| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > itg2monolem2 | Structured version Visualization version GIF version | ||
| Description: Lemma for itg2mono 25682. (Contributed by Mario Carneiro, 16-Aug-2014.) |
| Ref | Expression |
|---|---|
| itg2mono.1 | ⊢ 𝐺 = (𝑥 ∈ ℝ ↦ sup(ran (𝑛 ∈ ℕ ↦ ((𝐹‘𝑛)‘𝑥)), ℝ, < )) |
| itg2mono.2 | ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐹‘𝑛) ∈ MblFn) |
| itg2mono.3 | ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐹‘𝑛):ℝ⟶(0[,)+∞)) |
| itg2mono.4 | ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐹‘𝑛) ∘r ≤ (𝐹‘(𝑛 + 1))) |
| itg2mono.5 | ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → ∃𝑦 ∈ ℝ ∀𝑛 ∈ ℕ ((𝐹‘𝑛)‘𝑥) ≤ 𝑦) |
| itg2mono.6 | ⊢ 𝑆 = sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹‘𝑛))), ℝ*, < ) |
| itg2monolem2.7 | ⊢ (𝜑 → 𝑃 ∈ dom ∫1) |
| itg2monolem2.8 | ⊢ (𝜑 → 𝑃 ∘r ≤ 𝐺) |
| itg2monolem2.9 | ⊢ (𝜑 → ¬ (∫1‘𝑃) ≤ 𝑆) |
| Ref | Expression |
|---|---|
| itg2monolem2 | ⊢ (𝜑 → 𝑆 ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itg2mono.6 | . . 3 ⊢ 𝑆 = sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹‘𝑛))), ℝ*, < ) | |
| 2 | itg2mono.3 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐹‘𝑛):ℝ⟶(0[,)+∞)) | |
| 3 | icossicc 13338 | . . . . . . . 8 ⊢ (0[,)+∞) ⊆ (0[,]+∞) | |
| 4 | fss 6672 | . . . . . . . 8 ⊢ (((𝐹‘𝑛):ℝ⟶(0[,)+∞) ∧ (0[,)+∞) ⊆ (0[,]+∞)) → (𝐹‘𝑛):ℝ⟶(0[,]+∞)) | |
| 5 | 2, 3, 4 | sylancl 586 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐹‘𝑛):ℝ⟶(0[,]+∞)) |
| 6 | itg2cl 25661 | . . . . . . 7 ⊢ ((𝐹‘𝑛):ℝ⟶(0[,]+∞) → (∫2‘(𝐹‘𝑛)) ∈ ℝ*) | |
| 7 | 5, 6 | syl 17 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (∫2‘(𝐹‘𝑛)) ∈ ℝ*) |
| 8 | 7 | fmpttd 7054 | . . . . 5 ⊢ (𝜑 → (𝑛 ∈ ℕ ↦ (∫2‘(𝐹‘𝑛))):ℕ⟶ℝ*) |
| 9 | 8 | frnd 6664 | . . . 4 ⊢ (𝜑 → ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹‘𝑛))) ⊆ ℝ*) |
| 10 | supxrcl 13216 | . . . 4 ⊢ (ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹‘𝑛))) ⊆ ℝ* → sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹‘𝑛))), ℝ*, < ) ∈ ℝ*) | |
| 11 | 9, 10 | syl 17 | . . 3 ⊢ (𝜑 → sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹‘𝑛))), ℝ*, < ) ∈ ℝ*) |
| 12 | 1, 11 | eqeltrid 2837 | . 2 ⊢ (𝜑 → 𝑆 ∈ ℝ*) |
| 13 | itg2monolem2.7 | . . 3 ⊢ (𝜑 → 𝑃 ∈ dom ∫1) | |
| 14 | itg1cl 25614 | . . 3 ⊢ (𝑃 ∈ dom ∫1 → (∫1‘𝑃) ∈ ℝ) | |
| 15 | 13, 14 | syl 17 | . 2 ⊢ (𝜑 → (∫1‘𝑃) ∈ ℝ) |
| 16 | mnfxr 11176 | . . . 4 ⊢ -∞ ∈ ℝ* | |
