480 . . . . 5 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) → 𝐵 ∈ ℝ*)
8 iccssxr 13333 . . . . . . . 8 (0[,]+∞) ⊆ ℝ*
9 volf 25428 . . . . . . . . 9 vol:dom vol⟶(0[,]+∞)
109ffvelcdmi 7017 . . . . . . . 8 (𝐴 ∈ dom vol → (vol‘𝐴) ∈ (0[,]+∞))
118, 10sselid 3933 . . . . . . 7 (𝐴 ∈ dom vol → (vol‘𝐴) ∈ ℝ*)
1211adantr 480 . . . . . 6 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) → (vol‘𝐴) ∈ ℝ*)
1312adantr 480 . . . . 5 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) → (vol‘𝐴) ∈ ℝ*)
14 0xr 11162 . . . . . . . . . 10 0 ∈ ℝ*
15 elicc1 13292 . . . . . . . . . 10 ((0 ∈ ℝ* ∧ (vol‘𝐴) ∈ ℝ*) → (𝐵 ∈ (0[,](vol‘𝐴)) ↔ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵𝐵 ≤ (vol‘𝐴))))
1614, 12, 15sylancr 587 . . . . . . . . 9 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) → (𝐵 ∈ (0[,](vol‘𝐴)) ↔ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵𝐵 ≤ (vol‘𝐴))))
175, 16mpbid 232 . . . . . . . 8 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) → (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵𝐵 ≤ (vol‘𝐴)))
1817simp2d 1143 . . . . . . 7 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) → 0 ≤ 𝐵)
1918adantr 480 . . . . . 6 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) → 0 ≤ 𝐵)
20 mnflt0 13027 . . . . . . . 8 -∞ < 0
21 xrltletr 13059 . . . . . . . 8 ((-∞ ∈ ℝ* ∧ 0 ∈ ℝ*𝐵 ∈ ℝ*) → ((-∞ < 0 ∧ 0 ≤ 𝐵) → -∞ < 𝐵))
2220, 21mpani 696 . . . . . . 7 ((-∞ ∈ ℝ* ∧ 0 ∈ ℝ*𝐵 ∈ ℝ*) → (0 ≤ 𝐵 → -∞ < 𝐵))
232, 14, 22mp3an12 1453 . . . . . 6 (𝐵 ∈ ℝ* → (0 ≤ 𝐵 → -∞ < 𝐵))
247, 19, 23sylc 65 . . . . 5 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) → -∞ < 𝐵)
25 simpr 484 . . . . 5 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) → 𝐵 < (vol‘𝐴))
26 xrre2 13072 . . . . 5 (((-∞ ∈ ℝ*𝐵 ∈ ℝ* ∧ (vol‘𝐴) ∈ ℝ*) ∧ (-∞ < 𝐵𝐵 < (vol‘𝐴))) → 𝐵 ∈ ℝ)
273, 7, 13, 24, 25, 26syl32anc 1380 . . . 4 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) → 𝐵 ∈ ℝ)
28 volsup2 25504 . . . 4 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) → ∃𝑛 ∈ ℕ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))
291, 27, 25, 28syl3anc 1373 . . 3 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) → ∃𝑛 ∈ ℕ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))
30 nnre 12135 . . . . . . 7 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ)
