Step | Hyp | Ref
| Expression |
1 | | simpll 766 |
. . . 4
β’ (((π΄ β dom vol β§ π΅ β (0[,](volβπ΄))) β§ π΅ < (volβπ΄)) β π΄ β dom vol) |
2 | | mnfxr 11219 |
. . . . . 6
β’ -β
β β* |
3 | 2 | a1i 11 |
. . . . 5
β’ (((π΄ β dom vol β§ π΅ β (0[,](volβπ΄))) β§ π΅ < (volβπ΄)) β -β β
β*) |
4 | | iccssxr 13354 |
. . . . . . 7
β’
(0[,](volβπ΄))
β β* |
5 | | simpr 486 |
. . . . . . 7
β’ ((π΄ β dom vol β§ π΅ β (0[,](volβπ΄))) β π΅ β (0[,](volβπ΄))) |
6 | 4, 5 | sselid 3947 |
. . . . . 6
β’ ((π΄ β dom vol β§ π΅ β (0[,](volβπ΄))) β π΅ β
β*) |
7 | 6 | adantr 482 |
. . . . 5
β’ (((π΄ β dom vol β§ π΅ β (0[,](volβπ΄))) β§ π΅ < (volβπ΄)) β π΅ β
β*) |
8 | | iccssxr 13354 |
. . . . . . . 8
β’
(0[,]+β) β β* |
9 | | volf 24909 |
. . . . . . . . 9
β’ vol:dom
volβΆ(0[,]+β) |
10 | 9 | ffvelcdmi 7039 |
. . . . . . . 8
β’ (π΄ β dom vol β
(volβπ΄) β
(0[,]+β)) |
11 | 8, 10 | sselid 3947 |
. . . . . . 7
β’ (π΄ β dom vol β
(volβπ΄) β
β*) |
12 | 11 | adantr 482 |
. . . . . 6
β’ ((π΄ β dom vol β§ π΅ β (0[,](volβπ΄))) β (volβπ΄) β
β*) |
13 | 12 | adantr 482 |
. . . . 5
β’ (((π΄ β dom vol β§ π΅ β (0[,](volβπ΄))) β§ π΅ < (volβπ΄)) β (volβπ΄) β
β*) |
14 | | 0xr 11209 |
. . . . . . . . . 10
β’ 0 β
β* |
15 | | elicc1 13315 |
. . . . . . . . . 10
β’ ((0
β β* β§ (volβπ΄) β β*) β (π΅ β (0[,](volβπ΄)) β (π΅ β β* β§ 0 β€
π΅ β§ π΅ β€ (volβπ΄)))) |
16 | 14, 12, 15 | sylancr 588 |
. . . . . . . . 9
β’ ((π΄ β dom vol β§ π΅ β (0[,](volβπ΄))) β (π΅ β (0[,](volβπ΄)) β (π΅ β β* β§ 0 β€
π΅ β§ π΅ β€ (volβπ΄)))) |
17 | 5, 16 | mpbid 231 |
. . . . . . . 8
β’ ((π΄ β dom vol β§ π΅ β (0[,](volβπ΄))) β (π΅ β β* β§ 0 β€
π΅ β§ π΅ β€ (volβπ΄))) |
18 | 17 | simp2d 1144 |
. . . . . . 7
β’ ((π΄ β dom vol β§ π΅ β (0[,](volβπ΄))) β 0 β€ π΅) |
19 | 18 | adantr 482 |
. . . . . 6
β’ (((π΄ β dom vol β§ π΅ β (0[,](volβπ΄))) β§ π΅ < (volβπ΄)) β 0 β€ π΅) |
20 | | mnflt0 13053 |
. . . . . . . 8
β’ -β
< 0 |
21 | | xrltletr 13083 |
. . . . . . . 8
β’
((-β β β* β§ 0 β β*
β§ π΅ β
β*) β ((-β < 0 β§ 0 β€ π΅) β -β < π΅)) |
22 | 20, 21 | mpani 695 |
. . . . . . 7
β’
((-β β β* β§ 0 β β*
β§ π΅ β
β*) β (0 β€ π΅ β -β < π΅)) |
23 | 2, 14, 22 | mp3an12 1452 |
. . . . . 6
β’ (π΅ β β*
β (0 β€ π΅ β
-β < π΅)) |
24 | 7, 19, 23 | sylc 65 |
. . . . 5
β’ (((π΄ β dom vol β§ π΅ β (0[,](volβπ΄))) β§ π΅ < (volβπ΄)) β -β < π΅) |
25 | | simpr 486 |
. . . . 5
β’ (((π΄ β dom vol β§ π΅ β (0[,](volβπ΄))) β§ π΅ < (volβπ΄)) β π΅ < (volβπ΄)) |
26 | | xrre2 13096 |
. . . . 5
β’
