| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > itg2monolem2 | Structured version Visualization version GIF version | ||
| Description: Lemma for itg2mono 25661. (Contributed by Mario Carneiro, 16-Aug-2014.) |
| Ref | Expression |
|---|---|
| itg2mono.1 | ⊢ 𝐺 = (𝑥 ∈ ℝ ↦ sup(ran (𝑛 ∈ ℕ ↦ ((𝐹‘𝑛)‘𝑥)), ℝ, < )) |
| itg2mono.2 | ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐹‘𝑛) ∈ MblFn) |
| itg2mono.3 | ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐹‘𝑛):ℝ⟶(0[,)+∞)) |
| itg2mono.4 | ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐹‘𝑛) ∘r ≤ (𝐹‘(𝑛 + 1))) |
| itg2mono.5 | ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → ∃𝑦 ∈ ℝ ∀𝑛 ∈ ℕ ((𝐹‘𝑛)‘𝑥) ≤ 𝑦) |
| itg2mono.6 | ⊢ 𝑆 = sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹‘𝑛))), ℝ*, < ) |
| itg2monolem2.7 | ⊢ (𝜑 → 𝑃 ∈ dom ∫1) |
| itg2monolem2.8 | ⊢ (𝜑 → 𝑃 ∘r ≤ 𝐺) |
| itg2monolem2.9 | ⊢ (𝜑 → ¬ (∫1‘𝑃) ≤ 𝑆) |
| Ref | Expression |
|---|---|
| itg2monolem2 | ⊢ (𝜑 → 𝑆 ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itg2mono.6 | . . 3 ⊢ 𝑆 = sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹‘𝑛))), ℝ*, < ) | |
| 2 | itg2mono.3 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐹‘𝑛):ℝ⟶(0[,)+∞)) | |
| 3 | icossicc 13404 | . . . . . . . 8 ⊢ (0[,)+∞) ⊆ (0[,]+∞) | |
| 4 | fss 6707 | . . . . . . . 8 ⊢ (((𝐹‘𝑛):ℝ⟶(0[,)+∞) ∧ (0[,)+∞) ⊆ (0[,]+∞)) → (𝐹‘𝑛):ℝ⟶(0[,]+∞)) | |
| 5 | 2, 3, 4 | sylancl 586 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐹‘𝑛):ℝ⟶(0[,]+∞)) |
| 6 | itg2cl 25640 | . . . . . . 7 ⊢ ((𝐹‘𝑛):ℝ⟶(0[,]+∞) → (∫2‘(𝐹‘𝑛)) ∈ ℝ*) | |
| 7 | 5, 6 | syl 17 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (∫2‘(𝐹‘𝑛)) ∈ ℝ*) |
| 8 | 7 | fmpttd 7090 | . . . . 5 ⊢ (𝜑 → (𝑛 ∈ ℕ ↦ (∫2‘(𝐹‘𝑛))):ℕ⟶ℝ*) |
| 9 | 8 | frnd 6699 | . . . 4 ⊢ (𝜑 → ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹‘𝑛))) ⊆ ℝ*) |
| 10 | supxrcl 13282 | . . . 4 ⊢ (ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹‘𝑛))) ⊆ ℝ* → sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹‘𝑛))), ℝ*, < ) ∈ ℝ*) | |
| 11 | 9, 10 | syl 17 | . . 3 ⊢ (𝜑 → sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹‘𝑛))), ℝ*, < ) ∈ ℝ*) |
| 12 | 1, 11 | eqeltrid 2833 | . 2 ⊢ (𝜑 → 𝑆 ∈ ℝ*) |
| 13 | itg2monolem2.7 | . . 3 ⊢ (𝜑 → 𝑃 ∈ dom ∫1) | |
| 14 | itg1cl 25593 | . . 3 ⊢ (𝑃 ∈ dom ∫1 → (∫1‘𝑃) ∈ ℝ) | |
