| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > xrge0nemnfd | Structured version Visualization version GIF version | ||
| Description: A nonnegative extended real is not minus infinity. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| xrge0nemnfd.1 | ⊢ (𝜑 → 𝐴 ∈ (0[,]+∞)) |
| Ref | Expression |
|---|---|
| xrge0nemnfd | ⊢ (𝜑 → 𝐴 ≠ -∞) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mnfxr 11207 | . . 3 ⊢ -∞ ∈ ℝ* | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → -∞ ∈ ℝ*) |
| 3 | iccssxr 13367 | . . 3 ⊢ (0[,]+∞) ⊆ ℝ* | |
| 4 | xrge0nemnfd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ (0[,]+∞)) | |
| 5 | 3, 4 | sselid 3941 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
| 6 | 0xr 11197 | . . . 4 ⊢ 0 ∈ ℝ* | |
| 7 | 6 | a1i 11 | . . 3 ⊢ (𝜑 → 0 ∈ ℝ*) |
| 8 | mnflt0 13061 | . . . 4 ⊢ -∞ < 0 | |
| 9 | 8 | a1i 11 | . . 3 ⊢ (𝜑 → -∞ < 0) |
| 10 | pnfxr 11204 | . . . . 5 ⊢ +∞ ∈ ℝ* | |
| 11 | 10 | a1i 11 | . . . 4 ⊢ (𝜑 → +∞ ∈ ℝ*) |
| 12 | iccgelb 13339 | . . . 4 ⊢ ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 𝐴 ∈ (0[,]+∞)) → 0 ≤ 𝐴) | |
| 13 | 7, 11, 4, 12 | syl3anc 1373 | . . 3 ⊢ (𝜑 → 0 ≤ 𝐴) |
| 14 | 2, 7, 5, 9, 13 | xrltletrd 13097 | . 2 ⊢ (𝜑 → -∞ < 𝐴) |
| 15 | 2, 5, 14 | xrgtned 45291 | 1 ⊢ (𝜑 → 𝐴 ≠ -∞) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ≠ wne 2925 class class class wbr 5102 (class class class)co 7369 0cc0 11044 +∞cpnf 11181 -∞cmnf 11182 ℝ*cxr 11183 < clt 11184 ≤ cle 11185 [,]cicc 13285 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-addrcl 11105 ax-rnegex 11115 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-po 5539 df-so 5540 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-1st 7947 df-2nd 7948 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-icc 13289 |
| This theorem is referenced by: ovolsplit 45959 caragenuncllem 46483 |
| Copyright terms: Public domain | W3C validator |