Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrge0nemnfd Structured version   Visualization version   GIF version

Theorem xrge0nemnfd 43977
Description: A nonnegative extended real is not minus infinity. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypothesis
Ref Expression
xrge0nemnfd.1 (𝜑𝐴 ∈ (0[,]+∞))
Assertion
Ref Expression
xrge0nemnfd (𝜑𝐴 ≠ -∞)

Proof of Theorem xrge0nemnfd
StepHypRef Expression
1 mnfxr 11267 . . 3 -∞ ∈ ℝ*
21a1i 11 . 2 (𝜑 → -∞ ∈ ℝ*)
3 iccssxr 13403 . . 3 (0[,]+∞) ⊆ ℝ*
4 xrge0nemnfd.1 . . 3 (𝜑𝐴 ∈ (0[,]+∞))
53, 4sselid 3979 . 2 (𝜑𝐴 ∈ ℝ*)
6 0xr 11257 . . . 4 0 ∈ ℝ*
76a1i 11 . . 3 (𝜑 → 0 ∈ ℝ*)
8 mnflt0 13101 . . . 4 -∞ < 0
98a1i 11 . . 3 (𝜑 → -∞ < 0)
10 pnfxr 11264 . . . . 5 +∞ ∈ ℝ*
1110a1i 11 . . . 4 (𝜑 → +∞ ∈ ℝ*)
12 iccgelb 13376 . . . 4 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*𝐴 ∈ (0[,]+∞)) → 0 ≤ 𝐴)
137, 11, 4, 12syl3anc 1372 . . 3 (𝜑 → 0 ≤ 𝐴)
142, 7, 5, 9, 13xrltletrd 13136 . 2 (𝜑 → -∞ < 𝐴)
152, 5, 14xrgtned 43967 1 (𝜑𝐴 ≠ -∞)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2107  wne 2941   class class class wbr 5147  (class class class)co 7404  0cc0 11106  +∞cpnf 11241  -∞cmnf 11242  *cxr 11243   < clt 11244  cle 11245  [,]cicc 13323
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7720  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-addrcl 11167  ax-rnegex 11177  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-po 5587  df-so 5588  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-ov 7407  df-oprab 7408  df-mpo 7409  df-1st 7970  df-2nd 7971  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-icc 13327
This theorem is referenced by:  ovolsplit  44639  caragenuncllem  45163
  Copyright terms: Public domain W3C validator