MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovolicopnf Structured version   Visualization version   GIF version

Theorem ovolicopnf 24127
Description: The measure of a right-unbounded interval. (Contributed by Mario Carneiro, 14-Jun-2014.)
Assertion
Ref Expression
ovolicopnf (𝐴 ∈ ℝ → (vol*‘(𝐴[,)+∞)) = +∞)

Proof of Theorem ovolicopnf
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 pnfxr 10697 . . . . . . . . 9 +∞ ∈ ℝ*
2 icossre 12820 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ +∞ ∈ ℝ*) → (𝐴[,)+∞) ⊆ ℝ)
31, 2mpan2 689 . . . . . . . 8 (𝐴 ∈ ℝ → (𝐴[,)+∞) ⊆ ℝ)
43adantr 483 . . . . . . 7 ((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) → (𝐴[,)+∞) ⊆ ℝ)
5 ovolge0 24084 . . . . . . 7 ((𝐴[,)+∞) ⊆ ℝ → 0 ≤ (vol*‘(𝐴[,)+∞)))
64, 5syl 17 . . . . . 6 ((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) → 0 ≤ (vol*‘(𝐴[,)+∞)))
7 mnflt0 12523 . . . . . . 7 -∞ < 0
8 mnfxr 10700 . . . . . . . 8 -∞ ∈ ℝ*
9 0xr 10690 . . . . . . . 8 0 ∈ ℝ*
10 ovolcl 24081 . . . . . . . . . 10 ((𝐴[,)+∞) ⊆ ℝ → (vol*‘(𝐴[,)+∞)) ∈ ℝ*)
113, 10syl 17 . . . . . . . . 9 (𝐴 ∈ ℝ → (vol*‘(𝐴[,)+∞)) ∈ ℝ*)
1211adantr 483 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) → (vol*‘(𝐴[,)+∞)) ∈ ℝ*)
13 xrltletr 12553 . . . . . . . 8 ((-∞ ∈ ℝ* ∧ 0 ∈ ℝ* ∧ (vol*‘(𝐴[,)+∞)) ∈ ℝ*) → ((-∞ < 0 ∧ 0 ≤ (vol*‘(𝐴[,)+∞))) → -∞ < (vol*‘(𝐴[,)+∞))))
148, 9, 12, 13mp3an12i 1461 . . . . . . 7 ((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) → ((-∞ < 0 ∧ 0 ≤ (vol*‘(𝐴[,)+∞))) → -∞ < (vol*‘(𝐴[,)+∞))))
157, 14mpani 694 . . . . . 6 ((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) → (0 ≤ (vol*‘(𝐴[,)+∞)) → -∞ < (vol*‘(𝐴[,)+∞))))
166, 15mpd 15 . . . . 5 ((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) → -∞ < (vol*‘(𝐴[,)+∞)))
17 simpr 487 . . . . 5 ((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) → (vol*‘(𝐴[,)+∞)) < +∞)
18 xrrebnd 12564 . . . . . 6 ((vol*‘(𝐴[,)+∞)) ∈ ℝ* → ((vol*‘(𝐴[,)+∞)) ∈ ℝ ↔ (-∞ < (vol*‘(𝐴[,)+∞)) ∧ (vol*‘(𝐴[,)+∞)) < +∞)))
1912, 18syl 17 . . . . 5 ((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) → ((vol*‘(𝐴[,)+∞)) ∈ ℝ ↔ (-∞ < (vol*‘(𝐴[,)+∞)) ∧ (vol*‘(𝐴[,)+∞)) < +∞)))
2016, 17, 19mpbir2and 711 . . . 4 ((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) → (vol*‘(𝐴[,)+∞)) ∈ ℝ)
2120ltp1d 11572 . . 3 ((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) → (vol*‘(𝐴[,)+∞)) < ((vol*‘(𝐴[,)+∞)) + 1))
22 peano2re 10815 . . . . 5 ((vol*‘(𝐴[,)+∞)) ∈ ℝ → ((vol*‘(𝐴[,)+∞)) + 1) ∈ ℝ)
2320, 22syl 17 . . . 4 ((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) → ((vol*‘(𝐴[,)+∞)) + 1) ∈ ℝ)