| 17 | 16 | a1i 11 | . . 3 ⊢ (𝜑 → -∞ ∈ ℝ*) |
| 18 | fveq2 6828 | . . . . . 6 ⊢ (𝑛 = 1 → (𝐹‘𝑛) = (𝐹‘1)) | |
| 19 | 18 | feq1d 6638 | . . . . 5 ⊢ (𝑛 = 1 → ((𝐹‘𝑛):ℝ⟶(0[,]+∞) ↔ (𝐹‘1):ℝ⟶(0[,]+∞))) |
| 20 | 5 | ralrimiva 3125 | . . . . 5 ⊢ (𝜑 → ∀𝑛 ∈ ℕ (𝐹‘𝑛):ℝ⟶(0[,]+∞)) |
| 21 | 1nn 12143 | . . . . . 6 ⊢ 1 ∈ ℕ | |
| 22 | 21 | a1i 11 | . . . . 5 ⊢ (𝜑 → 1 ∈ ℕ) |
| 23 | 19, 20, 22 | rspcdva 3574 | . . . 4 ⊢ (𝜑 → (𝐹‘1):ℝ⟶(0[,]+∞)) |
| 24 | itg2cl 25661 | . . . 4 ⊢ ((𝐹‘1):ℝ⟶(0[,]+∞) → (∫2‘(𝐹‘1)) ∈ ℝ*) | |
| 25 | 23, 24 | syl 17 | . . 3 ⊢ (𝜑 → (∫2‘(𝐹‘1)) ∈ ℝ*) |
| 26 | itg2ge0 25664 | . . . . 5 ⊢ ((𝐹‘1):ℝ⟶(0[,]+∞) → 0 ≤ (∫2‘(𝐹‘1))) | |
| 27 | 23, 26 | syl 17 | . . . 4 ⊢ (𝜑 → 0 ≤ (∫2‘(𝐹‘1))) |
| 28 | mnflt0 13026 | . . . . 5 ⊢ -∞ < 0 | |
| 29 | 0xr 11166 | . . . . . 6 ⊢ 0 ∈ ℝ* | |
| 30 | xrltletr 13058 | . . . . . 6 ⊢ ((-∞ ∈ ℝ* ∧ 0 ∈ ℝ* ∧ (∫2‘(𝐹‘1)) ∈ ℝ*) → ((-∞ < 0 ∧ 0 ≤ (∫2‘(𝐹‘1))) → -∞ < (∫2‘(𝐹‘1)))) | |
| 31 | 16, 29, 25, 30 | mp3an12i 1467 | . . . . 5 ⊢ (𝜑 → ((-∞ < 0 ∧ 0 ≤ (∫2‘(𝐹‘1))) → -∞ < (∫2‘(𝐹‘1)))) |
| 32 | 28, 31 | mpani 696 | . . . 4 ⊢ (𝜑 → (0 ≤ (∫2‘(𝐹‘1)) → -∞ < (∫2‘(𝐹‘1)))) |
| 33 | 27, 32 | mpd 15 | . . 3 ⊢ (𝜑 → -∞ < (∫2‘(𝐹‘1))) |
| 34 | 2fveq3 6833 | . . . . . . . 8 ⊢ (𝑛 = 1 → (∫2‘(𝐹‘𝑛)) = (∫2‘(𝐹‘1))) | |
| 35 | eqid 2733 | . . . . . . . 8 ⊢ (𝑛 ∈ ℕ ↦ (∫2‘(𝐹‘𝑛))) = (𝑛 ∈ ℕ ↦ (∫2‘(𝐹‘𝑛))) | |
| 36 | fvex 6841 | . . . . . . . 8 ⊢ (∫2‘(𝐹‘1)) ∈ V | |
| 37 | 34, 35, 36 | fvmpt 6935 | . . . . . . 7 ⊢ (1 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (∫2‘(𝐹‘𝑛)))‘1) = (∫2‘(𝐹‘1))) |
| 38 | 21, 37 | ax-mp 5 | . . . . . 6 ⊢ ((𝑛 ∈ ℕ ↦ (∫2‘(𝐹‘𝑛)))‘1) = (∫2‘(𝐹‘1)) |
| 39 | 8 | ffnd 6657 | . . . . . . 7 ⊢ (𝜑 → (𝑛 ∈ ℕ ↦ (∫2‘(𝐹‘𝑛))) Fn ℕ) |
| 40 | fnfvelrn 7019 | . . . . . . 7 ⊢ (((𝑛 ∈ ℕ ↦ (∫2‘(𝐹‘𝑛))) Fn ℕ ∧ 1 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (∫2‘(𝐹‘𝑛)))‘1) ∈ ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹‘𝑛)))) | |
| 41 | 39, 21, 40 | sylancl 586 | . . . . . 6 ⊢ (𝜑 → ((𝑛 ∈ ℕ ↦ (∫2‘(𝐹‘𝑛)))‘1) ∈ ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹‘𝑛)))) |
| 42 | 38, 41 | eqeltrrid 2838 | . . . . 5 ⊢ (𝜑 → (∫2‘(𝐹‘1)) ∈ ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹‘𝑛)))) |
| 43 | supxrub 13225 | . . . . 5 ⊢ ((ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹‘𝑛))) ⊆ ℝ* ∧ (∫2‘(𝐹‘1)) ∈ ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹‘𝑛)))) → (∫2‘(𝐹‘1)) ≤ sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹‘𝑛))), ℝ*, < )) | |
