MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg2monolem2 Structured version   Visualization version   GIF version

Theorem itg2monolem2 25677
Description: Lemma for itg2mono 25679. (Contributed by Mario Carneiro, 16-Aug-2014.)
Hypotheses
Ref Expression
itg2mono.1 𝐺 = (𝑥 ∈ ℝ ↦ sup(ran (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ))
itg2mono.2 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) ∈ MblFn)
itg2mono.3 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛):ℝ⟶(0[,)+∞))
itg2mono.4 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) ∘r ≤ (𝐹‘(𝑛 + 1)))
itg2mono.5 ((𝜑𝑥 ∈ ℝ) → ∃𝑦 ∈ ℝ ∀𝑛 ∈ ℕ ((𝐹𝑛)‘𝑥) ≤ 𝑦)
itg2mono.6 𝑆 = sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))), ℝ*, < )
itg2monolem2.7 (𝜑𝑃 ∈ dom ∫1)
itg2monolem2.8 (𝜑𝑃r𝐺)
itg2monolem2.9 (𝜑 → ¬ (∫1𝑃) ≤ 𝑆)
Assertion
Ref Expression
itg2monolem2 (𝜑𝑆 ∈ ℝ)
Distinct variable groups:   𝑥,𝑛,𝑦,𝐺   𝑃,𝑛,𝑥,𝑦   𝑛,𝐹,𝑥,𝑦   𝜑,𝑛,𝑥,𝑦   𝑆,𝑛,𝑥,𝑦

Proof of Theorem itg2monolem2
StepHypRef Expression
1 itg2mono.6 . . 3 𝑆 = sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))), ℝ*, < )
2 itg2mono.3 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛):ℝ⟶(0[,)+∞))
3 icossicc 13333 . . . . . . . 8 (0[,)+∞) ⊆ (0[,]+∞)
4 fss 6667 . . . . . . . 8 (((𝐹𝑛):ℝ⟶(0[,)+∞) ∧ (0[,)+∞) ⊆ (0[,]+∞)) → (𝐹𝑛):ℝ⟶(0[,]+∞))
52, 3, 4sylancl 586 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛):ℝ⟶(0[,]+∞))
6 itg2cl 25658 . . . . . . 7 ((𝐹𝑛):ℝ⟶(0[,]+∞) → (∫2‘(𝐹𝑛)) ∈ ℝ*)
75, 6syl 17 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (∫2‘(𝐹𝑛)) ∈ ℝ*)
87fmpttd 7048 . . . . 5 (𝜑 → (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))):ℕ⟶ℝ*)
98frnd 6659 . . . 4 (𝜑 → ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))) ⊆ ℝ*)
10 supxrcl 13211 . . . 4 (ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))) ⊆ ℝ* → sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))), ℝ*, < ) ∈ ℝ*)
119, 10syl 17 . . 3 (𝜑 → sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))), ℝ*, < ) ∈ ℝ*)
121, 11eqeltrid 2835 . 2 (𝜑𝑆 ∈ ℝ*)
13 itg2monolem2.7 . . 3 (𝜑𝑃 ∈ dom ∫1)
14 itg1cl 25611 . . 3 (𝑃 ∈ dom ∫1 → (∫1𝑃) ∈ ℝ)
1513, 14syl 17 . 2 (𝜑 → (∫1𝑃) ∈ ℝ)
16 mnfxr 11166 . . . 4 -∞ ∈ ℝ*
1716a1i 11 . . 3 (𝜑 → -∞ ∈ ℝ*)
18 fveq2 6822 . . . . . 6 (𝑛 = 1 → (𝐹𝑛) = (𝐹‘1))
1918feq1d 6633 . . . . 5 (𝑛 = 1 → ((𝐹𝑛):ℝ⟶(0[,]+∞) ↔ (𝐹‘1):ℝ⟶(0[,]+∞)))
205ralrimiva 3124 . . . . 5 (𝜑 → ∀𝑛 ∈ ℕ (𝐹𝑛):ℝ⟶(0[,]+∞))
21 1nn 12133 . . . . . 6 1 ∈ ℕ
2221a1i 11 . . . . 5 (𝜑 → 1 ∈ ℕ)
2319, 20, 22rspcdva 3578 . . . 4 (𝜑 → (𝐹‘1):ℝ⟶(0[,]+∞))
24 itg2cl 25658 . . . 4 ((𝐹‘1):ℝ⟶(0[,]+∞) → (∫2‘(𝐹‘1)) ∈ ℝ*)
2523, 24syl 17 . . 3 (𝜑 → (∫2‘(𝐹‘1)) ∈ ℝ*)
26 itg2ge0 25661 . . . . 5 ((𝐹‘1):ℝ⟶(0[,]+∞) → 0 ≤ (∫2‘(𝐹‘1)))
2723, 26syl 17 . . . 4 (𝜑 → 0 ≤ (∫2‘(𝐹‘1)))
28 mnflt0 13021 . . . . 5 -∞ < 0
29 0xr 11156 . . . . . 6 0 ∈ ℝ*
30 xrltletr 13053 . . . . . 6 ((-∞ ∈ ℝ* ∧ 0 ∈ ℝ* ∧ (∫2‘(𝐹‘1)) ∈ ℝ*) → ((-∞ < 0 ∧ 0 ≤ (∫2‘(𝐹‘1))) → -∞ < (∫2‘(𝐹‘1))))
3116, 29, 25, 30mp3an12i 1467 . . . . 5 (𝜑 → ((-∞ < 0 ∧ 0 ≤ (∫2‘(𝐹‘1))) → -∞ < (∫2‘(𝐹‘1))))
3228, 31mpani 696 . . . 4 (𝜑 → (0 ≤ (∫2‘(𝐹‘1)) → -∞ < (∫2‘(𝐹‘1))))
3327, 32mpd 15 . . 3 (𝜑 → -∞ < (∫2‘(𝐹‘1)))
34 2fveq3 6827 . . . . . . . 8 (𝑛 = 1 → (∫2‘(𝐹𝑛)) = (∫2‘(𝐹‘1)))
35 eqid 2731 . . . . . . . 8 (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))) = (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛)))