24 simpl 485 . . . . . . 7 ((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) → 𝐴 ∈ ℝ)
2523, 24readdcld 10672 . . . . . . 7 ((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) → (((vol*‘(𝐴[,)+∞)) + 1) + 𝐴) ∈ ℝ)
26 0red 10646 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) → 0 ∈ ℝ)
2720lep1d 11573 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) → (vol*‘(𝐴[,)+∞)) ≤ ((vol*‘(𝐴[,)+∞)) + 1))
2826, 20, 23, 6, 27letrd 10799 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) → 0 ≤ ((vol*‘(𝐴[,)+∞)) + 1))
2924, 23addge02d 11231 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) → (0 ≤ ((vol*‘(𝐴[,)+∞)) + 1) ↔ 𝐴 ≤ (((vol*‘(𝐴[,)+∞)) + 1) + 𝐴)))
3028, 29mpbid 234 . . . . . . 7 ((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) → 𝐴 ≤ (((vol*‘(𝐴[,)+∞)) + 1) + 𝐴))
31 ovolicc 24126 . . . . . . 7 ((𝐴 ∈ ℝ ∧ (((vol*‘(𝐴[,)+∞)) + 1) + 𝐴) ∈ ℝ ∧ 𝐴 ≤ (((vol*‘(𝐴[,)+∞)) + 1) + 𝐴)) → (vol*‘(𝐴[,](((vol*‘(𝐴[,)+∞)) + 1) + 𝐴))) = ((((vol*‘(𝐴[,)+∞)) + 1) + 𝐴) − 𝐴))
3224, 25, 30, 31syl3anc 1367 . . . . . 6 ((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) → (vol*‘(𝐴[,](((vol*‘(𝐴[,)+∞)) + 1) + 𝐴))) = ((((vol*‘(𝐴[,)+∞)) + 1) + 𝐴) − 𝐴))
3323recnd 10671 . . . . . . 7 ((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) → ((vol*‘(𝐴[,)+∞)) + 1) ∈ ℂ)
3424recnd 10671 . . . . . . 7 ((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) → 𝐴 ∈ ℂ)
3533, 34pncand 11000 . . . . . 6 ((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) → ((((vol*‘(𝐴[,)+∞)) + 1) + 𝐴) − 𝐴) = ((vol*‘(𝐴[,)+∞)) + 1))
3632, 35eqtrd 2858 . . . . 5 ((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) → (vol*‘(𝐴[,](((vol*‘(𝐴[,)+∞)) + 1) + 𝐴))) = ((vol*‘(𝐴[,)+∞)) + 1))
37 elicc2 12804 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ (((vol*‘(𝐴[,)+∞)) + 1) + 𝐴) ∈ ℝ) → (𝑥 ∈ (𝐴[,](((vol*‘(𝐴[,)+∞)) + 1) + 𝐴)) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥 ≤ (((vol*‘(𝐴[,)+∞)) + 1) + 𝐴))))
3824, 25, 37syl2anc 586 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) → (𝑥 ∈ (𝐴[,](((vol*‘(𝐴[,)+∞)) + 1) + 𝐴)) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥 ≤ (((vol*‘(𝐴[,)+∞)) + 1) + 𝐴))))
3938biimpa 479 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) ∧ 𝑥 ∈ (𝐴[,](((vol*‘(𝐴[,)+∞)) + 1) + 𝐴))) → (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥 ≤ (((vol*‘(𝐴[,)+∞)) + 1) + 𝐴)))
4039simp1d 1138 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) ∧ 𝑥 ∈ (𝐴[,](((vol*‘(𝐴[,)+∞)) + 1) + 𝐴))) → 𝑥 ∈ ℝ)
4139simp2d 1139 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) ∧ 𝑥 ∈ (𝐴[,](((vol*‘(𝐴[,)+∞)) + 1) + 𝐴))) → 𝐴𝑥)
42 elicopnf 12836 . . . . . . . . . 10 (𝐴 ∈ ℝ → (𝑥 ∈ (𝐴[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥)))
