|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > itg2monolem2 | Structured version Visualization version GIF version | ||
| Description: Lemma for itg2mono 25789. (Contributed by Mario Carneiro, 16-Aug-2014.) | 
| Ref | Expression | 
|---|---|
| itg2mono.1 | ⊢ 𝐺 = (𝑥 ∈ ℝ ↦ sup(ran (𝑛 ∈ ℕ ↦ ((𝐹‘𝑛)‘𝑥)), ℝ, < )) | 
| itg2mono.2 | ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐹‘𝑛) ∈ MblFn) | 
| itg2mono.3 | ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐹‘𝑛):ℝ⟶(0[,)+∞)) | 
| itg2mono.4 | ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐹‘𝑛) ∘r ≤ (𝐹‘(𝑛 + 1))) | 
| itg2mono.5 | ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → ∃𝑦 ∈ ℝ ∀𝑛 ∈ ℕ ((𝐹‘𝑛)‘𝑥) ≤ 𝑦) | 
| itg2mono.6 | ⊢ 𝑆 = sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹‘𝑛))), ℝ*, < ) | 
| itg2monolem2.7 | ⊢ (𝜑 → 𝑃 ∈ dom ∫1) | 
| itg2monolem2.8 | ⊢ (𝜑 → 𝑃 ∘r ≤ 𝐺) | 
| itg2monolem2.9 | ⊢ (𝜑 → ¬ (∫1‘𝑃) ≤ 𝑆) | 
| Ref | Expression | 
|---|---|
| itg2monolem2 | ⊢ (𝜑 → 𝑆 ∈ ℝ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | itg2mono.6 | . . 3 ⊢ 𝑆 = sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹‘𝑛))), ℝ*, < ) | |
| 2 | itg2mono.3 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐹‘𝑛):ℝ⟶(0[,)+∞)) | |
| 3 | icossicc 13477 | . . . . . . . 8 ⊢ (0[,)+∞) ⊆ (0[,]+∞) | |
| 4 | fss 6751 | . . . . . . . 8 ⊢ (((𝐹‘𝑛):ℝ⟶(0[,)+∞) ∧ (0[,)+∞) ⊆ (0[,]+∞)) → (𝐹‘𝑛):ℝ⟶(0[,]+∞)) | |
| 5 | 2, 3, 4 | sylancl 586 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐹‘𝑛):ℝ⟶(0[,]+∞)) | 
| 6 | itg2cl 25768 | . . . . . . 7 ⊢ ((𝐹‘𝑛):ℝ⟶(0[,]+∞) → (∫2‘(𝐹‘𝑛)) ∈ ℝ*) | |
| 7 | 5, 6 | syl 17 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (∫2‘(𝐹‘𝑛)) ∈ ℝ*) | 
| 8 | 7 | fmpttd 7134 | . . . . 5 ⊢ (𝜑 → (𝑛 ∈ ℕ ↦ (∫2‘(𝐹‘𝑛))):ℕ⟶ℝ*) | 
| 9 | 8 | frnd 6743 | . . . 4 ⊢ (𝜑 → ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹‘𝑛))) ⊆ ℝ*) | 
| 10 | supxrcl 13358 | . . . 4 ⊢ (ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹‘𝑛))) ⊆ ℝ* → sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹‘𝑛))), ℝ*, < ) ∈ ℝ*) | |
| 11 | 9, 10 | syl 17 | . . 3 ⊢ (𝜑 → sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹‘𝑛))), ℝ*, < ) ∈ ℝ*) | 
| 12 | 1, 11 | eqeltrid 2844 | . 2 ⊢ (𝜑 → 𝑆 ∈ ℝ*) | 
| 13 | itg2monolem2.7 | . . 3 ⊢ (𝜑 → 𝑃 ∈ dom ∫1) | |
| 14 | itg1cl 25721 | . . 3 ⊢ (𝑃 ∈ dom ∫1 → (∫1‘𝑃) ∈ ℝ) | |
| 15 | 13, 14 | syl 17 | . 2 ⊢ (𝜑 → (∫1‘𝑃) ∈ ℝ) | 
| 16 | mnfxr 11319 | . . . 4 ⊢ -∞ ∈ ℝ* | |
| 17 | 16 | a1i 11 | . . 3 ⊢ (𝜑 → -∞ ∈ ℝ*) | 