3130ad2antrl 728 . . . . . 6 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → 𝑛 ∈ ℝ)
3231renegcld 11547 . . . . 5 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → -𝑛 ∈ ℝ)
3327adantr 480 . . . . 5 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → 𝐵 ∈ ℝ)
34 0red 11118 . . . . . 6 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → 0 ∈ ℝ)
35 nngt0 12159 . . . . . . . 8 (𝑛 ∈ ℕ → 0 < 𝑛)
3635ad2antrl 728 . . . . . . 7 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → 0 < 𝑛)
3731lt0neg2d 11690 . . . . . . 7 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → (0 < 𝑛 ↔ -𝑛 < 0))
3836, 37mpbid 232 . . . . . 6 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → -𝑛 < 0)
3932, 34, 31, 38, 36lttrd 11277 . . . . 5 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → -𝑛 < 𝑛)
40 iccssre 13332 . . . . . 6 ((-𝑛 ∈ ℝ ∧ 𝑛 ∈ ℝ) → (-𝑛[,]𝑛) ⊆ ℝ)
4132, 31, 40syl2anc 584 . . . . 5 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → (-𝑛[,]𝑛) ⊆ ℝ)
42 ax-resscn 11066 . . . . . . 7 ℝ ⊆ ℂ
43 ssid 3958 . . . . . . 7 ℂ ⊆ ℂ
44 cncfss 24790 . . . . . . 7 ((ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (ℝ–cn→ℝ) ⊆ (ℝ–cn→ℂ))
4542, 43, 44mp2an 692 . . . . . 6 (ℝ–cn→ℝ) ⊆ (ℝ–cn→ℂ)
461adantr 480 . . . . . . 7 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → 𝐴 ∈ dom vol)
47 eqid 2729 . . . . . . . 8 (𝑦 ∈ ℝ ↦ (vol‘(𝐴 ∩ (-𝑛[,]𝑦)))) = (𝑦 ∈ ℝ ↦ (vol‘(𝐴 ∩ (-𝑛[,]𝑦))))
4847volcn 25505 . . . . . . 7 ((𝐴 ∈ dom vol ∧ -𝑛 ∈ ℝ) → (𝑦 ∈ ℝ ↦ (vol‘(𝐴 ∩ (-𝑛[,]𝑦)))) ∈ (ℝ–cn→ℝ))
4946, 32, 48syl2anc 584 . . . . . 6 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → (𝑦 ∈ ℝ ↦ (vol‘(𝐴 ∩ (-𝑛[,]𝑦)))) ∈ (ℝ–cn→ℝ))
5045, 49sselid 3933 . . . . 5 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → (𝑦 ∈ ℝ ↦ (vol‘(𝐴 ∩ (-𝑛[,]𝑦)))) ∈ (ℝ–cn→ℂ))
5141sselda 3935 . . . . . 6 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) ∧ 𝑢 ∈ (-𝑛[,]𝑛)) → 𝑢 ∈ ℝ)
52 cncff 24784 . . . . . . . 8 ((𝑦 ∈ ℝ ↦ (vol‘(𝐴 ∩ (-𝑛[,]𝑦)))) ∈ (ℝ–cn→ℝ) → (𝑦 ∈ ℝ ↦ (vol‘(𝐴 ∩ (-𝑛[,]𝑦)))):ℝ⟶ℝ)
5349, 52syl 17 . . . . . . 7 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → (𝑦 ∈ ℝ ↦ (vol‘(𝐴 ∩ (-𝑛[,]𝑦)))):ℝ⟶ℝ)
5453ffvelcdmda 7018 . . . . . 6 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) ∧ 𝑢 ∈ ℝ) → ((𝑦 ∈ ℝ ↦ (vol‘(𝐴 ∩ (-𝑛[,]𝑦))))‘𝑢) ∈ ℝ)
