MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovolicopnf Structured version   Visualization version   GIF version

Theorem ovolicopnf 23818
Description: The measure of a right-unbounded interval. (Contributed by Mario Carneiro, 14-Jun-2014.)
Assertion
Ref Expression
ovolicopnf (𝐴 ∈ ℝ → (vol*‘(𝐴[,)+∞)) = +∞)

Proof of Theorem ovolicopnf
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 pnfxr 10486 . . . . . . . . 9 +∞ ∈ ℝ*
2 icossre 12626 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ +∞ ∈ ℝ*) → (𝐴[,)+∞) ⊆ ℝ)
31, 2mpan2 678 . . . . . . . 8 (𝐴 ∈ ℝ → (𝐴[,)+∞) ⊆ ℝ)
43adantr 473 . . . . . . 7 ((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) → (𝐴[,)+∞) ⊆ ℝ)
5 ovolge0 23775 . . . . . . 7 ((𝐴[,)+∞) ⊆ ℝ → 0 ≤ (vol*‘(𝐴[,)+∞)))
64, 5syl 17 . . . . . 6 ((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) → 0 ≤ (vol*‘(𝐴[,)+∞)))
7 mnflt0 12330 . . . . . . 7 -∞ < 0
8 mnfxr 10490 . . . . . . . 8 -∞ ∈ ℝ*
9 0xr 10479 . . . . . . . 8 0 ∈ ℝ*
10 ovolcl 23772 . . . . . . . . . 10 ((𝐴[,)+∞) ⊆ ℝ → (vol*‘(𝐴[,)+∞)) ∈ ℝ*)
113, 10syl 17 . . . . . . . . 9 (𝐴 ∈ ℝ → (vol*‘(𝐴[,)+∞)) ∈ ℝ*)
1211adantr 473 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) → (vol*‘(𝐴[,)+∞)) ∈ ℝ*)
13 xrltletr 12360 . . . . . . . 8 ((-∞ ∈ ℝ* ∧ 0 ∈ ℝ* ∧ (vol*‘(𝐴[,)+∞)) ∈ ℝ*) → ((-∞ < 0 ∧ 0 ≤ (vol*‘(𝐴[,)+∞))) → -∞ < (vol*‘(𝐴[,)+∞))))
148, 9, 12, 13mp3an12i 1444 . . . . . . 7 ((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) → ((-∞ < 0 ∧ 0 ≤ (vol*‘(𝐴[,)+∞))) → -∞ < (vol*‘(𝐴[,)+∞))))
157, 14mpani 683 . . . . . 6 ((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) → (0 ≤ (vol*‘(𝐴[,)+∞)) → -∞ < (vol*‘(𝐴[,)+∞))))
166, 15mpd 15 . . . . 5 ((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) → -∞ < (vol*‘(𝐴[,)+∞)))
17 simpr 477 . . . . 5 ((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) → (vol*‘(𝐴[,)+∞)) < +∞)
18 xrrebnd 12371 . . . . . 6 ((vol*‘(𝐴[,)+∞)) ∈ ℝ* → ((vol*‘(𝐴[,)+∞)) ∈ ℝ ↔ (-∞ < (vol*‘(𝐴[,)+∞)) ∧ (vol*‘(𝐴[,)+∞)) < +∞)))
1912, 18syl 17 . . . . 5 ((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) → ((vol*‘(𝐴[,)+∞)) ∈ ℝ ↔ (-∞ < (vol*‘(𝐴[,)+∞)) ∧ (vol*‘(𝐴[,)+∞)) < +∞)))
2016, 17, 19mpbir2and 700 . . . 4 ((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) → (vol*‘(𝐴[,)+∞)) ∈ ℝ)
2120ltp1d 11363 . . 3 ((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) → (vol*‘(𝐴[,)+∞)) < ((vol*‘(𝐴[,)+∞)) + 1))
22 peano2re 10605 . . . . 5 ((vol*‘(𝐴[,)+∞)) ∈ ℝ → ((vol*‘(𝐴[,)+∞)) + 1) ∈ ℝ)
2320, 22syl 17 . . . 4 ((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) → ((vol*‘(𝐴[,)+∞)) + 1) ∈ ℝ)
24 simpl 475 . . . . . . 7 ((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) → 𝐴 ∈ ℝ)