| 44 | 9, 42, 43 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (∫2‘(𝐹‘1)) ≤ sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹‘𝑛))), ℝ*, < )) |
| 45 | 44, 1 | breqtrrdi 5135 | . . 3 ⊢ (𝜑 → (∫2‘(𝐹‘1)) ≤ 𝑆) |
| 46 | 17, 25, 12, 33, 45 | xrltletrd 13062 | . 2 ⊢ (𝜑 → -∞ < 𝑆) |
| 47 | 15 | rexrd 11169 | . . 3 ⊢ (𝜑 → (∫1‘𝑃) ∈ ℝ*) |
| 48 | itg2monolem2.9 | . . . 4 ⊢ (𝜑 → ¬ (∫1‘𝑃) ≤ 𝑆) | |
| 49 | xrltnle 11186 | . . . . 5 ⊢ ((𝑆 ∈ ℝ* ∧ (∫1‘𝑃) ∈ ℝ*) → (𝑆 < (∫1‘𝑃) ↔ ¬ (∫1‘𝑃) ≤ 𝑆)) | |
| 50 | 12, 47, 49 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝑆 < (∫1‘𝑃) ↔ ¬ (∫1‘𝑃) ≤ 𝑆)) |
| 51 | 48, 50 | mpbird 257 | . . 3 ⊢ (𝜑 → 𝑆 < (∫1‘𝑃)) |
| 52 | 12, 47, 51 | xrltled 13051 | . 2 ⊢ (𝜑 → 𝑆 ≤ (∫1‘𝑃)) |
| 53 | xrre 13070 | . 2 ⊢ (((𝑆 ∈ ℝ* ∧ (∫1‘𝑃) ∈ ℝ) ∧ (-∞ < 𝑆 ∧ 𝑆 ≤ (∫1‘𝑃))) → 𝑆 ∈ ℝ) | |
| 54 | 12, 15, 46, 52, 53 | syl22anc 838 | 1 ⊢ (𝜑 → 𝑆 ∈ ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∀wral 3048 ∃wrex 3057 ⊆ wss 3898 class class class wbr 5093 ↦ cmpt 5174 dom cdm 5619 ran crn 5620 Fn wfn 6481 ⟶wf 6482 ‘cfv 6486 (class class class)co 7352 ∘r cofr 7615 supcsup 9331 ℝcr 11012 0cc0 11013 1c1 11014 + caddc 11016 +∞cpnf 11150 -∞cmnf 11151 ℝ*cxr 11152 < clt 11153 ≤ cle 11154 ℕcn 12132 [,)cico 13249 [,]cicc 13250 MblFncmbf 25543 ∫1citg1 25544 ∫2citg2 25545 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-inf2 9538 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 ax-pre-sup 11091 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-of 7616 df-ofr 7617 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-2o 8392 df-er 8628 df-map 8758 df-pm 8759 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-sup 9333 df-inf 9334 df-oi 9403 df-dju 9801 df-card 9839 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-div 11782 df-nn 12133 df-2 12195 df-3 12196 df-n0 12389 df-z 12476 df-uz 12739 df-q 12849 df-rp 12893 df-xadd 13014 df-ioo 13251 df-ico 13253 df-icc 13254 df-fz 13410 df-fzo 13557 df-fl 13698 df-seq 13911 df-exp 13971 df-hash 14240 df-cj 15008 df-re 15009 df-im 15010 df-sqrt 15144 df-abs 15145 df-clim 15397 df-sum 15596 df-xmet 21286 df-met 21287 df-ovol 25393 df-vol 25394 df-mbf 25548 df-itg1 25549 df-itg2 25550 |
| This theorem is referenced by: itg2monolem3 25681 |
| Copyright terms: Public domain | W3C validator |