MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovolicopnf Structured version   Visualization version   GIF version

Theorem ovolicopnf 25572
Description: The measure of a right-unbounded interval. (Contributed by Mario Carneiro, 14-Jun-2014.)
Assertion
Ref Expression
ovolicopnf (𝐴 ∈ ℝ → (vol*‘(𝐴[,)+∞)) = +∞)

Proof of Theorem ovolicopnf
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 pnfxr 11312 . . . . . . . . 9 +∞ ∈ ℝ*
2 icossre 13464 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ +∞ ∈ ℝ*) → (𝐴[,)+∞) ⊆ ℝ)
31, 2mpan2 691 . . . . . . . 8 (𝐴 ∈ ℝ → (𝐴[,)+∞) ⊆ ℝ)
43adantr 480 . . . . . . 7 ((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) → (𝐴[,)+∞) ⊆ ℝ)
5 ovolge0 25529 . . . . . . 7 ((𝐴[,)+∞) ⊆ ℝ → 0 ≤ (vol*‘(𝐴[,)+∞)))
64, 5syl 17 . . . . . 6 ((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) → 0 ≤ (vol*‘(𝐴[,)+∞)))
7 mnflt0 13164 . . . . . . 7 -∞ < 0
8 mnfxr 11315 . . . . . . . 8 -∞ ∈ ℝ*
9 0xr 11305 . . . . . . . 8 0 ∈ ℝ*
10 ovolcl 25526 . . . . . . . . . 10 ((𝐴[,)+∞) ⊆ ℝ → (vol*‘(𝐴[,)+∞)) ∈ ℝ*)
113, 10syl 17 . . . . . . . . 9 (𝐴 ∈ ℝ → (vol*‘(𝐴[,)+∞)) ∈ ℝ*)
1211adantr 480 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) → (vol*‘(𝐴[,)+∞)) ∈ ℝ*)
13 xrltletr 13195 . . . . . . . 8 ((-∞ ∈ ℝ* ∧ 0 ∈ ℝ* ∧ (vol*‘(𝐴[,)+∞)) ∈ ℝ*) → ((-∞ < 0 ∧ 0 ≤ (vol*‘(𝐴[,)+∞))) → -∞ < (vol*‘(𝐴[,)+∞))))
148, 9, 12, 13mp3an12i 1464 . . . . . . 7 ((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) → ((-∞ < 0 ∧ 0 ≤ (vol*‘(𝐴[,)+∞))) → -∞ < (vol*‘(𝐴[,)+∞))))
157, 14mpani 696 . . . . . 6 ((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) → (0 ≤ (vol*‘(𝐴[,)+∞)) → -∞ < (vol*‘(𝐴[,)+∞))))
166, 15mpd 15 . . . . 5 ((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) → -∞ < (vol*‘(𝐴[,)+∞)))
17 simpr 484 . . . . 5 ((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) → (vol*‘(𝐴[,)+∞)) < +∞)
18 xrrebnd 13206 . . . . . 6 ((vol*‘(𝐴[,)+∞)) ∈ ℝ* → ((vol*‘(𝐴[,)+∞)) ∈ ℝ ↔ (-∞ < (vol*‘(𝐴[,)+∞)) ∧ (vol*‘(𝐴[,)+∞)) < +∞)))
1912, 18syl 17 . . . . 5 ((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) → ((vol*‘(𝐴[,)+∞)) ∈ ℝ ↔ (-∞ < (vol*‘(𝐴[,)+∞)) ∧ (vol*‘(𝐴[,)+∞)) < +∞)))
2016, 17, 19mpbir2and 713 . . . 4 ((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) → (vol*‘(𝐴[,)+∞)) ∈ ℝ)
2120ltp1d 12195 . . 3 ((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) → (vol*‘(𝐴[,)+∞)) < ((vol*‘(𝐴[,)+∞)) + 1))
22 peano2re 11431 . . . . 5 ((vol*‘(𝐴[,)+∞)) ∈ ℝ → ((vol*‘(𝐴[,)+∞)) + 1) ∈ ℝ)
2320, 22syl 17 . . . 4 ((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) → ((vol*‘(𝐴[,)+∞)) + 1) ∈ ℝ)
24 simpl 482 . . . . . . 7 ((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) → 𝐴 ∈ ℝ)