5551, 54syldan 591 . . . . 5 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) ∧ 𝑢 ∈ (-𝑛[,]𝑛)) → ((𝑦 ∈ ℝ ↦ (vol‘(𝐴 ∩ (-𝑛[,]𝑦))))‘𝑢) ∈ ℝ)
56 oveq2 7357 . . . . . . . . . . . 12 (𝑦 = -𝑛 → (-𝑛[,]𝑦) = (-𝑛[,]-𝑛))
5756ineq2d 4171 . . . . . . . . . . 11 (𝑦 = -𝑛 → (𝐴 ∩ (-𝑛[,]𝑦)) = (𝐴 ∩ (-𝑛[,]-𝑛)))
5857fveq2d 6826 . . . . . . . . . 10 (𝑦 = -𝑛 → (vol‘(𝐴 ∩ (-𝑛[,]𝑦))) = (vol‘(𝐴 ∩ (-𝑛[,]-𝑛))))
59 fvex 6835 . . . . . . . . . 10 (vol‘(𝐴 ∩ (-𝑛[,]-𝑛))) ∈ V
6058, 47, 59fvmpt 6930 . . . . . . . . 9 (-𝑛 ∈ ℝ → ((𝑦 ∈ ℝ ↦ (vol‘(𝐴 ∩ (-𝑛[,]𝑦))))‘-𝑛) = (vol‘(𝐴 ∩ (-𝑛[,]-𝑛))))
6132, 60syl 17 . . . . . . . 8 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → ((𝑦 ∈ ℝ ↦ (vol‘(𝐴 ∩ (-𝑛[,]𝑦))))‘-𝑛) = (vol‘(𝐴 ∩ (-𝑛[,]-𝑛))))
62 inss2 4189 . . . . . . . . . . . 12 (𝐴 ∩ (-𝑛[,]-𝑛)) ⊆ (-𝑛[,]-𝑛)
6332rexrd 11165 . . . . . . . . . . . . 13 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → -𝑛 ∈ ℝ*)
64 iccid 13293 . . . . . . . . . . . . 13 (-𝑛 ∈ ℝ* → (-𝑛[,]-𝑛) = {-𝑛})
6563, 64syl 17 . . . . . . . . . . . 12 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → (-𝑛[,]-𝑛) = {-𝑛})
6662, 65sseqtrid 3978 . . . . . . . . . . 11 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → (𝐴 ∩ (-𝑛[,]-𝑛)) ⊆ {-𝑛})
6732snssd 4760 . . . . . . . . . . 11 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → {-𝑛} ⊆ ℝ)
6866, 67sstrd 3946 . . . . . . . . . 10 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → (𝐴 ∩ (-𝑛[,]-𝑛)) ⊆ ℝ)
69 ovolsn 25394 . . . . . . . . . . . 12 (-𝑛 ∈ ℝ → (vol*‘{-𝑛}) = 0)
7032, 69syl 17 . . . . . . . . . . 11 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → (vol*‘{-𝑛}) = 0)
71 ovolssnul 25386 . . . . . . . . . . 11 (((𝐴 ∩ (-𝑛[,]-𝑛)) ⊆ {-𝑛} ∧ {-𝑛} ⊆ ℝ ∧ (vol*‘{-𝑛}) = 0) → (vol*‘(𝐴 ∩ (-𝑛[,]-𝑛))) = 0)
7266, 67, 70, 71syl3anc 1373 . . . . . . . . . 10 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → (vol*‘(𝐴 ∩ (-𝑛[,]-𝑛))) = 0)
73 nulmbl 25434 . . . . . . . . . 10 (((𝐴 ∩ (-𝑛[,]-𝑛)) ⊆ ℝ ∧ (vol*‘(𝐴 ∩ (-𝑛[,]-𝑛))) = 0) → (𝐴 ∩ (-𝑛[,]-𝑛)) ∈ dom vol)
7468, 72, 73syl2anc 584 . . . . . . . . 9 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → (𝐴 ∩ (-𝑛[,]-𝑛)) ∈ dom vol)
75 mblvol 25429 . . . . . . . . 9 ((𝐴 ∩ (-𝑛[,]-𝑛)) ∈ dom vol → (vol‘(𝐴 ∩ (-𝑛[,]-𝑛))) = (vol*‘(𝐴 ∩ (-𝑛[,]-𝑛))))