(((-β β β* β§ π΅ β β* β§
(volβπ΄) β
β*) β§ (-β < π΅ β§ π΅ < (volβπ΄))) β π΅ β β) |
27 | 3, 7, 13, 24, 25, 26 | syl32anc 1379 |
. . . 4
β’ (((π΄ β dom vol β§ π΅ β (0[,](volβπ΄))) β§ π΅ < (volβπ΄)) β π΅ β β) |
28 | | volsup2 24985 |
. . . 4
β’ ((π΄ β dom vol β§ π΅ β β β§ π΅ < (volβπ΄)) β βπ β β π΅ < (volβ(π΄ β© (-π[,]π)))) |
29 | 1, 27, 25, 28 | syl3anc 1372 |
. . 3
β’ (((π΄ β dom vol β§ π΅ β (0[,](volβπ΄))) β§ π΅ < (volβπ΄)) β βπ β β π΅ < (volβ(π΄ β© (-π[,]π)))) |
30 | | nnre 12167 |
. . . . . . 7
β’ (π β β β π β
β) |
31 | 30 | ad2antrl 727 |
. . . . . 6
β’ ((((π΄ β dom vol β§ π΅ β (0[,](volβπ΄))) β§ π΅ < (volβπ΄)) β§ (π β β β§ π΅ < (volβ(π΄ β© (-π[,]π))))) β π β β) |
32 | 31 | renegcld 11589 |
. . . . 5
β’ ((((π΄ β dom vol β§ π΅ β (0[,](volβπ΄))) β§ π΅ < (volβπ΄)) β§ (π β β β§ π΅ < (volβ(π΄ β© (-π[,]π))))) β -π β β) |
33 | 27 | adantr 482 |
. . . . 5
β’ ((((π΄ β dom vol β§ π΅ β (0[,](volβπ΄))) β§ π΅ < (volβπ΄)) β§ (π β β β§ π΅ < (volβ(π΄ β© (-π[,]π))))) β π΅ β β) |
34 | | 0red 11165 |
. . . . . 6
β’ ((((π΄ β dom vol β§ π΅ β (0[,](volβπ΄))) β§ π΅ < (volβπ΄)) β§ (π β β β§ π΅ < (volβ(π΄ β© (-π[,]π))))) β 0 β
β) |
35 | | nngt0 12191 |
. . . . . . . 8
β’ (π β β β 0 <
π) |
36 | 35 | ad2antrl 727 |
. . . . . . 7
β’ ((((π΄ β dom vol β§ π΅ β (0[,](volβπ΄))) β§ π΅ < (volβπ΄)) β§ (π β β β§ π΅ < (volβ(π΄ β© (-π[,]π))))) β 0 < π) |
37 | 31 | lt0neg2d 11732 |
. . . . . . 7
β’ ((((π΄ β dom vol β§ π΅ β (0[,](volβπ΄))) β§ π΅ < (volβπ΄)) β§ (π β β β§ π΅ < (volβ(π΄ β© (-π[,]π))))) β (0 < π β -π < 0)) |
38 | 36, 37 | mpbid 231 |
. . . . . 6
β’ ((((π΄ β dom vol β§ π΅ β (0[,](volβπ΄))) β§ π΅ < (volβπ΄)) β§ (π β β β§ π΅ < (volβ(π΄ β© (-π[,]π))))) β -π < 0) |
39 | 32, 34, 31, 38, 36 | lttrd 11323 |
. . . . 5
β’ ((((π΄ β dom vol β§ π΅ β (0[,](volβπ΄))) β§ π΅ < (volβπ΄)) β§ (π β β β§ π΅ < (volβ(π΄ β© (-π[,]π))))) β -π < π) |
40 | | iccssre 13353 |
. . . . . 6
β’ ((-π β β β§ π β β) β (-π[,]π) β β) |
41 | 32, 31, 40 | syl2anc 585 |
. . . . 5
β’ ((((π΄ β dom vol β§ π΅ β (0[,](volβπ΄))) β§ π΅ < (volβπ΄)) β§ (π β β β§ π΅ < (volβ(π΄ β© (-π[,]π))))) β (-π[,]π) β β) |
42 | | ax-resscn 11115 |
. . . . . . 7
β’ β
β β |
43 | | ssid 3971 |
. . . . . . 7
β’ β
β β |
44 | | cncfss 24278 |
. . . . . . 7
β’ ((β
β β β§ β β β) β (ββcnββ) β (ββcnββ)) |
45 | 42, 43, 44 | mp2an 691 |
. . . . . 6
β’
(ββcnββ)
β (ββcnββ) |
46 | 1 | adantr 482 |
. . . . . . 7
β’ ((((π΄ β dom vol β§ π΅ β (0[,](volβπ΄))) β§ π΅ < (volβπ΄)) β§ (π β β β§ π΅ < (volβ(π΄ β© (-π[,]π))))) β π΄ β dom vol) |