| 18 | fveq2 6905 | . . . . . 6 ⊢ (𝑛 = 1 → (𝐹‘𝑛) = (𝐹‘1)) | |
| 19 | 18 | feq1d 6719 | . . . . 5 ⊢ (𝑛 = 1 → ((𝐹‘𝑛):ℝ⟶(0[,]+∞) ↔ (𝐹‘1):ℝ⟶(0[,]+∞))) | 
| 20 | 5 | ralrimiva 3145 | . . . . 5 ⊢ (𝜑 → ∀𝑛 ∈ ℕ (𝐹‘𝑛):ℝ⟶(0[,]+∞)) | 
| 21 | 1nn 12278 | . . . . . 6 ⊢ 1 ∈ ℕ | |
| 22 | 21 | a1i 11 | . . . . 5 ⊢ (𝜑 → 1 ∈ ℕ) | 
| 23 | 19, 20, 22 | rspcdva 3622 | . . . 4 ⊢ (𝜑 → (𝐹‘1):ℝ⟶(0[,]+∞)) | 
| 24 | itg2cl 25768 | . . . 4 ⊢ ((𝐹‘1):ℝ⟶(0[,]+∞) → (∫2‘(𝐹‘1)) ∈ ℝ*) | |
| 25 | 23, 24 | syl 17 | . . 3 ⊢ (𝜑 → (∫2‘(𝐹‘1)) ∈ ℝ*) | 
| 26 | itg2ge0 25771 | . . . . 5 ⊢ ((𝐹‘1):ℝ⟶(0[,]+∞) → 0 ≤ (∫2‘(𝐹‘1))) | |
| 27 | 23, 26 | syl 17 | . . . 4 ⊢ (𝜑 → 0 ≤ (∫2‘(𝐹‘1))) | 
| 28 | mnflt0 13168 | . . . . 5 ⊢ -∞ < 0 | |
| 29 | 0xr 11309 | . . . . . 6 ⊢ 0 ∈ ℝ* | |
| 30 | xrltletr 13200 | . . . . . 6 ⊢ ((-∞ ∈ ℝ* ∧ 0 ∈ ℝ* ∧ (∫2‘(𝐹‘1)) ∈ ℝ*) → ((-∞ < 0 ∧ 0 ≤ (∫2‘(𝐹‘1))) → -∞ < (∫2‘(𝐹‘1)))) | |
| 31 | 16, 29, 25, 30 | mp3an12i 1466 | . . . . 5 ⊢ (𝜑 → ((-∞ < 0 ∧ 0 ≤ (∫2‘(𝐹‘1))) → -∞ < (∫2‘(𝐹‘1)))) | 
| 32 | 28, 31 | mpani 696 | . . . 4 ⊢ (𝜑 → (0 ≤ (∫2‘(𝐹‘1)) → -∞ < (∫2‘(𝐹‘1)))) | 
| 33 | 27, 32 | mpd 15 | . . 3 ⊢ (𝜑 → -∞ < (∫2‘(𝐹‘1))) | 
| 34 | 2fveq3 6910 | . . . . . . . 8 ⊢ (𝑛 = 1 → (∫2‘(𝐹‘𝑛)) = (∫2‘(𝐹‘1))) | |
| 35 | eqid 2736 | . . . . . . . 8 ⊢ (𝑛 ∈ ℕ ↦ (∫2‘(𝐹‘𝑛))) = (𝑛 ∈ ℕ ↦ (∫2‘(𝐹‘𝑛))) | |
| 36 | fvex 6918 | . . . . . . . 8 ⊢ (∫2‘(𝐹‘1)) ∈ V | |
| 37 | 34, 35, 36 | fvmpt 7015 | . . . . . . 7 ⊢ (1 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (∫2‘(𝐹‘𝑛)))‘1) = (∫2‘(𝐹‘1))) | 
| 38 | 21, 37 | ax-mp 5 | . . . . . 6 ⊢ ((𝑛 ∈ ℕ ↦ (∫2‘(𝐹‘𝑛)))‘1) = (∫2‘(𝐹‘1)) | 
| 39 | 8 | ffnd 6736 | . . . . . . 7 ⊢ (𝜑 → (𝑛 ∈ ℕ ↦ (∫2‘(𝐹‘𝑛))) Fn ℕ) | 
| 40 | fnfvelrn 7099 | . . . . . . 7 ⊢ (((𝑛 ∈ ℕ ↦ (∫2‘(𝐹‘𝑛))) Fn ℕ ∧ 1 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (∫2‘(𝐹‘𝑛)))‘1) ∈ ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹‘𝑛)))) | |
| 41 | 39, 21, 40 | sylancl 586 | . . . . . 6 ⊢ (𝜑 → ((𝑛 ∈ ℕ ↦ (∫2‘(𝐹‘𝑛)))‘1) ∈ ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹‘𝑛)))) | 
| 42 | 38, 41 | eqeltrrid 2845 | . . . . 5 ⊢ (𝜑 → (∫2‘(𝐹‘1)) ∈ ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹‘𝑛)))) | 
| 43 | supxrub 13367 | . . . . 5 ⊢ ((ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹‘𝑛))) ⊆ ℝ* ∧ (∫2‘(𝐹‘1)) ∈ ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹‘𝑛)))) → (∫2‘(𝐹‘1)) ≤ sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹‘𝑛))), ℝ*, < )) | |
| 44 | 9, 42, 43 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (∫2‘(𝐹‘1)) ≤ sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹‘𝑛))), ℝ*, < )) | 