7674, 75syl 17 . . . . . . . 8 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → (vol‘(𝐴 ∩ (-𝑛[,]-𝑛))) = (vol*‘(𝐴 ∩ (-𝑛[,]-𝑛))))
7761, 76, 723eqtrd 2768 . . . . . . 7 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → ((𝑦 ∈ ℝ ↦ (vol‘(𝐴 ∩ (-𝑛[,]𝑦))))‘-𝑛) = 0)
7819adantr 480 . . . . . . 7 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → 0 ≤ 𝐵)
7977, 78eqbrtrd 5114 . . . . . 6 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → ((𝑦 ∈ ℝ ↦ (vol‘(𝐴 ∩ (-𝑛[,]𝑦))))‘-𝑛) ≤ 𝐵)
807adantr 480 . . . . . . . 8 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → 𝐵 ∈ ℝ*)
81 iccmbl 25465 . . . . . . . . . . 11 ((-𝑛 ∈ ℝ ∧ 𝑛 ∈ ℝ) → (-𝑛[,]𝑛) ∈ dom vol)
8232, 31, 81syl2anc 584 . . . . . . . . . 10 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → (-𝑛[,]𝑛) ∈ dom vol)
83 inmbl 25441 . . . . . . . . . 10 ((𝐴 ∈ dom vol ∧ (-𝑛[,]𝑛) ∈ dom vol) → (𝐴 ∩ (-𝑛[,]𝑛)) ∈ dom vol)
8446, 82, 83syl2anc 584 . . . . . . . . 9 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → (𝐴 ∩ (-𝑛[,]𝑛)) ∈ dom vol)
859ffvelcdmi 7017 . . . . . . . . . 10 ((𝐴 ∩ (-𝑛[,]𝑛)) ∈ dom vol → (vol‘(𝐴 ∩ (-𝑛[,]𝑛))) ∈ (0[,]+∞))
868, 85sselid 3933 . . . . . . . . 9 ((𝐴 ∩ (-𝑛[,]𝑛)) ∈ dom vol → (vol‘(𝐴 ∩ (-𝑛[,]𝑛))) ∈ ℝ*)
8784, 86syl 17 . . . . . . . 8 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → (vol‘(𝐴 ∩ (-𝑛[,]𝑛))) ∈ ℝ*)
88 simprr 772 . . . . . . . 8 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))
8980, 87, 88xrltled 13052 . . . . . . 7 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → 𝐵 ≤ (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))
90 oveq2 7357 . . . . . . . . . . 11 (𝑦 = 𝑛 → (-𝑛[,]𝑦) = (-𝑛[,]𝑛))
9190ineq2d 4171 . . . . . . . . . 10 (𝑦 = 𝑛 → (𝐴 ∩ (-𝑛[,]𝑦)) = (𝐴 ∩ (-𝑛[,]𝑛)))
9291fveq2d 6826 . . . . . . . . 9 (𝑦 = 𝑛 → (vol‘(𝐴 ∩ (-𝑛[,]𝑦))) = (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))
93 fvex 6835 . . . . . . . . 9 (vol‘(𝐴 ∩ (-𝑛[,]𝑛))) ∈ V
9492, 47, 93fvmpt 6930 . . . . . . . 8 (𝑛 ∈ ℝ → ((𝑦 ∈ ℝ ↦ (vol‘(𝐴 ∩ (-𝑛[,]𝑦))))‘𝑛) = (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))
9531, 94syl 17 . . . . . . 7 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → ((𝑦 ∈ ℝ ↦ (vol‘(𝐴 ∩ (-𝑛[,]𝑦))))‘𝑛) = (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))
9689, 95breqtrrd 5120 . . . . . 6 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → 𝐵 ≤ ((𝑦 ∈ ℝ ↦ (vol‘(𝐴 ∩ (-𝑛[,]𝑦))))‘𝑛))
