MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg2monolem2 Structured version   Visualization version   GIF version

Theorem itg2monolem2 24914
Description: Lemma for itg2mono 24916. (Contributed by Mario Carneiro, 16-Aug-2014.)
Hypotheses
Ref Expression
itg2mono.1 𝐺 = (𝑥 ∈ ℝ ↦ sup(ran (𝑛 ∈ ℕ ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ))
itg2mono.2 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) ∈ MblFn)
itg2mono.3 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛):ℝ⟶(0[,)+∞))
itg2mono.4 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) ∘r ≤ (𝐹‘(𝑛 + 1)))
itg2mono.5 ((𝜑𝑥 ∈ ℝ) → ∃𝑦 ∈ ℝ ∀𝑛 ∈ ℕ ((𝐹𝑛)‘𝑥) ≤ 𝑦)
itg2mono.6 𝑆 = sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))), ℝ*, < )
itg2monolem2.7 (𝜑𝑃 ∈ dom ∫1)
itg2monolem2.8 (𝜑𝑃r𝐺)
itg2monolem2.9 (𝜑 → ¬ (∫1𝑃) ≤ 𝑆)
Assertion
Ref Expression
itg2monolem2 (𝜑𝑆 ∈ ℝ)
Distinct variable groups:   𝑥,𝑛,𝑦,𝐺   𝑃,𝑛,𝑥,𝑦   𝑛,𝐹,𝑥,𝑦   𝜑,𝑛,𝑥,𝑦   𝑆,𝑛,𝑥,𝑦

Proof of Theorem itg2monolem2
StepHypRef Expression
1 itg2mono.6 . . 3 𝑆 = sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))), ℝ*, < )
2 itg2mono.3 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛):ℝ⟶(0[,)+∞))
3 icossicc 13166 . . . . . . . 8 (0[,)+∞) ⊆ (0[,]+∞)
4 fss 6619 . . . . . . . 8 (((𝐹𝑛):ℝ⟶(0[,)+∞) ∧ (0[,)+∞) ⊆ (0[,]+∞)) → (𝐹𝑛):ℝ⟶(0[,]+∞))
52, 3, 4sylancl 586 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛):ℝ⟶(0[,]+∞))
6 itg2cl 24895 . . . . . . 7 ((𝐹𝑛):ℝ⟶(0[,]+∞) → (∫2‘(𝐹𝑛)) ∈ ℝ*)
75, 6syl 17 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (∫2‘(𝐹𝑛)) ∈ ℝ*)
87fmpttd 6991 . . . . 5 (𝜑 → (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))):ℕ⟶ℝ*)
98frnd 6610 . . . 4 (𝜑 → ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))) ⊆ ℝ*)
10 supxrcl 13047 . . . 4 (ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))) ⊆ ℝ* → sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))), ℝ*, < ) ∈ ℝ*)
119, 10syl 17 . . 3 (𝜑 → sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))), ℝ*, < ) ∈ ℝ*)
121, 11eqeltrid 2843 . 2 (𝜑𝑆 ∈ ℝ*)
13 itg2monolem2.7 . . 3 (𝜑𝑃 ∈ dom ∫1)
14 itg1cl 24847 . . 3 (𝑃 ∈ dom ∫1 → (∫1𝑃) ∈ ℝ)
1513, 14syl 17 . 2 (𝜑 → (∫1𝑃) ∈ ℝ)
16 mnfxr 11030 . . . 4 -∞ ∈ ℝ*
1716a1i 11 . . 3 (𝜑 → -∞ ∈ ℝ*)
18 fveq2 6776 . . . . . 6 (𝑛 = 1 → (𝐹𝑛) = (𝐹‘1))
1918feq1d 6587 . . . . 5 (𝑛 = 1 → ((𝐹𝑛):ℝ⟶(0[,]+∞) ↔ (𝐹‘1):ℝ⟶(0[,]+∞)))
205ralrimiva 3103 . . . . 5 (𝜑 → ∀𝑛 ∈ ℕ (𝐹𝑛):ℝ⟶(0[,]+∞))
21 1nn 11982 . . . . . 6 1 ∈ ℕ
2221a1i 11 . . . . 5 (𝜑 → 1 ∈ ℕ)
2319, 20, 22rspcdva 3563 . . . 4 (𝜑 → (𝐹‘1):ℝ⟶(0[,]+∞))
24 itg2cl 24895 . . . 4 ((𝐹‘1):ℝ⟶(0[,]+∞) → (∫2‘(𝐹‘1)) ∈ ℝ*)