47 | | eqid 2737 |
. . . . . . . 8
β’ (π¦ β β β¦
(volβ(π΄ β© (-π[,]π¦)))) = (π¦ β β β¦ (volβ(π΄ β© (-π[,]π¦)))) |
48 | 47 | volcn 24986 |
. . . . . . 7
β’ ((π΄ β dom vol β§ -π β β) β (π¦ β β β¦
(volβ(π΄ β© (-π[,]π¦)))) β (ββcnββ)) |
49 | 46, 32, 48 | syl2anc 585 |
. . . . . 6
β’ ((((π΄ β dom vol β§ π΅ β (0[,](volβπ΄))) β§ π΅ < (volβπ΄)) β§ (π β β β§ π΅ < (volβ(π΄ β© (-π[,]π))))) β (π¦ β β β¦ (volβ(π΄ β© (-π[,]π¦)))) β (ββcnββ)) |
50 | 45, 49 | sselid 3947 |
. . . . 5
β’ ((((π΄ β dom vol β§ π΅ β (0[,](volβπ΄))) β§ π΅ < (volβπ΄)) β§ (π β β β§ π΅ < (volβ(π΄ β© (-π[,]π))))) β (π¦ β β β¦ (volβ(π΄ β© (-π[,]π¦)))) β (ββcnββ)) |
51 | 41 | sselda 3949 |
. . . . . 6
β’
(((((π΄ β dom
vol β§ π΅ β
(0[,](volβπ΄))) β§
π΅ < (volβπ΄)) β§ (π β β β§ π΅ < (volβ(π΄ β© (-π[,]π))))) β§ π’ β (-π[,]π)) β π’ β β) |
52 | | cncff 24272 |
. . . . . . . 8
β’ ((π¦ β β β¦
(volβ(π΄ β© (-π[,]π¦)))) β (ββcnββ) β (π¦ β β β¦ (volβ(π΄ β© (-π[,]π¦)))):ββΆβ) |
53 | 49, 52 | syl 17 |
. . . . . . 7
β’ ((((π΄ β dom vol β§ π΅ β (0[,](volβπ΄))) β§ π΅ < (volβπ΄)) β§ (π β β β§ π΅ < (volβ(π΄ β© (-π[,]π))))) β (π¦ β β β¦ (volβ(π΄ β© (-π[,]π¦)))):ββΆβ) |
54 | 53 | ffvelcdmda 7040 |
. . . . . 6
β’
(((((π΄ β dom
vol β§ π΅ β
(0[,](volβπ΄))) β§
π΅ < (volβπ΄)) β§ (π β β β§ π΅ < (volβ(π΄ β© (-π[,]π))))) β§ π’ β β) β ((π¦ β β β¦ (volβ(π΄ β© (-π[,]π¦))))βπ’) β β) |
55 | 51, 54 | syldan 592 |
. . . . 5
β’
(((((π΄ β dom
vol β§ π΅ β
(0[,](volβπ΄))) β§
π΅ < (volβπ΄)) β§ (π β β β§ π΅ < (volβ(π΄ β© (-π[,]π))))) β§ π’ β (-π[,]π)) β ((π¦ β β β¦ (volβ(π΄ β© (-π[,]π¦))))βπ’) β β) |
56 | | oveq2 7370 |
. . . . . . . . . . . 12
β’ (π¦ = -π β (-π[,]π¦) = (-π[,]-π)) |
57 | 56 | ineq2d 4177 |
. . . . . . . . . . 11
β’ (π¦ = -π β (π΄ β© (-π[,]π¦)) = (π΄ β© (-π[,]-π))) |
58 | 57 | fveq2d 6851 |
. . . . . . . . . 10
β’ (π¦ = -π β (volβ(π΄ β© (-π[,]π¦))) = (volβ(π΄ β© (-π[,]-π)))) |
59 | | fvex 6860 |
. . . . . . . . . 10
β’
(volβ(π΄ β©
(-π[,]-π))) β V |
60 | 58, 47, 59 | fvmpt 6953 |
. . . . . . . . 9
β’ (-π β β β ((π¦ β β β¦
(volβ(π΄ β© (-π[,]π¦))))β-π) = (volβ(π΄ β© (-π[,]-π)))) |
61 | 32, 60 | syl 17 |
. . . . . . . 8
β’ ((((π΄ β dom vol β§ π΅ β (0[,](volβπ΄))) β§ π΅ < (volβπ΄)) β§ (π β β β§ π΅ < (volβ(π΄ β© (-π[,]π))))) β ((π¦ β β β¦ (volβ(π΄ β© (-π[,]π¦))))β-π) = (volβ(π΄ β© (-π[,]-π)))) |
62 | | inss2 4194 |
. . . . . . . . . . . 12
β’ (π΄ β© (-π[,]-π)) β (-π[,]-π) |
63 | 32 | rexrd 11212 |