2523, 24readdcld 11287 . . . . . . 7 ((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) → (((vol*‘(𝐴[,)+∞)) + 1) + 𝐴) ∈ ℝ)
26 0red 11261 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) → 0 ∈ ℝ)
2720lep1d 12196 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) → (vol*‘(𝐴[,)+∞)) ≤ ((vol*‘(𝐴[,)+∞)) + 1))
2826, 20, 23, 6, 27letrd 11415 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) → 0 ≤ ((vol*‘(𝐴[,)+∞)) + 1))
2924, 23addge02d 11849 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) → (0 ≤ ((vol*‘(𝐴[,)+∞)) + 1) ↔ 𝐴 ≤ (((vol*‘(𝐴[,)+∞)) + 1) + 𝐴)))
3028, 29mpbid 232 . . . . . . 7 ((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) → 𝐴 ≤ (((vol*‘(𝐴[,)+∞)) + 1) + 𝐴))
31 ovolicc 25571 . . . . . . 7 ((𝐴 ∈ ℝ ∧ (((vol*‘(𝐴[,)+∞)) + 1) + 𝐴) ∈ ℝ ∧ 𝐴 ≤ (((vol*‘(𝐴[,)+∞)) + 1) + 𝐴)) → (vol*‘(𝐴[,](((vol*‘(𝐴[,)+∞)) + 1) + 𝐴))) = ((((vol*‘(𝐴[,)+∞)) + 1) + 𝐴) − 𝐴))
3224, 25, 30, 31syl3anc 1370 . . . . . 6 ((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) → (vol*‘(𝐴[,](((vol*‘(𝐴[,)+∞)) + 1) + 𝐴))) = ((((vol*‘(𝐴[,)+∞)) + 1) + 𝐴) − 𝐴))
3323recnd 11286 . . . . . . 7 ((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) → ((vol*‘(𝐴[,)+∞)) + 1) ∈ ℂ)
3424recnd 11286 . . . . . . 7 ((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) → 𝐴 ∈ ℂ)
3533, 34pncand 11618 . . . . . 6 ((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) → ((((vol*‘(𝐴[,)+∞)) + 1) + 𝐴) − 𝐴) = ((vol*‘(𝐴[,)+∞)) + 1))
3632, 35eqtrd 2774 . . . . 5 ((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) → (vol*‘(𝐴[,](((vol*‘(𝐴[,)+∞)) + 1) + 𝐴))) = ((vol*‘(𝐴[,)+∞)) + 1))
37 elicc2 13448 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ (((vol*‘(𝐴[,)+∞)) + 1) + 𝐴) ∈ ℝ) → (𝑥 ∈ (𝐴[,](((vol*‘(𝐴[,)+∞)) + 1) + 𝐴)) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥 ≤ (((vol*‘(𝐴[,)+∞)) + 1) + 𝐴))))
3824, 25, 37syl2anc 584 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) → (𝑥 ∈ (𝐴[,](((vol*‘(𝐴[,)+∞)) + 1) + 𝐴)) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥 ≤ (((vol*‘(𝐴[,)+∞)) + 1) + 𝐴))))
3938biimpa 476 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) ∧ 𝑥 ∈ (𝐴[,](((vol*‘(𝐴[,)+∞)) + 1) + 𝐴))) → (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥 ≤ (((vol*‘(𝐴[,)+∞)) + 1) + 𝐴)))
4039simp1d 1141 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) ∧ 𝑥 ∈ (𝐴[,](((vol*‘(𝐴[,)+∞)) + 1) + 𝐴))) → 𝑥 ∈ ℝ)
4139simp2d 1142 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) ∧ 𝑥 ∈ (𝐴[,](((vol*‘(𝐴[,)+∞)) + 1) + 𝐴))) → 𝐴𝑥)
42 elicopnf 13481 . . . . . . . . . 10 (𝐴 ∈ ℝ → (𝑥 ∈ (𝐴[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥)))
4342ad2antrr 726 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) ∧ 𝑥 ∈ (𝐴[,](((vol*‘(𝐴[,)+∞)) + 1) + 𝐴))) → (𝑥 ∈ (𝐴[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥)))
