Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg2monolem2 Structured version   Visualization version   GIF version

Theorem itg2monolem2 24353
 Description: Lemma for itg2mono 24355. (Contributed by Mario Carneiro, 16-Aug-2014.)
Hypotheses
Ref Expression
itg2mono.1 𝐺 = (𝑥 ∈ ℝ ↦ sup(ran (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ))
itg2mono.2 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) ∈ MblFn)
itg2mono.3 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛):ℝ⟶(0[,)+∞))
itg2mono.4 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) ∘r ≤ (𝐹‘(𝑛 + 1)))
itg2mono.5 ((𝜑𝑥 ∈ ℝ) → ∃𝑦 ∈ ℝ ∀𝑛 ∈ ℕ ((𝐹𝑛)‘𝑥) ≤ 𝑦)
itg2mono.6 𝑆 = sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))), ℝ*, < )
itg2monolem2.7 (𝜑𝑃 ∈ dom ∫1)
itg2monolem2.8 (𝜑𝑃r𝐺)
itg2monolem2.9 (𝜑 → ¬ (∫1𝑃) ≤ 𝑆)
Assertion
Ref Expression
itg2monolem2 (𝜑𝑆 ∈ ℝ)
Distinct variable groups:   𝑥,𝑛,𝑦,𝐺   𝑃,𝑛,𝑥,𝑦   𝑛,𝐹,𝑥,𝑦   𝜑,𝑛,𝑥,𝑦   𝑆,𝑛,𝑥,𝑦

Proof of Theorem itg2monolem2
StepHypRef Expression
1 itg2mono.6 . . 3 𝑆 = sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))), ℝ*, < )
2 itg2mono.3 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛):ℝ⟶(0[,)+∞))
3 icossicc 12814 . . . . . . . 8 (0[,)+∞) ⊆ (0[,]+∞)
4 fss 6508 . . . . . . . 8 (((𝐹𝑛):ℝ⟶(0[,)+∞) ∧ (0[,)+∞) ⊆ (0[,]+∞)) → (𝐹𝑛):ℝ⟶(0[,]+∞))
52, 3, 4sylancl 589 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛):ℝ⟶(0[,]+∞))
6 itg2cl 24334 . . . . . . 7 ((𝐹𝑛):ℝ⟶(0[,]+∞) → (∫2‘(𝐹𝑛)) ∈ ℝ*)
75, 6syl 17 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (∫2‘(𝐹𝑛)) ∈ ℝ*)
87fmpttd 6861 . . . . 5 (𝜑 → (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))):ℕ⟶ℝ*)
98frnd 6501 . . . 4 (𝜑 → ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))) ⊆ ℝ*)
10 supxrcl 12696 . . . 4 (ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))) ⊆ ℝ* → sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))), ℝ*, < ) ∈ ℝ*)
119, 10syl 17 . . 3 (𝜑 → sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))), ℝ*, < ) ∈ ℝ*)
121, 11eqeltrid 2918 . 2 (𝜑𝑆 ∈ ℝ*)
13 itg2monolem2.7 . . 3 (𝜑𝑃 ∈ dom ∫1)
14 itg1cl 24287 . . 3 (𝑃 ∈ dom ∫1 → (∫1𝑃) ∈ ℝ)
1513, 14syl 17 . 2 (𝜑 → (∫1𝑃) ∈ ℝ)
16 mnfxr 10687 . . . 4 -∞ ∈ ℝ*
1716a1i 11 . . 3 (𝜑 → -∞ ∈ ℝ*)
18 fveq2 6652 . . . . . 6 (𝑛 = 1 → (𝐹𝑛) = (𝐹‘1))
1918feq1d 6479 . . . . 5 (𝑛 = 1 → ((𝐹𝑛):ℝ⟶(0[,]+∞) ↔ (𝐹‘1):ℝ⟶(0[,]+∞)))
205ralrimiva 3174 . . . . 5 (𝜑 → ∀𝑛 ∈ ℕ (𝐹𝑛):ℝ⟶(0[,]+∞))
21 1nn 11636 . . . . . 6 1 ∈ ℕ
2221a1i 11 . . . . 5 (𝜑 → 1 ∈ ℕ)
2319, 20, 22rspcdva 3600 . . . 4 (𝜑 → (𝐹‘1):ℝ⟶(0[,]+∞))
24 itg2cl 24334 . . . 4 ((𝐹‘1):ℝ⟶(0[,]+∞) → (∫2‘(𝐹‘1)) ∈ ℝ*)
2523, 24syl 17 . . 3 (𝜑 → (∫2‘(𝐹‘1)) ∈ ℝ*)
26 itg2ge0 24337 . . . . 5 ((𝐹‘1):ℝ⟶(0[,]+∞) → 0 ≤ (∫2‘(𝐹‘1)))
2723, 26syl 17 . . . 4 (𝜑 → 0 ≤ (∫2‘(𝐹‘1)))
28 mnflt0 12508 . . . . 5 -∞ < 0
29 0xr 10677 . . . . . 6 0 ∈ ℝ*
30 xrltletr 12538 . . . . . 6 ((-∞ ∈ ℝ* ∧ 0 ∈ ℝ* ∧ (∫2‘(𝐹‘1)) ∈ ℝ*) → ((-∞ < 0 ∧ 0 ≤ (∫2‘(𝐹‘1))) → -∞ < (∫2‘(𝐹‘1))))
3116, 29, 25, 30mp3an12i 1462 . . . . 5 (𝜑 → ((-∞ < 0 ∧ 0 ≤ (∫2‘(𝐹‘1))) → -∞ < (∫2‘(𝐹‘1))))
3228, 31mpani 695 . . . 4 (𝜑 → (0 ≤ (∫2‘(𝐹‘1)) → -∞ < (∫2‘(𝐹‘1))))
3327, 32mpd 15 . . 3 (𝜑 → -∞ < (∫2‘(𝐹‘1)))
34 2fveq3 6657 . . . . . . . 8 (𝑛 = 1 → (∫2‘(𝐹𝑛)) = (∫2‘(𝐹‘1)))
35 eqid 2822 . . . . . . . 8 (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))) = (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛)))
36 fvex 6665 . . . . . . . 8 (∫2‘(𝐹‘1)) ∈ V
3734, 35, 36fvmpt 6750 . . . . . . 7 (1 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛)))‘1) = (∫2‘(𝐹‘1)))