. . . . . . . . . . . . 13
β’ ((((π΄ β dom vol β§ π΅ β (0[,](volβπ΄))) β§ π΅ < (volβπ΄)) β§ (π β β β§ π΅ < (volβ(π΄ β© (-π[,]π))))) β -π β β*) |
64 | | iccid 13316 |
. . . . . . . . . . . . 13
β’ (-π β β*
β (-π[,]-π) = {-π}) |
65 | 63, 64 | syl 17 |
. . . . . . . . . . . 12
β’ ((((π΄ β dom vol β§ π΅ β (0[,](volβπ΄))) β§ π΅ < (volβπ΄)) β§ (π β β β§ π΅ < (volβ(π΄ β© (-π[,]π))))) β (-π[,]-π) = {-π}) |
66 | 62, 65 | sseqtrid 4001 |
. . . . . . . . . . 11
β’ ((((π΄ β dom vol β§ π΅ β (0[,](volβπ΄))) β§ π΅ < (volβπ΄)) β§ (π β β β§ π΅ < (volβ(π΄ β© (-π[,]π))))) β (π΄ β© (-π[,]-π)) β {-π}) |
67 | 32 | snssd 4774 |
. . . . . . . . . . 11
β’ ((((π΄ β dom vol β§ π΅ β (0[,](volβπ΄))) β§ π΅ < (volβπ΄)) β§ (π β β β§ π΅ < (volβ(π΄ β© (-π[,]π))))) β {-π} β β) |
68 | 66, 67 | sstrd 3959 |
. . . . . . . . . 10
β’ ((((π΄ β dom vol β§ π΅ β (0[,](volβπ΄))) β§ π΅ < (volβπ΄)) β§ (π β β β§ π΅ < (volβ(π΄ β© (-π[,]π))))) β (π΄ β© (-π[,]-π)) β β) |
69 | | ovolsn 24875 |
. . . . . . . . . . . 12
β’ (-π β β β
(vol*β{-π}) =
0) |
70 | 32, 69 | syl 17 |
. . . . . . . . . . 11
β’ ((((π΄ β dom vol β§ π΅ β (0[,](volβπ΄))) β§ π΅ < (volβπ΄)) β§ (π β β β§ π΅ < (volβ(π΄ β© (-π[,]π))))) β (vol*β{-π}) = 0) |
71 | | ovolssnul 24867 |
. . . . . . . . . . 11
β’ (((π΄ β© (-π[,]-π)) β {-π} β§ {-π} β β β§ (vol*β{-π}) = 0) β
(vol*β(π΄ β©
(-π[,]-π))) = 0) |
72 | 66, 67, 70, 71 | syl3anc 1372 |
. . . . . . . . . 10
β’ ((((π΄ β dom vol β§ π΅ β (0[,](volβπ΄))) β§ π΅ < (volβπ΄)) β§ (π β β β§ π΅ < (volβ(π΄ β© (-π[,]π))))) β (vol*β(π΄ β© (-π[,]-π))) = 0) |
73 | | nulmbl 24915 |
. . . . . . . . . 10
β’ (((π΄ β© (-π[,]-π)) β β β§ (vol*β(π΄ β© (-π[,]-π))) = 0) β (π΄ β© (-π[,]-π)) β dom vol) |
74 | 68, 72, 73 | syl2anc 585 |
. . . . . . . . 9
β’ ((((π΄ β dom vol β§ π΅ β (0[,](volβπ΄))) β§ π΅ < (volβπ΄)) β§ (π β β β§ π΅ < (volβ(π΄ β© (-π[,]π))))) β (π΄ β© (-π[,]-π)) β dom vol) |
75 | | mblvol 24910 |
. . . . . . . . 9
β’ ((π΄ β© (-π[,]-π)) β dom vol β (volβ(π΄ β© (-π[,]-π))) = (vol*β(π΄ β© (-π[,]-π)))) |
76 | 74, 75 | syl 17 |
. . . . . . . 8
β’ ((((π΄ β dom vol β§ π΅ β (0[,](volβπ΄))) β§ π΅ < (volβπ΄)) β§ (π β β β§ π΅ < (volβ(π΄ β© (-π[,]π))))) β (volβ(π΄ β© (-π[,]-π))) = (vol*β(π΄ β© (-π[,]-π)))) |
77 | 61, 76, 72 | 3eqtrd 2781 |
. . . . . . 7
β’ ((((π΄ β dom vol β§ π΅ β (0[,](volβπ΄))) β§ π΅ < (volβπ΄)) β§ (π β β β§ π΅ < (volβ(π΄ β© (-π[,]π))))) β ((π¦ β β β¦ (volβ(π΄ β© (-π[,]π¦))))β-π) = 0) |
78 | 19 | adantr 482 |
. . . . . . 7