| 15 | 13, 14 | syl 17 | . 2 ⊢ (𝜑 → (∫1‘𝑃) ∈ ℝ) |
| 16 | mnfxr 11238 | . . . 4 ⊢ -∞ ∈ ℝ* | |
| 17 | 16 | a1i 11 | . . 3 ⊢ (𝜑 → -∞ ∈ ℝ*) |
| 18 | fveq2 6861 | . . . . . 6 ⊢ (𝑛 = 1 → (𝐹‘𝑛) = (𝐹‘1)) | |
| 19 | 18 | feq1d 6673 | . . . . 5 ⊢ (𝑛 = 1 → ((𝐹‘𝑛):ℝ⟶(0[,]+∞) ↔ (𝐹‘1):ℝ⟶(0[,]+∞))) |
| 20 | 5 | ralrimiva 3126 | . . . . 5 ⊢ (𝜑 → ∀𝑛 ∈ ℕ (𝐹‘𝑛):ℝ⟶(0[,]+∞)) |
| 21 | 1nn 12204 | . . . . . 6 ⊢ 1 ∈ ℕ | |
| 22 | 21 | a1i 11 | . . . . 5 ⊢ (𝜑 → 1 ∈ ℕ) |
| 23 | 19, 20, 22 | rspcdva 3592 | . . . 4 ⊢ (𝜑 → (𝐹‘1):ℝ⟶(0[,]+∞)) |
| 24 | itg2cl 25640 | . . . 4 ⊢ ((𝐹‘1):ℝ⟶(0[,]+∞) → (∫2‘(𝐹‘1)) ∈ ℝ*) | |
| 25 | 23, 24 | syl 17 | . . 3 ⊢ (𝜑 → (∫2‘(𝐹‘1)) ∈ ℝ*) |
| 26 | itg2ge0 25643 | . . . . 5 ⊢ ((𝐹‘1):ℝ⟶(0[,]+∞) → 0 ≤ (∫2‘(𝐹‘1))) | |
| 27 | 23, 26 | syl 17 | . . . 4 ⊢ (𝜑 → 0 ≤ (∫2‘(𝐹‘1))) |
| 28 | mnflt0 13092 | . . . . 5 ⊢ -∞ < 0 | |
| 29 | 0xr 11228 | . . . . . 6 ⊢ 0 ∈ ℝ* | |
| 30 | xrltletr 13124 | . . . . . 6 ⊢ ((-∞ ∈ ℝ* ∧ 0 ∈ ℝ* ∧ (∫2‘(𝐹‘1)) ∈ ℝ*) → ((-∞ < 0 ∧ 0 ≤ (∫2‘(𝐹‘1))) → -∞ < (∫2‘(𝐹‘1)))) | |
| 31 | 16, 29, 25, 30 | mp3an12i 1467 | . . . . 5 ⊢ (𝜑 → ((-∞ < 0 ∧ 0 ≤ (∫2‘(𝐹‘1))) → -∞ < (∫2‘(𝐹‘1)))) |
| 32 | 28, 31 | mpani 696 | . . . 4 ⊢ (𝜑 → (0 ≤ (∫2‘(𝐹‘1)) → -∞ < (∫2‘(𝐹‘1)))) |
| 33 | 27, 32 | mpd 15 | . . 3 ⊢ (𝜑 → -∞ < (∫2‘(𝐹‘1))) |
| 34 | 2fveq3 6866 | . . . . . . . 8 ⊢ (𝑛 = 1 → (∫2‘(𝐹‘𝑛)) = (∫2‘(𝐹‘1))) | |
| 35 | eqid 2730 | . . . . . . . 8 ⊢ (𝑛 ∈ ℕ ↦ (∫2‘(𝐹‘𝑛))) = (𝑛 ∈ ℕ ↦ (∫2‘(𝐹‘𝑛))) | |
| 36 | fvex 6874 | . . . . . . . 8 ⊢ (∫2‘(𝐹‘1)) ∈ V | |
| 37 | 34, 35, 36 | fvmpt 6971 | . . . . . . 7 ⊢ (1 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (∫2‘(𝐹‘𝑛)))‘1) = (∫2‘(𝐹‘1))) |
| 38 | 21, 37 | ax-mp 5 | . . . . . 6 ⊢ ((𝑛 ∈ ℕ ↦ (∫2‘(𝐹‘𝑛)))‘1) = (∫2‘(𝐹‘1)) |
| 39 | 8 | ffnd 6692 | . . . . . . 7 ⊢ (𝜑 → (𝑛 ∈ ℕ ↦ (∫2‘(𝐹‘𝑛))) Fn ℕ) |
| 40 | fnfvelrn 7055 | . . . . . . 7 ⊢ (((𝑛 ∈ ℕ ↦ (∫2‘(𝐹‘𝑛))) Fn ℕ ∧ 1 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (∫2‘(𝐹‘𝑛)))‘1) ∈ ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹‘𝑛)))) | |
| 41 | 39, 21, 40 | sylancl 586 | . . . . . 6 ⊢ (𝜑 → ((𝑛 ∈ ℕ ↦ (∫2‘(𝐹‘𝑛)))‘1) ∈ ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹‘𝑛)))) |
| 42 | 38, 41 | eqeltrrid 2834 | . . . . 5 ⊢ (𝜑 → (∫2‘(𝐹‘1)) ∈ ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹‘𝑛)))) |
