Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrge0nemnfd Structured version   Visualization version   GIF version

Theorem xrge0nemnfd 43657
Description: A nonnegative extended real is not minus infinity. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypothesis
Ref Expression
xrge0nemnfd.1 (𝜑𝐴 ∈ (0[,]+∞))
Assertion
Ref Expression
xrge0nemnfd (𝜑𝐴 ≠ -∞)

Proof of Theorem xrge0nemnfd
StepHypRef Expression
1 mnfxr 11220 . . 3 -∞ ∈ ℝ*
21a1i 11 . 2 (𝜑 → -∞ ∈ ℝ*)
3 iccssxr 13356 . . 3 (0[,]+∞) ⊆ ℝ*
4 xrge0nemnfd.1 . . 3 (𝜑𝐴 ∈ (0[,]+∞))
53, 4sselid 3946 . 2 (𝜑𝐴 ∈ ℝ*)
6 0xr 11210 . . . 4 0 ∈ ℝ*
76a1i 11 . . 3 (𝜑 → 0 ∈ ℝ*)
8 mnflt0 13054 . . . 4 -∞ < 0
98a1i 11 . . 3 (𝜑 → -∞ < 0)
10 pnfxr 11217 . . . . 5 +∞ ∈ ℝ*
1110a1i 11 . . . 4 (𝜑 → +∞ ∈ ℝ*)
12 iccgelb 13329 . . . 4 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*𝐴 ∈ (0[,]+∞)) → 0 ≤ 𝐴)
137, 11, 4, 12syl3anc 1372 . . 3 (𝜑 → 0 ≤ 𝐴)
142, 7, 5, 9, 13xrltletrd 13089 . 2 (𝜑 → -∞ < 𝐴)
152, 5, 14xrgtned 43647 1 (𝜑𝐴 ≠ -∞)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2107  wne 2940   class class class wbr 5109  (class class class)co 7361  0cc0 11059  +∞cpnf 11194  -∞cmnf 11195  *cxr 11196   < clt 11197  cle 11198  [,]cicc 13276
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5260  ax-nul 5267  ax-pow 5324  ax-pr 5388  ax-un 7676  ax-cnex 11115  ax-resscn 11116  ax-1cn 11117  ax-addrcl 11120  ax-rnegex 11130  ax-cnre 11132  ax-pre-lttri 11133  ax-pre-lttrn 11134
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rab 3407  df-v 3449  df-sbc 3744  df-csb 3860  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4287  df-if 4491  df-pw 4566  df-sn 4591  df-pr 4593  df-op 4597  df-uni 4870  df-iun 4960  df-br 5110  df-opab 5172  df-mpt 5193  df-id 5535  df-po 5549  df-so 5550  df-xp 5643  df-rel 5644  df-cnv 5645  df-co 5646  df-dm 5647  df-rn 5648  df-res 5649  df-ima 5650  df-iota 6452  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-ov 7364  df-oprab 7365  df-mpo 7366  df-1st 7925  df-2nd 7926  df-er 8654  df-en 8890  df-dom 8891  df-sdom 8892  df-pnf 11199  df-mnf 11200  df-xr 11201  df-ltxr 11202  df-le 11203  df-icc 13280
This theorem is referenced by:  ovolsplit  44319  caragenuncllem  44843
  Copyright terms: Public domain W3C validator