β’ ((((π΄ β dom vol β§ π΅ β (0[,](volβπ΄))) β§ π΅ < (volβπ΄)) β§ (π β β β§ π΅ < (volβ(π΄ β© (-π[,]π))))) β 0 β€ π΅) |
79 | 77, 78 | eqbrtrd 5132 |
. . . . . 6
β’ ((((π΄ β dom vol β§ π΅ β (0[,](volβπ΄))) β§ π΅ < (volβπ΄)) β§ (π β β β§ π΅ < (volβ(π΄ β© (-π[,]π))))) β ((π¦ β β β¦ (volβ(π΄ β© (-π[,]π¦))))β-π) β€ π΅) |
80 | 7 | adantr 482 |
. . . . . . . 8
β’ ((((π΄ β dom vol β§ π΅ β (0[,](volβπ΄))) β§ π΅ < (volβπ΄)) β§ (π β β β§ π΅ < (volβ(π΄ β© (-π[,]π))))) β π΅ β
β*) |
81 | | iccmbl 24946 |
. . . . . . . . . . 11
β’ ((-π β β β§ π β β) β (-π[,]π) β dom vol) |
82 | 32, 31, 81 | syl2anc 585 |
. . . . . . . . . 10
β’ ((((π΄ β dom vol β§ π΅ β (0[,](volβπ΄))) β§ π΅ < (volβπ΄)) β§ (π β β β§ π΅ < (volβ(π΄ β© (-π[,]π))))) β (-π[,]π) β dom vol) |
83 | | inmbl 24922 |
. . . . . . . . . 10
β’ ((π΄ β dom vol β§ (-π[,]π) β dom vol) β (π΄ β© (-π[,]π)) β dom vol) |
84 | 46, 82, 83 | syl2anc 585 |
. . . . . . . . 9
β’ ((((π΄ β dom vol β§ π΅ β (0[,](volβπ΄))) β§ π΅ < (volβπ΄)) β§ (π β β β§ π΅ < (volβ(π΄ β© (-π[,]π))))) β (π΄ β© (-π[,]π)) β dom vol) |
85 | 9 | ffvelcdmi 7039 |
. . . . . . . . . 10
β’ ((π΄ β© (-π[,]π)) β dom vol β (volβ(π΄ β© (-π[,]π))) β (0[,]+β)) |
86 | 8, 85 | sselid 3947 |
. . . . . . . . 9
β’ ((π΄ β© (-π[,]π)) β dom vol β (volβ(π΄ β© (-π[,]π))) β
β*) |
87 | 84, 86 | syl 17 |
. . . . . . . 8
β’ ((((π΄ β dom vol β§ π΅ β (0[,](volβπ΄))) β§ π΅ < (volβπ΄)) β§ (π β β β§ π΅ < (volβ(π΄ β© (-π[,]π))))) β (volβ(π΄ β© (-π[,]π))) β
β*) |
88 | | simprr 772 |
. . . . . . . 8
β’ ((((π΄ β dom vol β§ π΅ β (0[,](volβπ΄))) β§ π΅ < (volβπ΄)) β§ (π β β β§ π΅ < (volβ(π΄ β© (-π[,]π))))) β π΅ < (volβ(π΄ β© (-π[,]π)))) |
89 | 80, 87, 88 | xrltled 13076 |
. . . . . . 7
β’ ((((π΄ β dom vol β§ π΅ β (0[,](volβπ΄))) β§ π΅ < (volβπ΄)) β§ (π β β β§ π΅ < (volβ(π΄ β© (-π[,]π))))) β π΅ β€ (volβ(π΄ β© (-π[,]π)))) |
90 | | oveq2 7370 |
. . . . . . . . . . 11
β’ (π¦ = π β (-π[,]π¦) = (-π[,]π)) |
91 | 90 | ineq2d 4177 |
. . . . . . . . . 10
β’ (π¦ = π β (π΄ β© (-π[,]π¦)) = (π΄ β© (-π[,]π))) |
92 | 91 | fveq2d 6851 |
. . . . . . . . 9
β’ (π¦ = π β (volβ(π΄ β© (-π[,]π¦))) = (volβ(π΄ β© (-π[,]π)))) |
93 | | fvex 6860 |
. . . . . . . . 9
β’
(volβ(π΄ β©
(-π[,]π))) β V |
94 | 92, 47, 93 | fvmpt 6953 |
. . . . . . . 8
β’ (π β β β ((π¦ β β β¦
(volβ(π΄ β© (-π[,]π¦))))βπ) = (volβ(π΄ β© (-π[,]π)))) |
95 | 31, 94 | syl 17 |
. . . . . . 7
β’ ((((π΄ β dom vol β§ π΅ β (0[,](volβπ΄))) β§ π΅ < (volβπ΄)) β§ (π β β β§ π΅ < (volβ(π΄ β© (-π[,]π))))) β ((π¦ β β β¦ (volβ(π΄ β© (-π[,]π¦))))βπ) = (volβ(π΄ β© (-π[,]π)))) |
