| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > itg2monolem2 | Structured version Visualization version GIF version | ||
| Description: Lemma for itg2mono 25654. (Contributed by Mario Carneiro, 16-Aug-2014.) |
| Ref | Expression |
|---|---|
| itg2mono.1 | ⊢ 𝐺 = (𝑥 ∈ ℝ ↦ sup(ran (𝑛 ∈ ℕ ↦ ((𝐹‘𝑛)‘𝑥)), ℝ, < )) |
| itg2mono.2 | ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐹‘𝑛) ∈ MblFn) |
| itg2mono.3 | ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐹‘𝑛):ℝ⟶(0[,)+∞)) |
| itg2mono.4 | ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐹‘𝑛) ∘r ≤ (𝐹‘(𝑛 + 1))) |
| itg2mono.5 | ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → ∃𝑦 ∈ ℝ ∀𝑛 ∈ ℕ ((𝐹‘𝑛)‘𝑥) ≤ 𝑦) |
| itg2mono.6 | ⊢ 𝑆 = sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹‘𝑛))), ℝ*, < ) |
| itg2monolem2.7 | ⊢ (𝜑 → 𝑃 ∈ dom ∫1) |
| itg2monolem2.8 | ⊢ (𝜑 → 𝑃 ∘r ≤ 𝐺) |
| itg2monolem2.9 | ⊢ (𝜑 → ¬ (∫1‘𝑃) ≤ 𝑆) |
| Ref | Expression |
|---|---|
| itg2monolem2 | ⊢ (𝜑 → 𝑆 ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itg2mono.6 | . . 3 ⊢ 𝑆 = sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹‘𝑛))), ℝ*, < ) | |
| 2 | itg2mono.3 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐹‘𝑛):ℝ⟶(0[,)+∞)) | |
| 3 | icossicc 13397 | . . . . . . . 8 ⊢ (0[,)+∞) ⊆ (0[,]+∞) | |
| 4 | fss 6704 | . . . . . . . 8 ⊢ (((𝐹‘𝑛):ℝ⟶(0[,)+∞) ∧ (0[,)+∞) ⊆ (0[,]+∞)) → (𝐹‘𝑛):ℝ⟶(0[,]+∞)) | |
| 5 | 2, 3, 4 | sylancl 586 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐹‘𝑛):ℝ⟶(0[,]+∞)) |
| 6 | itg2cl 25633 | . . . . . . 7 ⊢ ((𝐹‘𝑛):ℝ⟶(0[,]+∞) → (∫2‘(𝐹‘𝑛)) ∈ ℝ*) | |
| 7 | 5, 6 | syl 17 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (∫2‘(𝐹‘𝑛)) ∈ ℝ*) |
| 8 | 7 | fmpttd 7087 | . . . . 5 ⊢ (𝜑 → (𝑛 ∈ ℕ ↦ (∫2‘(𝐹‘𝑛))):ℕ⟶ℝ*) |
| 9 | 8 | frnd 6696 | . . . 4 ⊢ (𝜑 → ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹‘𝑛))) ⊆ ℝ*) |
| 10 | supxrcl 13275 | . . . 4 ⊢ (ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹‘𝑛))) ⊆ ℝ* → sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹‘𝑛))), ℝ*, < ) ∈ ℝ*) | |
| 11 | 9, 10 | syl 17 | . . 3 ⊢ (𝜑 → sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹‘𝑛))), ℝ*, < ) ∈ ℝ*) |
| 12 | 1, 11 | eqeltrid 2832 | . 2 ⊢ (𝜑 → 𝑆 ∈ ℝ*) |
| 13 | itg2monolem2.7 | . . 3 ⊢ (𝜑 → 𝑃 ∈ dom ∫1) | |
| 14 | itg1cl 25586 | . . 3 ⊢ (𝑃 ∈ dom ∫1 → (∫1‘𝑃) ∈ ℝ) | |
