MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovolicopnf Structured version   Visualization version   GIF version

Theorem ovolicopnf 24593
Description: The measure of a right-unbounded interval. (Contributed by Mario Carneiro, 14-Jun-2014.)
Assertion
Ref Expression
ovolicopnf (𝐴 ∈ ℝ → (vol*‘(𝐴[,)+∞)) = +∞)

Proof of Theorem ovolicopnf
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 pnfxr 10960 . . . . . . . . 9 +∞ ∈ ℝ*
2 icossre 13089 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ +∞ ∈ ℝ*) → (𝐴[,)+∞) ⊆ ℝ)
31, 2mpan2 687 . . . . . . . 8 (𝐴 ∈ ℝ → (𝐴[,)+∞) ⊆ ℝ)
43adantr 480 . . . . . . 7 ((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) → (𝐴[,)+∞) ⊆ ℝ)
5 ovolge0 24550 . . . . . . 7 ((𝐴[,)+∞) ⊆ ℝ → 0 ≤ (vol*‘(𝐴[,)+∞)))
64, 5syl 17 . . . . . 6 ((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) → 0 ≤ (vol*‘(𝐴[,)+∞)))
7 mnflt0 12790 . . . . . . 7 -∞ < 0
8 mnfxr 10963 . . . . . . . 8 -∞ ∈ ℝ*
9 0xr 10953 . . . . . . . 8 0 ∈ ℝ*
10 ovolcl 24547 . . . . . . . . . 10 ((𝐴[,)+∞) ⊆ ℝ → (vol*‘(𝐴[,)+∞)) ∈ ℝ*)
113, 10syl 17 . . . . . . . . 9 (𝐴 ∈ ℝ → (vol*‘(𝐴[,)+∞)) ∈ ℝ*)
1211adantr 480 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) → (vol*‘(𝐴[,)+∞)) ∈ ℝ*)
13 xrltletr 12820 . . . . . . . 8 ((-∞ ∈ ℝ* ∧ 0 ∈ ℝ* ∧ (vol*‘(𝐴[,)+∞)) ∈ ℝ*) → ((-∞ < 0 ∧ 0 ≤ (vol*‘(𝐴[,)+∞))) → -∞ < (vol*‘(𝐴[,)+∞))))
148, 9, 12, 13mp3an12i 1463 . . . . . . 7 ((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) → ((-∞ < 0 ∧ 0 ≤ (vol*‘(𝐴[,)+∞))) → -∞ < (vol*‘(𝐴[,)+∞))))
157, 14mpani 692 . . . . . 6 ((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) → (0 ≤ (vol*‘(𝐴[,)+∞)) → -∞ < (vol*‘(𝐴[,)+∞))))
166, 15mpd 15 . . . . 5 ((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) → -∞ < (vol*‘(𝐴[,)+∞)))
17 simpr 484 . . . . 5 ((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) → (vol*‘(𝐴[,)+∞)) < +∞)
18 xrrebnd 12831 . . . . . 6 ((vol*‘(𝐴[,)+∞)) ∈ ℝ* → ((vol*‘(𝐴[,)+∞)) ∈ ℝ ↔ (-∞ < (vol*‘(𝐴[,)+∞)) ∧ (vol*‘(𝐴[,)+∞)) < +∞)))
1912, 18syl 17 . . . . 5 ((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) → ((vol*‘(𝐴[,)+∞)) ∈ ℝ ↔ (-∞ < (vol*‘(𝐴[,)+∞)) ∧ (vol*‘(𝐴[,)+∞)) < +∞)))
2016, 17, 19mpbir2and 709 . . . 4 ((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) → (vol*‘(𝐴[,)+∞)) ∈ ℝ)
2120ltp1d 11835 . . 3 ((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) → (vol*‘(𝐴[,)+∞)) < ((vol*‘(𝐴[,)+∞)) + 1))
22 peano2re 11078 . . . . 5 ((vol*‘(𝐴[,)+∞)) ∈ ℝ → ((vol*‘(𝐴[,)+∞)) + 1) ∈ ℝ)
2320, 22syl 17 . . . 4 ((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) → ((vol*‘(𝐴[,)+∞)) + 1) ∈ ℝ)
24 simpl 482 . . . . . . 7 ((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) → 𝐴 ∈ ℝ)
2523, 24readdcld 10935 . . . . . . 7 ((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) → (((vol*‘(𝐴[,)+∞)) + 1) + 𝐴) ∈ ℝ)
26 0red 10909 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) → 0 ∈ ℝ)
2720lep1d 11836 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) → (vol*‘(𝐴[,)+∞)) ≤ ((vol*‘(𝐴[,)+∞)) + 1))
2826, 20, 23, 6, 27letrd 11062 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) → 0 ≤ ((vol*‘(𝐴[,)+∞)) + 1))
2924, 23addge02d 11494 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) → (0 ≤ ((vol*‘(𝐴[,)+∞)) + 1) ↔ 𝐴 ≤ (((vol*‘(𝐴[,)+∞)) + 1) + 𝐴)))
3028, 29mpbid 231 . . . . . . 7 ((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) → 𝐴 ≤ (((vol*‘(𝐴[,)+∞)) + 1) + 𝐴))
31 ovolicc 24592 . . . . . . 7 ((𝐴 ∈ ℝ ∧ (((vol*‘(𝐴[,)+∞)) + 1) + 𝐴) ∈ ℝ ∧ 𝐴 ≤ (((vol*‘(𝐴[,)+∞)) + 1) + 𝐴)) → (vol*‘(𝐴[,](((vol*‘(𝐴[,)+∞)) + 1) + 𝐴))) = ((((vol*‘(𝐴[,)+∞)) + 1) + 𝐴) − 𝐴))
3224, 25, 30, 31syl3anc 1369 . . . . . 6 ((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) → (vol*‘(𝐴[,](((vol*‘(𝐴[,)+∞)) + 1) + 𝐴))) = ((((vol*‘(𝐴[,)+∞)) + 1) + 𝐴) − 𝐴))