96 | 89, 95 | breqtrrd 5138 |
. . . . . 6
β’ ((((π΄ β dom vol β§ π΅ β (0[,](volβπ΄))) β§ π΅ < (volβπ΄)) β§ (π β β β§ π΅ < (volβ(π΄ β© (-π[,]π))))) β π΅ β€ ((π¦ β β β¦ (volβ(π΄ β© (-π[,]π¦))))βπ)) |
97 | 79, 96 | jca 513 |
. . . . 5
β’ ((((π΄ β dom vol β§ π΅ β (0[,](volβπ΄))) β§ π΅ < (volβπ΄)) β§ (π β β β§ π΅ < (volβ(π΄ β© (-π[,]π))))) β (((π¦ β β β¦ (volβ(π΄ β© (-π[,]π¦))))β-π) β€ π΅ β§ π΅ β€ ((π¦ β β β¦ (volβ(π΄ β© (-π[,]π¦))))βπ))) |
98 | 32, 31, 33, 39, 41, 50, 55, 97 | ivthle 24836 |
. . . 4
β’ ((((π΄ β dom vol β§ π΅ β (0[,](volβπ΄))) β§ π΅ < (volβπ΄)) β§ (π β β β§ π΅ < (volβ(π΄ β© (-π[,]π))))) β βπ§ β (-π[,]π)((π¦ β β β¦ (volβ(π΄ β© (-π[,]π¦))))βπ§) = π΅) |
99 | 41 | sselda 3949 |
. . . . . . . 8
β’
(((((π΄ β dom
vol β§ π΅ β
(0[,](volβπ΄))) β§
π΅ < (volβπ΄)) β§ (π β β β§ π΅ < (volβ(π΄ β© (-π[,]π))))) β§ π§ β (-π[,]π)) β π§ β β) |
100 | | oveq2 7370 |
. . . . . . . . . . 11
β’ (π¦ = π§ β (-π[,]π¦) = (-π[,]π§)) |
101 | 100 | ineq2d 4177 |
. . . . . . . . . 10
β’ (π¦ = π§ β (π΄ β© (-π[,]π¦)) = (π΄ β© (-π[,]π§))) |
102 | 101 | fveq2d 6851 |
. . . . . . . . 9
β’ (π¦ = π§ β (volβ(π΄ β© (-π[,]π¦))) = (volβ(π΄ β© (-π[,]π§)))) |
103 | | fvex 6860 |
. . . . . . . . 9
β’
(volβ(π΄ β©
(-π[,]π§))) β V |
104 | 102, 47, 103 | fvmpt 6953 |
. . . . . . . 8
β’ (π§ β β β ((π¦ β β β¦
(volβ(π΄ β© (-π[,]π¦))))βπ§) = (volβ(π΄ β© (-π[,]π§)))) |
105 | 99, 104 | syl 17 |
. . . . . . 7
β’
(((((π΄ β dom
vol β§ π΅ β
(0[,](volβπ΄))) β§
π΅ < (volβπ΄)) β§ (π β β β§ π΅ < (volβ(π΄ β© (-π[,]π))))) β§ π§ β (-π[,]π)) β ((π¦ β β β¦ (volβ(π΄ β© (-π[,]π¦))))βπ§) = (volβ(π΄ β© (-π[,]π§)))) |
106 | 105 | eqeq1d 2739 |
. . . . . 6
β’
(((((π΄ β dom
vol β§ π΅ β
(0[,](volβπ΄))) β§
π΅ < (volβπ΄)) β§ (π β β β§ π΅ < (volβ(π΄ β© (-π[,]π))))) β§ π§ β (-π[,]π)) β (((π¦ β β β¦ (volβ(π΄ β© (-π[,]π¦))))βπ§) = π΅ β (volβ(π΄ β© (-π[,]π§))) = π΅)) |
107 | 46 | adantr 482 |
. . . . . . . . 9
β’
(((((π΄ β dom
vol β§ π΅ β
(0[,](volβπ΄))) β§
π΅ < (volβπ΄)) β§ (π β β β§ π΅ < (volβ(π΄ β© (-π[,]π))))) β§ (π§ β (-π[,]π) β§ (volβ(π΄ β© (-π[,]π§))) = π΅)) β π΄ β dom vol) |
108 | 32 | adantr 482 |
. . . . . . . . . 10
β’
(((((π΄ β dom
vol β§ π΅ β
(0[,](volβπ΄))) β§
π΅ < (volβπ΄)) β§ (π β β β§ π΅ < (volβ(π΄ β© (-π[,]π))))) β§ (π§ β (-π[,]π) β§ (volβ(π΄ β© (-π[,]π§))) = π΅)) β -π β β) |
109 | 99 | adantrr 716 |
. . . . . . . . . 10
β’
(((((π΄ β dom
vol β§ π΅ β
(0[,](volβπ΄))) β§