| 15 | 13, 14 | syl 17 | . 2 ⊢ (𝜑 → (∫1‘𝑃) ∈ ℝ) |
| 16 | mnfxr 11231 | . . . 4 ⊢ -∞ ∈ ℝ* | |
| 17 | 16 | a1i 11 | . . 3 ⊢ (𝜑 → -∞ ∈ ℝ*) |
| 18 | fveq2 6858 | . . . . . 6 ⊢ (𝑛 = 1 → (𝐹‘𝑛) = (𝐹‘1)) | |
| 19 | 18 | feq1d 6670 | . . . . 5 ⊢ (𝑛 = 1 → ((𝐹‘𝑛):ℝ⟶(0[,]+∞) ↔ (𝐹‘1):ℝ⟶(0[,]+∞))) |
| 20 | 5 | ralrimiva 3125 | . . . . 5 ⊢ (𝜑 → ∀𝑛 ∈ ℕ (𝐹‘𝑛):ℝ⟶(0[,]+∞)) |
| 21 | 1nn 12197 | . . . . . 6 ⊢ 1 ∈ ℕ | |
| 22 | 21 | a1i 11 | . . . . 5 ⊢ (𝜑 → 1 ∈ ℕ) |
| 23 | 19, 20, 22 | rspcdva 3589 | . . . 4 ⊢ (𝜑 → (𝐹‘1):ℝ⟶(0[,]+∞)) |
| 24 | itg2cl 25633 | . . . 4 ⊢ ((𝐹‘1):ℝ⟶(0[,]+∞) → (∫2‘(𝐹‘1)) ∈ ℝ*) | |
| 25 | 23, 24 | syl 17 | . . 3 ⊢ (𝜑 → (∫2‘(𝐹‘1)) ∈ ℝ*) |
| 26 | itg2ge0 25636 | . . . . 5 ⊢ ((𝐹‘1):ℝ⟶(0[,]+∞) → 0 ≤ (∫2‘(𝐹‘1))) | |
| 27 | 23, 26 | syl 17 | . . . 4 ⊢ (𝜑 → 0 ≤ (∫2‘(𝐹‘1))) |
| 28 | mnflt0 13085 | . . . . 5 ⊢ -∞ < 0 | |
| 29 | 0xr 11221 | . . . . . 6 ⊢ 0 ∈ ℝ* | |
| 30 | xrltletr 13117 | . . . . . 6 ⊢ ((-∞ ∈ ℝ* ∧ 0 ∈ ℝ* ∧ (∫2‘(𝐹‘1)) ∈ ℝ*) → ((-∞ < 0 ∧ 0 ≤ (∫2‘(𝐹‘1))) → -∞ < (∫2‘(𝐹‘1)))) | |
| 31 | 16, 29, 25, 30 | mp3an12i 1467 | . . . . 5 ⊢ (𝜑 → ((-∞ < 0 ∧ 0 ≤ (∫2‘(𝐹‘1))) → -∞ < (∫2‘(𝐹‘1)))) |
| 32 | 28, 31 | mpani 696 | . . . 4 ⊢ (𝜑 → (0 ≤ (∫2‘(𝐹‘1)) → -∞ < (∫2‘(𝐹‘1)))) |
| 33 | 27, 32 | mpd 15 | . . 3 ⊢ (𝜑 → -∞ < (∫2‘(𝐹‘1))) |
| 34 | 2fveq3 6863 | . . . . . . . 8 ⊢ (𝑛 = 1 → (∫2‘(𝐹‘𝑛)) = (∫2‘(𝐹‘1))) | |
| 35 | eqid 2729 | . . . . . . . 8 ⊢ (𝑛 ∈ ℕ ↦ (∫2‘(𝐹‘𝑛))) = (𝑛 ∈ ℕ ↦ (∫2‘(𝐹‘𝑛))) | |
| 36 | fvex 6871 | . . . . . . . 8 ⊢ (∫2‘(𝐹‘1)) ∈ V | |
| 37 | 34, 35, 36 | fvmpt 6968 | . . . . . . 7 ⊢ (1 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (∫2‘(𝐹‘𝑛)))‘1) = (∫2‘(𝐹‘1))) |
| 38 | 21, 37 | ax-mp 5 | . . . . . 6 ⊢ ((𝑛 ∈ ℕ ↦ (∫2‘(𝐹‘𝑛)))‘1) = (∫2‘(𝐹‘1)) |
| 39 | 8 | ffnd 6689 | . . . . . . 7 ⊢ (𝜑 → (𝑛 ∈ ℕ ↦ (∫2‘(𝐹‘𝑛))) Fn ℕ) |
| 40 | fnfvelrn 7052 | . . . . . . 7 ⊢ (((𝑛 ∈ ℕ ↦ (∫2‘(𝐹‘𝑛))) Fn ℕ ∧ 1 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (∫2‘(𝐹‘𝑛)))‘1) ∈ ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹‘𝑛)))) | |
| 41 | 39, 21, 40 | sylancl 586 | . . . . . 6 ⊢ (𝜑 → ((𝑛 ∈ ℕ ↦ (∫2‘(𝐹‘𝑛)))‘1) ∈ ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹‘𝑛)))) |
| 42 | 38, 41 | eqeltrrid 2833 | . . . . 5 ⊢ (𝜑 → (∫2‘(𝐹‘1)) ∈ ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹‘𝑛)))) |