2523, 24syl 17 . . 3 (𝜑 → (∫2‘(𝐹‘1)) ∈ ℝ*)
26 itg2ge0 24898 . . . . 5 ((𝐹‘1):ℝ⟶(0[,]+∞) → 0 ≤ (∫2‘(𝐹‘1)))
2723, 26syl 17 . . . 4 (𝜑 → 0 ≤ (∫2‘(𝐹‘1)))
28 mnflt0 12859 . . . . 5 -∞ < 0
29 0xr 11020 . . . . . 6 0 ∈ ℝ*
30 xrltletr 12889 . . . . . 6 ((-∞ ∈ ℝ* ∧ 0 ∈ ℝ* ∧ (∫2‘(𝐹‘1)) ∈ ℝ*) → ((-∞ < 0 ∧ 0 ≤ (∫2‘(𝐹‘1))) → -∞ < (∫2‘(𝐹‘1))))
3116, 29, 25, 30mp3an12i 1464 . . . . 5 (𝜑 → ((-∞ < 0 ∧ 0 ≤ (∫2‘(𝐹‘1))) → -∞ < (∫2‘(𝐹‘1))))
3228, 31mpani 693 . . . 4 (𝜑 → (0 ≤ (∫2‘(𝐹‘1)) → -∞ < (∫2‘(𝐹‘1))))
3327, 32mpd 15 . . 3 (𝜑 → -∞ < (∫2‘(𝐹‘1)))
34 2fveq3 6781 . . . . . . . 8 (𝑛 = 1 → (∫2‘(𝐹𝑛)) = (∫2‘(𝐹‘1)))
35 eqid 2738 . . . . . . . 8 (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))) = (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛)))
36 fvex 6789 . . . . . . . 8 (∫2‘(𝐹‘1)) ∈ V
3734, 35, 36fvmpt 6877 . . . . . . 7 (1 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛)))‘1) = (∫2‘(𝐹‘1)))
3821, 37ax-mp 5 . . . . . 6 ((𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛)))‘1) = (∫2‘(𝐹‘1))
398ffnd 6603 . . . . . . 7 (𝜑 → (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))) Fn ℕ)
40 fnfvelrn 6960 . . . . . . 7 (((𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))) Fn ℕ ∧ 1 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛)))‘1) ∈ ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))))
4139, 21, 40sylancl 586 . . . . . 6 (𝜑 → ((𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛)))‘1) ∈ ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))))
4238, 41eqeltrrid 2844 . . . . 5 (𝜑 → (∫2‘(𝐹‘1)) ∈ ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))))
43 supxrub 13056 . . . . 5 ((ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))) ⊆ ℝ* ∧ (∫2‘(𝐹‘1)) ∈ ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛)))) → (∫2‘(𝐹‘1)) ≤ sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))), ℝ*, < ))
449, 42, 43syl2anc 584 . . . 4 (𝜑 → (∫2‘(𝐹‘1)) ≤ sup(ran (𝑛 ∈ ℕ ↦ (∫2‘(𝐹𝑛))), ℝ*, < ))
4544, 1breqtrrdi 5118 . . 3 (𝜑 → (∫2‘(𝐹‘1)) ≤ 𝑆)
4617, 25, 12, 33, 45xrltletrd 12893 . 2 (𝜑 → -∞ < 𝑆)
4715rexrd 11023 . . 3 (𝜑 → (∫1𝑃) ∈ ℝ*)
48 itg2monolem2.9 . . . 4 (𝜑 → ¬ (∫1𝑃) ≤ 𝑆)
49 xrltnle 11040 . . . . 5 ((𝑆 ∈ ℝ* ∧ (∫1𝑃) ∈ ℝ*) → (𝑆 < (∫1𝑃) ↔ ¬ (∫1𝑃) ≤ 𝑆))
5012, 47, 49syl2anc 584 . . . 4 (𝜑 → (𝑆 < (∫1𝑃) ↔ ¬ (∫1𝑃) ≤ 𝑆))
5148, 50mpbird 256 . . 3 (𝜑𝑆 < (∫1𝑃))
5212, 47, 51xrltled 12882 . 2 (𝜑𝑆 ≤ (∫1𝑃))
53 xrre 12901 . 2 (((𝑆 ∈ ℝ* ∧ (∫1𝑃) ∈ ℝ) ∧ (-∞ < 𝑆𝑆 ≤ (∫1𝑃))) → 𝑆 ∈ ℝ)