3821, 37ax-mp 5 . . . . . 6 ((𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛)))‘1) = (∫2‘(𝐹‘1))
398ffnd 6495 . . . . . . 7 (𝜑 → (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))) Fn ℕ)
40 fnfvelrn 6830 . . . . . . 7 (((𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))) Fn ℕ ∧ 1 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛)))‘1) ∈ ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))))
4139, 21, 40sylancl 589 . . . . . 6 (𝜑 → ((𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛)))‘1) ∈ ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))))
4238, 41eqeltrrid 2919 . . . . 5 (𝜑 → (∫2‘(𝐹‘1)) ∈ ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))))
43 supxrub 12705 . . . . 5 ((ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))) ⊆ ℝ* ∧ (∫2‘(𝐹‘1)) ∈ ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛)))) → (∫2‘(𝐹‘1)) ≤ sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))), ℝ*, < ))
449, 42, 43syl2anc 587 . . . 4 (𝜑 → (∫2‘(𝐹‘1)) ≤ sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))), ℝ*, < ))
4544, 1breqtrrdi 5084 . . 3 (𝜑 → (∫2‘(𝐹‘1)) ≤ 𝑆)
4617, 25, 12, 33, 45xrltletrd 12542 . 2 (𝜑 → -∞ < 𝑆)
4715rexrd 10680 . . 3 (𝜑 → (∫1𝑃) ∈ ℝ*)
48 itg2monolem2.9 . . . 4 (𝜑 → ¬ (∫1𝑃) ≤ 𝑆)
49 xrltnle 10697 . . . . 5 ((𝑆 ∈ ℝ* ∧ (∫1𝑃) ∈ ℝ*) → (𝑆 < (∫1𝑃) ↔ ¬ (∫1𝑃) ≤ 𝑆))
5012, 47, 49syl2anc 587 . . . 4 (𝜑 → (𝑆 < (∫1𝑃) ↔ ¬ (∫1𝑃) ≤ 𝑆))
5148, 50mpbird 260 . . 3 (𝜑𝑆 < (∫1𝑃))
5212, 47, 51xrltled 12531 . 2 (𝜑𝑆 ≤ (∫1𝑃))
53 xrre 12550 . 2 (((𝑆 ∈ ℝ* ∧ (∫1𝑃) ∈ ℝ) ∧ (-∞ < 𝑆𝑆 ≤ (∫1𝑃))) → 𝑆 ∈ ℝ)
5412, 15, 46, 52, 53syl22anc 837 1 (𝜑𝑆 ∈ ℝ)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1538   ∈ wcel 2114  ∀wral 3130  ∃wrex 3131   ⊆ wss 3908   class class class wbr 5042   ↦ cmpt 5122  dom cdm 5532  ran crn 5533   Fn wfn 6329  ⟶wf 6330  ‘cfv 6334  (class class class)co 7140   ∘r cofr 7393  supcsup 8892  ℝcr 10525  0cc0 10526  1c1 10527   + caddc 10529  +∞cpnf 10661  -∞cmnf 10662  ℝ*cxr 10663   < clt 10664   ≤ cle 10665  ℕcn 11625  [,)cico 12728  [,]cicc 12729  MblFncmbf 24216  ∫1citg1 24217  ∫2citg2 24218 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446  ax-inf2 9092  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-nel 3116  df-ral 3135  df-rex 3136  df-reu 3137  df-rmo 3138  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-tp 4544  df-op 4546  df-uni 4814  df-int 4852  df-iun 4896  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5437  df-eprel 5442  df-po 5451  df-so 5452  df-fr 5491  df-se 5492  df-we 5493  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-isom 6343  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-of 7394  df-ofr 7395  df-om 7566  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-2o 8090  df-oadd 8093  df-er 8276  df-map 8395  df-pm 8396  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-sup 8894  df-inf 8895  df-oi 8962  df-dju 9318  df-card 9356  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-q 12337  df-rp 12378  df-xadd 12496  df-ioo 12730  df-ico 12732  df-icc 12733  df-fz 12886  df-fzo 13029  df-fl 13157  df-seq 13365  df-exp 13426  df-hash 13687  df-cj 14449  df-re 14450  df-im 14451  df-sqrt 14585  df-abs 14586  df-clim 14836  df-sum 15034  df-xmet 20082  df-met 20083  df-ovol 24066  df-vol 24067  df-mbf 24221  df-itg1 24222  df-itg2 24223 This theorem is referenced by:  itg2monolem3  24354
 Copyright terms: Public domain W3C validator