| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > xrge0nemnfd | Structured version Visualization version GIF version | ||
| Description: A nonnegative extended real is not minus infinity. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| xrge0nemnfd.1 | ⊢ (𝜑 → 𝐴 ∈ (0[,]+∞)) |
| Ref | Expression |
|---|---|
| xrge0nemnfd | ⊢ (𝜑 → 𝐴 ≠ -∞) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mnfxr 11169 | . . 3 ⊢ -∞ ∈ ℝ* | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → -∞ ∈ ℝ*) |
| 3 | iccssxr 13330 | . . 3 ⊢ (0[,]+∞) ⊆ ℝ* | |
| 4 | xrge0nemnfd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ (0[,]+∞)) | |
| 5 | 3, 4 | sselid 3927 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
| 6 | 0xr 11159 | . . . 4 ⊢ 0 ∈ ℝ* | |
| 7 | 6 | a1i 11 | . . 3 ⊢ (𝜑 → 0 ∈ ℝ*) |
| 8 | mnflt0 13024 | . . . 4 ⊢ -∞ < 0 | |
| 9 | 8 | a1i 11 | . . 3 ⊢ (𝜑 → -∞ < 0) |
| 10 | pnfxr 11166 | . . . . 5 ⊢ +∞ ∈ ℝ* | |
| 11 | 10 | a1i 11 | . . . 4 ⊢ (𝜑 → +∞ ∈ ℝ*) |
| 12 | iccgelb 13302 | . . . 4 ⊢ ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 𝐴 ∈ (0[,]+∞)) → 0 ≤ 𝐴) | |
| 13 | 7, 11, 4, 12 | syl3anc 1373 | . . 3 ⊢ (𝜑 → 0 ≤ 𝐴) |
| 14 | 2, 7, 5, 9, 13 | xrltletrd 13060 | . 2 ⊢ (𝜑 → -∞ < 𝐴) |
| 15 | 2, 5, 14 | xrgtned 45369 | 1 ⊢ (𝜑 → 𝐴 ≠ -∞) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 ≠ wne 2928 class class class wbr 5089 (class class class)co 7346 0cc0 11006 +∞cpnf 11143 -∞cmnf 11144 ℝ*cxr 11145 < clt 11146 ≤ cle 11147 [,]cicc 13248 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-addrcl 11067 ax-rnegex 11077 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-po 5522 df-so 5523 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-icc 13252 |
| This theorem is referenced by: ovolsplit 46034 caragenuncllem 46558 |
| Copyright terms: Public domain | W3C validator |