36 fvex 6835 . . . . . . . 8 (∫2‘(𝐹‘1)) ∈ V
3734, 35, 36fvmpt 6929 . . . . . . 7 (1 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛)))‘1) = (∫2‘(𝐹‘1)))
3821, 37ax-mp 5 . . . . . 6 ((𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛)))‘1) = (∫2‘(𝐹‘1))
398ffnd 6652 . . . . . . 7 (𝜑 → (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))) Fn ℕ)
40 fnfvelrn 7013 . . . . . . 7 (((𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))) Fn ℕ ∧ 1 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛)))‘1) ∈ ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))))
4139, 21, 40sylancl 586 . . . . . 6 (𝜑 → ((𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛)))‘1) ∈ ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))))
4238, 41eqeltrrid 2836 . . . . 5 (𝜑 → (∫2‘(𝐹‘1)) ∈ ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))))
43 supxrub 13220 . . . . 5 ((ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))) ⊆ ℝ* ∧ (∫2‘(𝐹‘1)) ∈ ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛)))) → (∫2‘(𝐹‘1)) ≤ sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))), ℝ*, < ))
449, 42, 43syl2anc 584 . . . 4 (𝜑 → (∫2‘(𝐹‘1)) ≤ sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))), ℝ*, < ))
4544, 1breqtrrdi 5133 . . 3 (𝜑 → (∫2‘(𝐹‘1)) ≤ 𝑆)
4617, 25, 12, 33, 45xrltletrd 13057 . 2 (𝜑 → -∞ < 𝑆)
4715rexrd 11159 . . 3 (𝜑 → (∫1𝑃) ∈ ℝ*)
48 itg2monolem2.9 . . . 4 (𝜑 → ¬ (∫1𝑃) ≤ 𝑆)
49 xrltnle 11176 . . . . 5 ((𝑆 ∈ ℝ* ∧ (∫1𝑃) ∈ ℝ*) → (𝑆 < (∫1𝑃) ↔ ¬ (∫1𝑃) ≤ 𝑆))
5012, 47, 49syl2anc 584 . . . 4 (𝜑 → (𝑆 < (∫1𝑃) ↔ ¬ (∫1𝑃) ≤ 𝑆))
5148, 50mpbird 257 . . 3 (𝜑𝑆 < (∫1𝑃))
5212, 47, 51xrltled 13046 . 2 (𝜑𝑆 ≤ (∫1𝑃))
53 xrre 13065 . 2 (((𝑆 ∈ ℝ* ∧ (∫1𝑃) ∈ ℝ) ∧ (-∞ < 𝑆𝑆 ≤ (∫1𝑃))) → 𝑆 ∈ ℝ)
5412, 15, 46, 52, 53syl22anc 838 1 (𝜑𝑆 ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047  wrex 3056  wss 3902   class class class wbr 5091  cmpt 5172  dom cdm 5616  ran crn 5617   Fn wfn 6476  wf 6477  cfv 6481  (class class class)co 7346  r cofr 7609  supcsup 9324  cr 11002  0cc0 11003  1c1 11004   + caddc 11006  +∞cpnf 11140  -∞cmnf 11141  *cxr 11142   < clt 11143  cle 11144  cn 12122  [,)cico 13244  [,]cicc 13245  MblFncmbf 25540  1citg1 25541  2citg2 25542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-inf2 9531  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080  ax-pre-sup 11081
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-ofr 7611  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-pm 8753  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-inf 9327  df-oi 9396  df-dju 9791  df-card 9829  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-div 11772  df-nn 12123  df-2 12185  df-3 12186  df-n0 12379  df-z 12466  df-uz 12730  df-q 12844  df-rp 12888  df-xadd 13009  df-ioo 13246  df-ico 13248  df-icc 13249  df-fz 13405  df-fzo 13552  df-fl 13693  df-seq 13906  df-exp 13966  df-hash 14235  df-cj 15003  df-re 15004  df-im 15005  df-sqrt 15139  df-abs 15140  df-clim 15392  df-sum 15591  df-xmet 21282  df-met 21283  df-ovol 25390  df-vol 25391  df-mbf 25545  df-itg1 25546  df-itg2 25547
This theorem is referenced by:  itg2monolem3  25678
  Copyright terms: Public domain W3C validator