4440, 41, 43mpbir2and 713 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) ∧ 𝑥 ∈ (𝐴[,](((vol*‘(𝐴[,)+∞)) + 1) + 𝐴))) → 𝑥 ∈ (𝐴[,)+∞))
4544ex 412 . . . . . . 7 ((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) → (𝑥 ∈ (𝐴[,](((vol*‘(𝐴[,)+∞)) + 1) + 𝐴)) → 𝑥 ∈ (𝐴[,)+∞)))
4645ssrdv 4000 . . . . . 6 ((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) → (𝐴[,](((vol*‘(𝐴[,)+∞)) + 1) + 𝐴)) ⊆ (𝐴[,)+∞))
47 ovolss 25533 . . . . . 6 (((𝐴[,](((vol*‘(𝐴[,)+∞)) + 1) + 𝐴)) ⊆ (𝐴[,)+∞) ∧ (𝐴[,)+∞) ⊆ ℝ) → (vol*‘(𝐴[,](((vol*‘(𝐴[,)+∞)) + 1) + 𝐴))) ≤ (vol*‘(𝐴[,)+∞)))
4846, 4, 47syl2anc 584 . . . . 5 ((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) → (vol*‘(𝐴[,](((vol*‘(𝐴[,)+∞)) + 1) + 𝐴))) ≤ (vol*‘(𝐴[,)+∞)))
4936, 48eqbrtrrd 5171 . . . 4 ((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) → ((vol*‘(𝐴[,)+∞)) + 1) ≤ (vol*‘(𝐴[,)+∞)))
5023, 20, 49lensymd 11409 . . 3 ((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) → ¬ (vol*‘(𝐴[,)+∞)) < ((vol*‘(𝐴[,)+∞)) + 1))
5121, 50pm2.65da 817 . 2 (𝐴 ∈ ℝ → ¬ (vol*‘(𝐴[,)+∞)) < +∞)
52 nltpnft 13202 . . 3 ((vol*‘(𝐴[,)+∞)) ∈ ℝ* → ((vol*‘(𝐴[,)+∞)) = +∞ ↔ ¬ (vol*‘(𝐴[,)+∞)) < +∞))
5311, 52syl 17 . 2 (𝐴 ∈ ℝ → ((vol*‘(𝐴[,)+∞)) = +∞ ↔ ¬ (vol*‘(𝐴[,)+∞)) < +∞))
5451, 53mpbird 257 1 (𝐴 ∈ ℝ → (vol*‘(𝐴[,)+∞)) = +∞)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1536  wcel 2105  wss 3962   class class class wbr 5147  cfv 6562  (class class class)co 7430  cr 11151  0cc0 11152  1c1 11153   + caddc 11155  +∞cpnf 11289  -∞cmnf 11290  *cxr 11291   < clt 11292  cle 11293  cmin 11489  [,)cico 13385  [,]cicc 13386  vol*covol 25510
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-inf2 9678  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-se 5641  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-isom 6571  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-er 8743  df-map 8866  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-fi 9448  df-sup 9479  df-inf 9480  df-oi 9547  df-card 9976  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-n0 12524  df-z 12611  df-uz 12876  df-q 12988  df-rp 13032  df-xneg 13151  df-xadd 13152  df-xmul 13153  df-ioo 13387  df-ico 13389  df-icc 13390  df-fz 13544  df-fzo 13691  df-seq 14039  df-exp 14099  df-hash 14366  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271  df-clim 15520  df-sum 15719  df-rest 17468  df-topgen 17489  df-psmet 21373  df-xmet 21374  df-met 21375  df-bl 21376  df-mopn 21377  df-top 22915  df-topon 22932  df-bases 22968  df-cmp 23410  df-ovol 25512
This theorem is referenced by:  ovolre  25573
  Copyright terms: Public domain W3C validator