4342ad2antrr 724 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) ∧ 𝑥 ∈ (𝐴[,](((vol*‘(𝐴[,)+∞)) + 1) + 𝐴))) → (𝑥 ∈ (𝐴[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥)))
4440, 41, 43mpbir2and 711 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) ∧ 𝑥 ∈ (𝐴[,](((vol*‘(𝐴[,)+∞)) + 1) + 𝐴))) → 𝑥 ∈ (𝐴[,)+∞))
4544ex 415 . . . . . . 7 ((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) → (𝑥 ∈ (𝐴[,](((vol*‘(𝐴[,)+∞)) + 1) + 𝐴)) → 𝑥 ∈ (𝐴[,)+∞)))
4645ssrdv 3975 . . . . . 6 ((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) → (𝐴[,](((vol*‘(𝐴[,)+∞)) + 1) + 𝐴)) ⊆ (𝐴[,)+∞))
47 ovolss 24088 . . . . . 6 (((𝐴[,](((vol*‘(𝐴[,)+∞)) + 1) + 𝐴)) ⊆ (𝐴[,)+∞) ∧ (𝐴[,)+∞) ⊆ ℝ) → (vol*‘(𝐴[,](((vol*‘(𝐴[,)+∞)) + 1) + 𝐴))) ≤ (vol*‘(𝐴[,)+∞)))
4846, 4, 47syl2anc 586 . . . . 5 ((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) → (vol*‘(𝐴[,](((vol*‘(𝐴[,)+∞)) + 1) + 𝐴))) ≤ (vol*‘(𝐴[,)+∞)))
4936, 48eqbrtrrd 5092 . . . 4 ((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) → ((vol*‘(𝐴[,)+∞)) + 1) ≤ (vol*‘(𝐴[,)+∞)))
5023, 20, 49lensymd 10793 . . 3 ((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) → ¬ (vol*‘(𝐴[,)+∞)) < ((vol*‘(𝐴[,)+∞)) + 1))
5121, 50pm2.65da 815 . 2 (𝐴 ∈ ℝ → ¬ (vol*‘(𝐴[,)+∞)) < +∞)
52 nltpnft 12560 . . 3 ((vol*‘(𝐴[,)+∞)) ∈ ℝ* → ((vol*‘(𝐴[,)+∞)) = +∞ ↔ ¬ (vol*‘(𝐴[,)+∞)) < +∞))
5311, 52syl 17 . 2 (𝐴 ∈ ℝ → ((vol*‘(𝐴[,)+∞)) = +∞ ↔ ¬ (vol*‘(𝐴[,)+∞)) < +∞))
5451, 53mpbird 259 1 (𝐴 ∈ ℝ → (vol*‘(𝐴[,)+∞)) = +∞)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wss 3938   class class class wbr 5068  cfv 6357  (class class class)co 7158  cr 10538  0cc0 10539  1c1 10540   + caddc 10542  +∞cpnf 10674  -∞cmnf 10675  *cxr 10676   < clt 10677  cle 10678  cmin 10872  [,)cico 12743  [,]cicc 12744  vol*covol 24065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-map 8410  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-fi 8877  df-sup 8908  df-inf 8909  df-oi 8976  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-n0 11901  df-z 11985  df-uz 12247  df-q 12352  df-rp 12393  df-xneg 12510  df-xadd 12511  df-xmul 12512  df-ioo 12745  df-ico 12747  df-icc 12748  df-fz 12896  df-fzo 13037  df-seq 13373  df-exp 13433  df-hash 13694  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-clim 14847  df-sum 15045  df-rest 16698  df-topgen 16719  df-psmet 20539  df-xmet 20540  df-met 20541  df-bl 20542  df-mopn 20543  df-top 21504  df-topon 21521  df-bases 21556  df-cmp 21997  df-ovol 24067
This theorem is referenced by:  ovolre  24128
  Copyright terms: Public domain W3C validator