π΅ < (volβπ΄)) β§ (π β β β§ π΅ < (volβ(π΄ β© (-π[,]π))))) β§ (π§ β (-π[,]π) β§ (volβ(π΄ β© (-π[,]π§))) = π΅)) β π§ β β) |
110 | | iccmbl 24946 |
. . . . . . . . . 10
β’ ((-π β β β§ π§ β β) β (-π[,]π§) β dom vol) |
111 | 108, 109,
110 | syl2anc 585 |
. . . . . . . . 9
β’
(((((π΄ β dom
vol β§ π΅ β
(0[,](volβπ΄))) β§
π΅ < (volβπ΄)) β§ (π β β β§ π΅ < (volβ(π΄ β© (-π[,]π))))) β§ (π§ β (-π[,]π) β§ (volβ(π΄ β© (-π[,]π§))) = π΅)) β (-π[,]π§) β dom vol) |
112 | | inmbl 24922 |
. . . . . . . . 9
β’ ((π΄ β dom vol β§ (-π[,]π§) β dom vol) β (π΄ β© (-π[,]π§)) β dom vol) |
113 | 107, 111,
112 | syl2anc 585 |
. . . . . . . 8
β’
(((((π΄ β dom
vol β§ π΅ β
(0[,](volβπ΄))) β§
π΅ < (volβπ΄)) β§ (π β β β§ π΅ < (volβ(π΄ β© (-π[,]π))))) β§ (π§ β (-π[,]π) β§ (volβ(π΄ β© (-π[,]π§))) = π΅)) β (π΄ β© (-π[,]π§)) β dom vol) |
114 | | inss1 4193 |
. . . . . . . . 9
β’ (π΄ β© (-π[,]π§)) β π΄ |
115 | 114 | a1i 11 |
. . . . . . . 8
β’
(((((π΄ β dom
vol β§ π΅ β
(0[,](volβπ΄))) β§
π΅ < (volβπ΄)) β§ (π β β β§ π΅ < (volβ(π΄ β© (-π[,]π))))) β§ (π§ β (-π[,]π) β§ (volβ(π΄ β© (-π[,]π§))) = π΅)) β (π΄ β© (-π[,]π§)) β π΄) |
116 | | simprr 772 |
. . . . . . . 8
β’
(((((π΄ β dom
vol β§ π΅ β
(0[,](volβπ΄))) β§
π΅ < (volβπ΄)) β§ (π β β β§ π΅ < (volβ(π΄ β© (-π[,]π))))) β§ (π§ β (-π[,]π) β§ (volβ(π΄ β© (-π[,]π§))) = π΅)) β (volβ(π΄ β© (-π[,]π§))) = π΅) |
117 | | sseq1 3974 |
. . . . . . . . . 10
β’ (π₯ = (π΄ β© (-π[,]π§)) β (π₯ β π΄ β (π΄ β© (-π[,]π§)) β π΄)) |
118 | | fveqeq2 6856 |
. . . . . . . . . 10
β’ (π₯ = (π΄ β© (-π[,]π§)) β ((volβπ₯) = π΅ β (volβ(π΄ β© (-π[,]π§))) = π΅)) |
119 | 117, 118 | anbi12d 632 |
. . . . . . . . 9
β’ (π₯ = (π΄ β© (-π[,]π§)) β ((π₯ β π΄ β§ (volβπ₯) = π΅) β ((π΄ β© (-π[,]π§)) β π΄ β§ (volβ(π΄ β© (-π[,]π§))) = π΅))) |
120 | 119 | rspcev 3584 |
. . . . . . . 8
β’ (((π΄ β© (-π[,]π§)) β dom vol β§ ((π΄ β© (-π[,]π§)) β π΄ β§ (volβ(π΄ β© (-π[,]π§))) = π΅)) β βπ₯ β dom vol(π₯ β π΄ β§ (volβπ₯) = π΅)) |
121 | 113, 115,
116, 120 | syl12anc 836 |
. . . . . . 7
β’
(((((π΄ β dom
vol β§ π΅ β
(0[,](volβπ΄))) β§
π΅ < (volβπ΄)) β§ (π β β β§ π΅ < (volβ(π΄ β© (-π[,]π))))) β§ (π§ β (-π[,]π) β§ (volβ(π΄ β© (-π[,]π§))) = π΅)) β βπ₯ β dom vol(π₯ β π΄ β§ (volβπ₯) = π΅)) |
122 | 121 | expr 458 |
. . . . . 6
β’
(((((π΄ β dom
vol β§ π΅ β
(0[,](volβπ΄))) β§
π΅ < (volβπ΄)) β§ (π β β β§ π΅ < (volβ(π΄ β© (-π[,]π))))) β§ π§ β (-π[,]π)) β ((volβ(π΄ β© (-π[,]π§))) = π΅ β βπ₯ β dom vol(π₯ β π΄ β§ (volβπ₯) = π΅))) |