3323recnd 10934 . . . . . . 7 ((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) → ((vol*‘(𝐴[,)+∞)) + 1) ∈ ℂ)
3424recnd 10934 . . . . . . 7 ((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) → 𝐴 ∈ ℂ)
3533, 34pncand 11263 . . . . . 6 ((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) → ((((vol*‘(𝐴[,)+∞)) + 1) + 𝐴) − 𝐴) = ((vol*‘(𝐴[,)+∞)) + 1))
3632, 35eqtrd 2778 . . . . 5 ((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) → (vol*‘(𝐴[,](((vol*‘(𝐴[,)+∞)) + 1) + 𝐴))) = ((vol*‘(𝐴[,)+∞)) + 1))
37 elicc2 13073 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ (((vol*‘(𝐴[,)+∞)) + 1) + 𝐴) ∈ ℝ) → (𝑥 ∈ (𝐴[,](((vol*‘(𝐴[,)+∞)) + 1) + 𝐴)) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥 ≤ (((vol*‘(𝐴[,)+∞)) + 1) + 𝐴))))
3824, 25, 37syl2anc 583 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) → (𝑥 ∈ (𝐴[,](((vol*‘(𝐴[,)+∞)) + 1) + 𝐴)) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥 ≤ (((vol*‘(𝐴[,)+∞)) + 1) + 𝐴))))
3938biimpa 476 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) ∧ 𝑥 ∈ (𝐴[,](((vol*‘(𝐴[,)+∞)) + 1) + 𝐴))) → (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥 ≤ (((vol*‘(𝐴[,)+∞)) + 1) + 𝐴)))
4039simp1d 1140 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) ∧ 𝑥 ∈ (𝐴[,](((vol*‘(𝐴[,)+∞)) + 1) + 𝐴))) → 𝑥 ∈ ℝ)
4139simp2d 1141 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) ∧ 𝑥 ∈ (𝐴[,](((vol*‘(𝐴[,)+∞)) + 1) + 𝐴))) → 𝐴𝑥)
42 elicopnf 13106 . . . . . . . . . 10 (𝐴 ∈ ℝ → (𝑥 ∈ (𝐴[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥)))
4342ad2antrr 722 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) ∧ 𝑥 ∈ (𝐴[,](((vol*‘(𝐴[,)+∞)) + 1) + 𝐴))) → (𝑥 ∈ (𝐴[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥)))
4440, 41, 43mpbir2and 709 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) ∧ 𝑥 ∈ (𝐴[,](((vol*‘(𝐴[,)+∞)) + 1) + 𝐴))) → 𝑥 ∈ (𝐴[,)+∞))
4544ex 412 . . . . . . 7 ((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) → (𝑥 ∈ (𝐴[,](((vol*‘(𝐴[,)+∞)) + 1) + 𝐴)) → 𝑥 ∈ (𝐴[,)+∞)))
4645ssrdv 3923 . . . . . 6 ((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) → (𝐴[,](((vol*‘(𝐴[,)+∞)) + 1) + 𝐴)) ⊆ (𝐴[,)+∞))
47 ovolss 24554 . . . . . 6 (((𝐴[,](((vol*‘(𝐴[,)+∞)) + 1) + 𝐴)) ⊆ (𝐴[,)+∞) ∧ (𝐴[,)+∞) ⊆ ℝ) → (vol*‘(𝐴[,](((vol*‘(𝐴[,)+∞)) + 1) + 𝐴))) ≤ (vol*‘(𝐴[,)+∞)))
4846, 4, 47syl2anc 583 . . . . 5 ((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) → (vol*‘(𝐴[,](((vol*‘(𝐴[,)+∞)) + 1) + 𝐴))) ≤ (vol*‘(𝐴[,)+∞)))
4936, 48eqbrtrrd 5094 . . . 4 ((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) → ((vol*‘(𝐴[,)+∞)) + 1) ≤ (vol*‘(𝐴[,)+∞)))
5023, 20, 49lensymd 11056 . . 3 ((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) → ¬ (vol*‘(𝐴[,)+∞)) < ((vol*‘(𝐴[,)+∞)) + 1))
5121, 50pm2.65da 813 . 2 (𝐴 ∈ ℝ → ¬ (vol*‘(𝐴[,)+∞)) < +∞)
52 nltpnft 12827 . . 3 ((vol*‘(𝐴[,)+∞)) ∈ ℝ* → ((vol*‘(𝐴[,)+∞)) = +∞ ↔ ¬ (vol*‘(𝐴[,)+∞)) < +∞))
5311, 52syl 17 . 2 (𝐴 ∈ ℝ → ((vol*‘(𝐴[,)+∞)) = +∞ ↔ ¬ (vol*‘(𝐴[,)+∞)) < +∞))
5451, 53mpbird 256 1 (𝐴 ∈ ℝ → (vol*‘(𝐴[,)+∞)) = +∞)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wss 3883   class class class wbr 5070  cfv 6418  (class class class)co 7255  cr 10801  0cc0 10802  1c1 10803   + caddc 10805  +∞cpnf 10937  -∞cmnf 10938  *cxr 10939   < clt 10940  cle 10941  cmin 11135  [,)cico 13010  [,]cicc 13011  vol*covol 24531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-sum 15326  df-rest 17050  df-topgen 17071  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-top 21951  df-topon 21968  df-bases 22004  df-cmp 22446  df-ovol 24533
This theorem is referenced by:  ovolre  24594
  Copyright terms: Public domain W3C validator