9779, 96jca 511 . . . . 5 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → (((𝑦 ∈ ℝ ↦ (vol‘(𝐴 ∩ (-𝑛[,]𝑦))))‘-𝑛) ≤ 𝐵𝐵 ≤ ((𝑦 ∈ ℝ ↦ (vol‘(𝐴 ∩ (-𝑛[,]𝑦))))‘𝑛)))
9832, 31, 33, 39, 41, 50, 55, 97ivthle 25355 . . . 4 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → ∃𝑧 ∈ (-𝑛[,]𝑛)((𝑦 ∈ ℝ ↦ (vol‘(𝐴 ∩ (-𝑛[,]𝑦))))‘𝑧) = 𝐵)
9941sselda 3935 . . . . . . . 8 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) ∧ 𝑧 ∈ (-𝑛[,]𝑛)) → 𝑧 ∈ ℝ)
100 oveq2 7357 . . . . . . . . . . 11 (𝑦 = 𝑧 → (-𝑛[,]𝑦) = (-𝑛[,]𝑧))
101100ineq2d 4171 . . . . . . . . . 10 (𝑦 = 𝑧 → (𝐴 ∩ (-𝑛[,]𝑦)) = (𝐴 ∩ (-𝑛[,]𝑧)))
102101fveq2d 6826 . . . . . . . . 9 (𝑦 = 𝑧 → (vol‘(𝐴 ∩ (-𝑛[,]𝑦))) = (vol‘(𝐴 ∩ (-𝑛[,]𝑧))))
103 fvex 6835 . . . . . . . . 9 (vol‘(𝐴 ∩ (-𝑛[,]𝑧))) ∈ V
104102, 47, 103fvmpt 6930 . . . . . . . 8 (𝑧 ∈ ℝ → ((𝑦 ∈ ℝ ↦ (vol‘(𝐴 ∩ (-𝑛[,]𝑦))))‘𝑧) = (vol‘(𝐴 ∩ (-𝑛[,]𝑧))))
10599, 104syl 17 . . . . . . 7 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) ∧ 𝑧 ∈ (-𝑛[,]𝑛)) → ((𝑦 ∈ ℝ ↦ (vol‘(𝐴 ∩ (-𝑛[,]𝑦))))‘𝑧) = (vol‘(𝐴 ∩ (-𝑛[,]𝑧))))
106105eqeq1d 2731 . . . . . 6 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) ∧ 𝑧 ∈ (-𝑛[,]𝑛)) → (((𝑦 ∈ ℝ ↦ (vol‘(𝐴 ∩ (-𝑛[,]𝑦))))‘𝑧) = 𝐵 ↔ (vol‘(𝐴 ∩ (-𝑛[,]𝑧))) = 𝐵))
10746adantr 480 . . . . . . . . 9 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) ∧ (𝑧 ∈ (-𝑛[,]𝑛) ∧ (vol‘(𝐴 ∩ (-𝑛[,]𝑧))) = 𝐵)) → 𝐴 ∈ dom vol)
10832adantr 480 . . . . . . . . . 10 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) ∧ (𝑧 ∈ (-𝑛[,]𝑛) ∧ (vol‘(𝐴 ∩ (-𝑛[,]𝑧))) = 𝐵)) → -𝑛 ∈ ℝ)
10999adantrr 717 . . . . . . . . . 10 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) ∧ (𝑧 ∈ (-𝑛[,]𝑛) ∧ (vol‘(𝐴 ∩ (-𝑛[,]𝑧))) = 𝐵)) → 𝑧 ∈ ℝ)
110 iccmbl 25465 . . . . . . . . . 10 ((-𝑛 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (-𝑛[,]𝑧) ∈ dom vol)
111108, 109, 110syl2anc 584 . . . . . . . . 9 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) ∧ (𝑧 ∈ (-𝑛[,]𝑛) ∧ (vol‘(𝐴 ∩ (-𝑛[,]𝑧))) = 𝐵)) → (-𝑛[,]𝑧) ∈ dom vol)
112 inmbl 25441 . . . . . . . . 9 ((𝐴 ∈ dom vol ∧ (-𝑛[,]𝑧) ∈ dom vol) → (𝐴 ∩ (-𝑛[,]𝑧)) ∈ dom vol)
113107, 111, 112syl2anc 584 . . . . . . . 8 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) ∧ (𝑧 ∈ (-𝑛[,]𝑛) ∧ (vol‘(𝐴 ∩ (-𝑛[,]𝑧))) = 𝐵)) → (𝐴 ∩ (-𝑛[,]𝑧)) ∈ dom vol)
114 inss1 4188 . . . . . . . . 9 (𝐴 ∩ (-𝑛[,]𝑧)) ⊆ 𝐴