123 | 106, 122 | sylbid 239 |
. . . . 5
β’
(((((π΄ β dom
vol β§ π΅ β
(0[,](volβπ΄))) β§
π΅ < (volβπ΄)) β§ (π β β β§ π΅ < (volβ(π΄ β© (-π[,]π))))) β§ π§ β (-π[,]π)) β (((π¦ β β β¦ (volβ(π΄ β© (-π[,]π¦))))βπ§) = π΅ β βπ₯ β dom vol(π₯ β π΄ β§ (volβπ₯) = π΅))) |
124 | 123 | rexlimdva 3153 |
. . . 4
β’ ((((π΄ β dom vol β§ π΅ β (0[,](volβπ΄))) β§ π΅ < (volβπ΄)) β§ (π β β β§ π΅ < (volβ(π΄ β© (-π[,]π))))) β (βπ§ β (-π[,]π)((π¦ β β β¦ (volβ(π΄ β© (-π[,]π¦))))βπ§) = π΅ β βπ₯ β dom vol(π₯ β π΄ β§ (volβπ₯) = π΅))) |
125 | 98, 124 | mpd 15 |
. . 3
β’ ((((π΄ β dom vol β§ π΅ β (0[,](volβπ΄))) β§ π΅ < (volβπ΄)) β§ (π β β β§ π΅ < (volβ(π΄ β© (-π[,]π))))) β βπ₯ β dom vol(π₯ β π΄ β§ (volβπ₯) = π΅)) |
126 | 29, 125 | rexlimddv 3159 |
. 2
β’ (((π΄ β dom vol β§ π΅ β (0[,](volβπ΄))) β§ π΅ < (volβπ΄)) β βπ₯ β dom vol(π₯ β π΄ β§ (volβπ₯) = π΅)) |
127 | | simpll 766 |
. . 3
β’ (((π΄ β dom vol β§ π΅ β (0[,](volβπ΄))) β§ π΅ = (volβπ΄)) β π΄ β dom vol) |
128 | | ssid 3971 |
. . . 4
β’ π΄ β π΄ |
129 | 128 | a1i 11 |
. . 3
β’ (((π΄ β dom vol β§ π΅ β (0[,](volβπ΄))) β§ π΅ = (volβπ΄)) β π΄ β π΄) |
130 | | simpr 486 |
. . . 4
β’ (((π΄ β dom vol β§ π΅ β (0[,](volβπ΄))) β§ π΅ = (volβπ΄)) β π΅ = (volβπ΄)) |
131 | 130 | eqcomd 2743 |
. . 3
β’ (((π΄ β dom vol β§ π΅ β (0[,](volβπ΄))) β§ π΅ = (volβπ΄)) β (volβπ΄) = π΅) |
132 | | sseq1 3974 |
. . . . 5
β’ (π₯ = π΄ β (π₯ β π΄ β π΄ β π΄)) |
133 | | fveqeq2 6856 |
. . . . 5
β’ (π₯ = π΄ β ((volβπ₯) = π΅ β (volβπ΄) = π΅)) |
134 | 132, 133 | anbi12d 632 |
. . . 4
β’ (π₯ = π΄ β ((π₯ β π΄ β§ (volβπ₯) = π΅) β (π΄ β π΄ β§ (volβπ΄) = π΅))) |
135 | 134 | rspcev 3584 |
. . 3
β’ ((π΄ β dom vol β§ (π΄ β π΄ β§ (volβπ΄) = π΅)) β βπ₯ β dom vol(π₯ β π΄ β§ (volβπ₯) = π΅)) |
136 | 127, 129,
131, 135 | syl12anc 836 |
. 2
β’ (((π΄ β dom vol β§ π΅ β (0[,](volβπ΄))) β§ π΅ = (volβπ΄)) β βπ₯ β dom vol(π₯ β π΄ β§ (volβπ₯) = π΅)) |
137 | 17 | simp3d 1145 |
. . 3
β’ ((π΄ β dom vol β§ π΅ β (0[,](volβπ΄))) β π΅ β€ (volβπ΄)) |
138 | | xrleloe 13070 |
. . . 4
β’ ((π΅ β β*
β§ (volβπ΄) β
β*) β (π΅ β€ (volβπ΄) β (π΅ < (volβπ΄) β¨ π΅ = (volβπ΄)))) |
139 | 6, 12, 138 | syl2anc 585 |
. . 3
β’ ((π΄ β dom vol β§ π΅ β (0[,](volβπ΄))) β (π΅ β€ (volβπ΄) β (π΅ < (volβπ΄) β¨ π΅ = (volβπ΄)))) |
140 | 137, 139 | mpbid 231 |
. 2
β’ ((π΄ β dom vol β§ π΅ β (0[,](volβπ΄))) β (π΅ < (volβπ΄) β¨ π΅ = (volβπ΄))) |
141 | 126, 136,
140 | mpjaodan 958 |
1
β’ ((π΄ β dom vol β§ π΅ β (0[,](volβπ΄))) β βπ₯ β dom vol(π₯ β π΄ β§ (volβπ₯) = π΅)) |