5412, 15, 46, 52, 53syl22anc 836 1 (𝜑𝑆 ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wral 3064  wrex 3065  wss 3888   class class class wbr 5076  cmpt 5159  dom cdm 5591  ran crn 5592   Fn wfn 6430  wf 6431  cfv 6435  (class class class)co 7277  r cofr 7532  supcsup 9197  cr 10868  0cc0 10869  1c1 10870   + caddc 10872  +∞cpnf 11004  -∞cmnf 11005  *cxr 11006   < clt 11007  cle 11008  cn 11971  [,)cico 13079  [,]cicc 13080  MblFncmbf 24776  1citg1 24777  2citg2 24778
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5211  ax-sep 5225  ax-nul 5232  ax-pow 5290  ax-pr 5354  ax-un 7588  ax-inf2 9397  ax-cnex 10925  ax-resscn 10926  ax-1cn 10927  ax-icn 10928  ax-addcl 10929  ax-addrcl 10930  ax-mulcl 10931  ax-mulrcl 10932  ax-mulcom 10933  ax-addass 10934  ax-mulass 10935  ax-distr 10936  ax-i2m1 10937  ax-1ne0 10938  ax-1rid 10939  ax-rnegex 10940  ax-rrecex 10941  ax-cnre 10942  ax-pre-lttri 10943  ax-pre-lttrn 10944  ax-pre-ltadd 10945  ax-pre-mulgt0 10946  ax-pre-sup 10947
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3433  df-sbc 3718  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-pss 3907  df-nul 4259  df-if 4462  df-pw 4537  df-sn 4564  df-pr 4566  df-op 4570  df-uni 4842  df-int 4882  df-iun 4928  df-br 5077  df-opab 5139  df-mpt 5160  df-tr 5194  df-id 5491  df-eprel 5497  df-po 5505  df-so 5506  df-fr 5546  df-se 5547  df-we 5548  df-xp 5597  df-rel 5598  df-cnv 5599  df-co 5600  df-dm 5601  df-rn 5602  df-res 5603  df-ima 5604  df-pred 6204  df-ord 6271  df-on 6272  df-lim 6273  df-suc 6274  df-iota 6393  df-fun 6437  df-fn 6438  df-f 6439  df-f1 6440  df-fo 6441  df-f1o 6442  df-fv 6443  df-isom 6444  df-riota 7234  df-ov 7280  df-oprab 7281  df-mpo 7282  df-of 7533  df-ofr 7534  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8095  df-wrecs 8126  df-recs 8200  df-rdg 8239  df-1o 8295  df-2o 8296  df-er 8496  df-map 8615  df-pm 8616  df-en 8732  df-dom 8733  df-sdom 8734  df-fin 8735  df-sup 9199  df-inf 9200  df-oi 9267  df-dju 9657  df-card 9695  df-pnf 11009  df-mnf 11010  df-xr 11011  df-ltxr 11012  df-le 11013  df-sub 11205  df-neg 11206  df-div 11631  df-nn 11972  df-2 12034  df-3 12035  df-n0 12232  df-z 12318  df-uz 12581  df-q 12687  df-rp 12729  df-xadd 12847  df-ioo 13081  df-ico 13083  df-icc 13084  df-fz 13238  df-fzo 13381  df-fl 13510  df-seq 13720  df-exp 13781  df-hash 14043  df-cj 14808  df-re 14809  df-im 14810  df-sqrt 14944  df-abs 14945  df-clim 15195  df-sum 15396  df-xmet 20588  df-met 20589  df-ovol 24626  df-vol 24627  df-mbf 24781  df-itg1 24782  df-itg2 24783
This theorem is referenced by:  itg2monolem3  24915
  Copyright terms: Public domain W3C validator