115114a1i 11 . . . . . . . 8 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) ∧ (𝑧 ∈ (-𝑛[,]𝑛) ∧ (vol‘(𝐴 ∩ (-𝑛[,]𝑧))) = 𝐵)) → (𝐴 ∩ (-𝑛[,]𝑧)) ⊆ 𝐴)
116 simprr 772 . . . . . . . 8 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) ∧ (𝑧 ∈ (-𝑛[,]𝑛) ∧ (vol‘(𝐴 ∩ (-𝑛[,]𝑧))) = 𝐵)) → (vol‘(𝐴 ∩ (-𝑛[,]𝑧))) = 𝐵)
117 sseq1 3961 . . . . . . . . . 10 (𝑥 = (𝐴 ∩ (-𝑛[,]𝑧)) → (𝑥𝐴 ↔ (𝐴 ∩ (-𝑛[,]𝑧)) ⊆ 𝐴))
118 fveqeq2 6831 . . . . . . . . . 10 (𝑥 = (𝐴 ∩ (-𝑛[,]𝑧)) → ((vol‘𝑥) = 𝐵 ↔ (vol‘(𝐴 ∩ (-𝑛[,]𝑧))) = 𝐵))
119117, 118anbi12d 632 . . . . . . . . 9 (𝑥 = (𝐴 ∩ (-𝑛[,]𝑧)) → ((𝑥𝐴 ∧ (vol‘𝑥) = 𝐵) ↔ ((𝐴 ∩ (-𝑛[,]𝑧)) ⊆ 𝐴 ∧ (vol‘(𝐴 ∩ (-𝑛[,]𝑧))) = 𝐵)))
120119rspcev 3577 . . . . . . . 8 (((𝐴 ∩ (-𝑛[,]𝑧)) ∈ dom vol ∧ ((𝐴 ∩ (-𝑛[,]𝑧)) ⊆ 𝐴 ∧ (vol‘(𝐴 ∩ (-𝑛[,]𝑧))) = 𝐵)) → ∃𝑥 ∈ dom vol(𝑥𝐴 ∧ (vol‘𝑥) = 𝐵))
121113, 115, 116, 120syl12anc 836 . . . . . . 7 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) ∧ (𝑧 ∈ (-𝑛[,]𝑛) ∧ (vol‘(𝐴 ∩ (-𝑛[,]𝑧))) = 𝐵)) → ∃𝑥 ∈ dom vol(𝑥𝐴 ∧ (vol‘𝑥) = 𝐵))
122121expr 456 . . . . . 6 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) ∧ 𝑧 ∈ (-𝑛[,]𝑛)) → ((vol‘(𝐴 ∩ (-𝑛[,]𝑧))) = 𝐵 → ∃𝑥 ∈ dom vol(𝑥𝐴 ∧ (vol‘𝑥) = 𝐵)))
123106, 122sylbid 240 . . . . 5 (((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) ∧ 𝑧 ∈ (-𝑛[,]𝑛)) → (((𝑦 ∈ ℝ ↦ (vol‘(𝐴 ∩ (-𝑛[,]𝑦))))‘𝑧) = 𝐵 → ∃𝑥 ∈ dom vol(𝑥𝐴 ∧ (vol‘𝑥) = 𝐵)))
124123rexlimdva 3130 . . . 4 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → (∃𝑧 ∈ (-𝑛[,]𝑛)((𝑦 ∈ ℝ ↦ (vol‘(𝐴 ∩ (-𝑛[,]𝑦))))‘𝑧) = 𝐵 → ∃𝑥 ∈ dom vol(𝑥𝐴 ∧ (vol‘𝑥) = 𝐵)))
12598, 124mpd 15 . . 3 ((((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) ∧ (𝑛 ∈ ℕ ∧ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛))))) → ∃𝑥 ∈ dom vol(𝑥𝐴 ∧ (vol‘𝑥) = 𝐵))
12629, 125rexlimddv 3136 . 2 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 < (vol‘𝐴)) → ∃𝑥 ∈ dom vol(𝑥𝐴 ∧ (vol‘𝑥) = 𝐵))
127 simpll 766 . . 3 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 = (vol‘𝐴)) → 𝐴 ∈ dom vol)
128 ssid 3958 . . . 4 𝐴𝐴
129128a1i 11 . . 3 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 = (vol‘𝐴)) → 𝐴𝐴)
130 simpr 484 . . . 4 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 = (vol‘𝐴)) → 𝐵 = (vol‘𝐴))
131130eqcomd 2735 . . 3 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 = (vol‘𝐴)) → (vol‘𝐴) = 𝐵)
132 sseq1 3961 . . . . 5 (𝑥 = 𝐴 → (𝑥𝐴𝐴𝐴))