| 43 | supxrub 13291 | . . . . 5 ⊢ ((ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹‘𝑛))) ⊆ ℝ* ∧ (∫2‘(𝐹‘1)) ∈ ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹‘𝑛)))) → (∫2‘(𝐹‘1)) ≤ sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹‘𝑛))), ℝ*, < )) | |
| 44 | 9, 42, 43 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (∫2‘(𝐹‘1)) ≤ sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹‘𝑛))), ℝ*, < )) |
| 45 | 44, 1 | breqtrrdi 5152 | . . 3 ⊢ (𝜑 → (∫2‘(𝐹‘1)) ≤ 𝑆) |
| 46 | 17, 25, 12, 33, 45 | xrltletrd 13128 | . 2 ⊢ (𝜑 → -∞ < 𝑆) |
| 47 | 15 | rexrd 11231 | . . 3 ⊢ (𝜑 → (∫1‘𝑃) ∈ ℝ*) |
| 48 | itg2monolem2.9 | . . . 4 ⊢ (𝜑 → ¬ (∫1‘𝑃) ≤ 𝑆) | |
| 49 | xrltnle 11248 | . . . . 5 ⊢ ((𝑆 ∈ ℝ* ∧ (∫1‘𝑃) ∈ ℝ*) → (𝑆 < (∫1‘𝑃) ↔ ¬ (∫1‘𝑃) ≤ 𝑆)) | |
| 50 | 12, 47, 49 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝑆 < (∫1‘𝑃) ↔ ¬ (∫1‘𝑃) ≤ 𝑆)) |
| 51 | 48, 50 | mpbird 257 | . . 3 ⊢ (𝜑 → 𝑆 < (∫1‘𝑃)) |
| 52 | 12, 47, 51 | xrltled 13117 | . 2 ⊢ (𝜑 → 𝑆 ≤ (∫1‘𝑃)) |
| 53 | xrre 13136 | . 2 ⊢ (((𝑆 ∈ ℝ* ∧ (∫1‘𝑃) ∈ ℝ) ∧ (-∞ < 𝑆 ∧ 𝑆 ≤ (∫1‘𝑃))) → 𝑆 ∈ ℝ) | |
| 54 | 12, 15, 46, 52, 53 | syl22anc 838 | 1 ⊢ (𝜑 → 𝑆 ∈ ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3045 ∃wrex 3054 ⊆ wss 3917 class class class wbr 5110 ↦ cmpt 5191 dom cdm 5641 ran crn 5642 Fn wfn 6509 ⟶wf 6510 ‘cfv 6514 (class class class)co 7390 ∘r cofr 7655 supcsup 9398 ℝcr 11074 0cc0 11075 1c1 11076 + caddc 11078 +∞cpnf 11212 -∞cmnf 11213 ℝ*cxr 11214 < clt 11215 ≤ cle 11216 ℕcn 12193 [,)cico 13315 [,]cicc 13316 MblFncmbf 25522 ∫1citg1 25523 ∫2citg2 25524 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-inf2 9601 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-of 7656 df-ofr 7657 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-2o 8438 df-er 8674 df-map 8804 df-pm 8805 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-sup 9400 df-inf 9401 df-oi 9470 df-dju 9861 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-n0 12450 df-z 12537 df-uz 12801 df-q 12915 df-rp 12959 df-xadd 13080 df-ioo 13317 df-ico 13319 df-icc 13320 df-fz 13476 df-fzo 13623 df-fl 13761 df-seq 13974 df-exp 14034 df-hash 14303 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-clim 15461 df-sum 15660 df-xmet 21264 df-met 21265 df-ovol 25372 df-vol 25373 df-mbf 25527 df-itg1 25528 df-itg2 25529 |
| This theorem is referenced by: itg2monolem3 25660 |
| Copyright terms: Public domain | W3C validator |