| 43 | supxrub 13284 | . . . . 5 ⊢ ((ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹‘𝑛))) ⊆ ℝ* ∧ (∫2‘(𝐹‘1)) ∈ ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹‘𝑛)))) → (∫2‘(𝐹‘1)) ≤ sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹‘𝑛))), ℝ*, < )) | |
| 44 | 9, 42, 43 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (∫2‘(𝐹‘1)) ≤ sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹‘𝑛))), ℝ*, < )) |
| 45 | 44, 1 | breqtrrdi 5149 | . . 3 ⊢ (𝜑 → (∫2‘(𝐹‘1)) ≤ 𝑆) |
| 46 | 17, 25, 12, 33, 45 | xrltletrd 13121 | . 2 ⊢ (𝜑 → -∞ < 𝑆) |
| 47 | 15 | rexrd 11224 | . . 3 ⊢ (𝜑 → (∫1‘𝑃) ∈ ℝ*) |
| 48 | itg2monolem2.9 | . . . 4 ⊢ (𝜑 → ¬ (∫1‘𝑃) ≤ 𝑆) | |
| 49 | xrltnle 11241 | . . . . 5 ⊢ ((𝑆 ∈ ℝ* ∧ (∫1‘𝑃) ∈ ℝ*) → (𝑆 < (∫1‘𝑃) ↔ ¬ (∫1‘𝑃) ≤ 𝑆)) | |
| 50 | 12, 47, 49 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝑆 < (∫1‘𝑃) ↔ ¬ (∫1‘𝑃) ≤ 𝑆)) |
| 51 | 48, 50 | mpbird 257 | . . 3 ⊢ (𝜑 → 𝑆 < (∫1‘𝑃)) |
| 52 | 12, 47, 51 | xrltled 13110 | . 2 ⊢ (𝜑 → 𝑆 ≤ (∫1‘𝑃)) |
| 53 | xrre 13129 | . 2 ⊢ (((𝑆 ∈ ℝ* ∧ (∫1‘𝑃) ∈ ℝ) ∧ (-∞ < 𝑆 ∧ 𝑆 ≤ (∫1‘𝑃))) → 𝑆 ∈ ℝ) | |
| 54 | 12, 15, 46, 52, 53 | syl22anc 838 | 1 ⊢ (𝜑 → 𝑆 ∈ ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 ⊆ wss 3914 class class class wbr 5107 ↦ cmpt 5188 dom cdm 5638 ran crn 5639 Fn wfn 6506 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 ∘r cofr 7652 supcsup 9391 ℝcr 11067 0cc0 11068 1c1 11069 + caddc 11071 +∞cpnf 11205 -∞cmnf 11206 ℝ*cxr 11207 < clt 11208 ≤ cle 11209 ℕcn 12186 [,)cico 13308 [,]cicc 13309 MblFncmbf 25515 ∫1citg1 25516 ∫2citg2 25517 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-inf2 9594 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-of 7653 df-ofr 7654 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-er 8671 df-map 8801 df-pm 8802 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-sup 9393 df-inf 9394 df-oi 9463 df-dju 9854 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-n0 12443 df-z 12530 df-uz 12794 df-q 12908 df-rp 12952 df-xadd 13073 df-ioo 13310 df-ico 13312 df-icc 13313 df-fz 13469 df-fzo 13616 df-fl 13754 df-seq 13967 df-exp 14027 df-hash 14296 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-clim 15454 df-sum 15653 df-xmet 21257 df-met 21258 df-ovol 25365 df-vol 25366 df-mbf 25520 df-itg1 25521 df-itg2 25522 |
| This theorem is referenced by: itg2monolem3 25653 |
| Copyright terms: Public domain | W3C validator |