133 fveqeq2 6831 . . . . 5 (𝑥 = 𝐴 → ((vol‘𝑥) = 𝐵 ↔ (vol‘𝐴) = 𝐵))
134132, 133anbi12d 632 . . . 4 (𝑥 = 𝐴 → ((𝑥𝐴 ∧ (vol‘𝑥) = 𝐵) ↔ (𝐴𝐴 ∧ (vol‘𝐴) = 𝐵)))
135134rspcev 3577 . . 3 ((𝐴 ∈ dom vol ∧ (𝐴𝐴 ∧ (vol‘𝐴) = 𝐵)) → ∃𝑥 ∈ dom vol(𝑥𝐴 ∧ (vol‘𝑥) = 𝐵))
136127, 129, 131, 135syl12anc 836 . 2 (((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) ∧ 𝐵 = (vol‘𝐴)) → ∃𝑥 ∈ dom vol(𝑥𝐴 ∧ (vol‘𝑥) = 𝐵))
13717simp3d 1144 . . 3 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) → 𝐵 ≤ (vol‘𝐴))
138 xrleloe 13046 . . . 4 ((𝐵 ∈ ℝ* ∧ (vol‘𝐴) ∈ ℝ*) → (𝐵 ≤ (vol‘𝐴) ↔ (𝐵 < (vol‘𝐴) ∨ 𝐵 = (vol‘𝐴))))
1396, 12, 138syl2anc 584 . . 3 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) → (𝐵 ≤ (vol‘𝐴) ↔ (𝐵 < (vol‘𝐴) ∨ 𝐵 = (vol‘𝐴))))
140137, 139mpbid 232 . 2 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) → (𝐵 < (vol‘𝐴) ∨ 𝐵 = (vol‘𝐴)))
141126, 136, 140mpjaodan 960 1 ((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) → ∃𝑥 ∈ dom vol(𝑥𝐴 ∧ (vol‘𝑥) = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wrex 3053  cin 3902  wss 3903  {csn 4577   class class class wbr 5092  cmpt 5173  dom cdm 5619  wf 6478  cfv 6482  (class class class)co 7349  cc 11007  cr 11008  0cc0 11009  +∞cpnf 11146  -∞cmnf 11147  *cxr 11148   < clt 11149  cle 11150  -cneg 11348  cn 12128  [,]cicc 13251  cnccncf 24767  vol*covol 25361  volcvol 25362
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-cc 10329  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-disj 5060  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-er 8625  df-map 8755  df-pm 8756  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fi 9301  df-sup 9332  df-inf 9333  df-oi 9402  df-dju 9797  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-n0 12385  df-z 12472  df-uz 12736  df-q 12850  df-rp 12894  df-xneg 13014  df-xadd 13015  df-xmul 13016  df-ioo 13252  df-ico 13254  df-icc 13255  df-fz 13411  df-fzo 13558  df-fl 13696  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-rlim 15396  df-sum 15594  df-rest 17326  df-topgen 17347  df-psmet 21253  df-xmet 21254  df-met 21255  df-bl 21256  df-mopn 21257  df-top 22779  df-topon 22796  df-bases 22831  df-cmp 23272  df-cncf 24769  df-ovol 25363  df-vol 25364
This theorem is referenced by:  itg2const2  25640
  Copyright terms: Public domain W3C validator