| 45 | 44, 1 | breqtrrdi 5184 | . . 3 ⊢ (𝜑 → (∫2‘(𝐹‘1)) ≤ 𝑆) | 
| 46 | 17, 25, 12, 33, 45 | xrltletrd 13204 | . 2 ⊢ (𝜑 → -∞ < 𝑆) | 
| 47 | 15 | rexrd 11312 | . . 3 ⊢ (𝜑 → (∫1‘𝑃) ∈ ℝ*) | 
| 48 | itg2monolem2.9 | . . . 4 ⊢ (𝜑 → ¬ (∫1‘𝑃) ≤ 𝑆) | |
| 49 | xrltnle 11329 | . . . . 5 ⊢ ((𝑆 ∈ ℝ* ∧ (∫1‘𝑃) ∈ ℝ*) → (𝑆 < (∫1‘𝑃) ↔ ¬ (∫1‘𝑃) ≤ 𝑆)) | |
| 50 | 12, 47, 49 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝑆 < (∫1‘𝑃) ↔ ¬ (∫1‘𝑃) ≤ 𝑆)) | 
| 51 | 48, 50 | mpbird 257 | . . 3 ⊢ (𝜑 → 𝑆 < (∫1‘𝑃)) | 
| 52 | 12, 47, 51 | xrltled 13193 | . 2 ⊢ (𝜑 → 𝑆 ≤ (∫1‘𝑃)) | 
| 53 | xrre 13212 | . 2 ⊢ (((𝑆 ∈ ℝ* ∧ (∫1‘𝑃) ∈ ℝ) ∧ (-∞ < 𝑆 ∧ 𝑆 ≤ (∫1‘𝑃))) → 𝑆 ∈ ℝ) | |
| 54 | 12, 15, 46, 52, 53 | syl22anc 838 | 1 ⊢ (𝜑 → 𝑆 ∈ ℝ) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∀wral 3060 ∃wrex 3069 ⊆ wss 3950 class class class wbr 5142 ↦ cmpt 5224 dom cdm 5684 ran crn 5685 Fn wfn 6555 ⟶wf 6556 ‘cfv 6560 (class class class)co 7432 ∘r cofr 7697 supcsup 9481 ℝcr 11155 0cc0 11156 1c1 11157 + caddc 11159 +∞cpnf 11293 -∞cmnf 11294 ℝ*cxr 11295 < clt 11296 ≤ cle 11297 ℕcn 12267 [,)cico 13390 [,]cicc 13391 MblFncmbf 25650 ∫1citg1 25651 ∫2citg2 25652 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-inf2 9682 ax-cnex 11212 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 ax-pre-mulgt0 11233 ax-pre-sup 11234 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-int 4946 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-se 5637 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-isom 6569 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-of 7698 df-ofr 7699 df-om 7889 df-1st 8015 df-2nd 8016 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-1o 8507 df-2o 8508 df-er 8746 df-map 8869 df-pm 8870 df-en 8987 df-dom 8988 df-sdom 8989 df-fin 8990 df-sup 9483 df-inf 9484 df-oi 9551 df-dju 9942 df-card 9980 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-sub 11495 df-neg 11496 df-div 11922 df-nn 12268 df-2 12330 df-3 12331 df-n0 12529 df-z 12616 df-uz 12880 df-q 12992 df-rp 13036 df-xadd 13156 df-ioo 13392 df-ico 13394 df-icc 13395 df-fz 13549 df-fzo 13696 df-fl 13833 df-seq 14044 df-exp 14104 df-hash 14371 df-cj 15139 df-re 15140 df-im 15141 df-sqrt 15275 df-abs 15276 df-clim 15525 df-sum 15724 df-xmet 21358 df-met 21359 df-ovol 25500 df-vol 25501 df-mbf 25655 df-itg1 25656 df-itg2 25657 | 
| This theorem is referenced by: itg2monolem3 25788 | 
| Copyright terms: Public domain | W3C validator |