2523, 24readdcld 10461 . . . . . . 7 ((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) → (((vol*‘(𝐴[,)+∞)) + 1) + 𝐴) ∈ ℝ)
26 0red 10435 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) → 0 ∈ ℝ)
2720lep1d 11364 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) → (vol*‘(𝐴[,)+∞)) ≤ ((vol*‘(𝐴[,)+∞)) + 1))
2826, 20, 23, 6, 27letrd 10589 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) → 0 ≤ ((vol*‘(𝐴[,)+∞)) + 1))
2924, 23addge02d 11022 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) → (0 ≤ ((vol*‘(𝐴[,)+∞)) + 1) ↔ 𝐴 ≤ (((vol*‘(𝐴[,)+∞)) + 1) + 𝐴)))
3028, 29mpbid 224 . . . . . . 7 ((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) → 𝐴 ≤ (((vol*‘(𝐴[,)+∞)) + 1) + 𝐴))
31 ovolicc 23817 . . . . . . 7 ((𝐴 ∈ ℝ ∧ (((vol*‘(𝐴[,)+∞)) + 1) + 𝐴) ∈ ℝ ∧ 𝐴 ≤ (((vol*‘(𝐴[,)+∞)) + 1) + 𝐴)) → (vol*‘(𝐴[,](((vol*‘(𝐴[,)+∞)) + 1) + 𝐴))) = ((((vol*‘(𝐴[,)+∞)) + 1) + 𝐴) − 𝐴))
3224, 25, 30, 31syl3anc 1351 . . . . . 6 ((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) → (vol*‘(𝐴[,](((vol*‘(𝐴[,)+∞)) + 1) + 𝐴))) = ((((vol*‘(𝐴[,)+∞)) + 1) + 𝐴) − 𝐴))
3323recnd 10460 . . . . . . 7 ((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) → ((vol*‘(𝐴[,)+∞)) + 1) ∈ ℂ)
3424recnd 10460 . . . . . . 7 ((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) → 𝐴 ∈ ℂ)
3533, 34pncand 10791 . . . . . 6 ((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) → ((((vol*‘(𝐴[,)+∞)) + 1) + 𝐴) − 𝐴) = ((vol*‘(𝐴[,)+∞)) + 1))
3632, 35eqtrd 2808 . . . . 5 ((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) → (vol*‘(𝐴[,](((vol*‘(𝐴[,)+∞)) + 1) + 𝐴))) = ((vol*‘(𝐴[,)+∞)) + 1))
37 elicc2 12610 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ (((vol*‘(𝐴[,)+∞)) + 1) + 𝐴) ∈ ℝ) → (𝑥 ∈ (𝐴[,](((vol*‘(𝐴[,)+∞)) + 1) + 𝐴)) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥 ≤ (((vol*‘(𝐴[,)+∞)) + 1) + 𝐴))))
3824, 25, 37syl2anc 576 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) → (𝑥 ∈ (𝐴[,](((vol*‘(𝐴[,)+∞)) + 1) + 𝐴)) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥 ≤ (((vol*‘(𝐴[,)+∞)) + 1) + 𝐴))))
3938biimpa 469 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) ∧ 𝑥 ∈ (𝐴[,](((vol*‘(𝐴[,)+∞)) + 1) + 𝐴))) → (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥 ≤ (((vol*‘(𝐴[,)+∞)) + 1) + 𝐴)))
4039simp1d 1122 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) ∧ 𝑥 ∈ (𝐴[,](((vol*‘(𝐴[,)+∞)) + 1) + 𝐴))) → 𝑥 ∈ ℝ)
4139simp2d 1123 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) ∧ 𝑥 ∈ (𝐴[,](((vol*‘(𝐴[,)+∞)) + 1) + 𝐴))) → 𝐴𝑥)
42 elicopnf 12642 . . . . . . . . . 10 (𝐴 ∈ ℝ → (𝑥 ∈ (𝐴[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥)))
4342ad2antrr 713 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) ∧ 𝑥 ∈ (𝐴[,](((vol*‘(𝐴[,)+∞)) + 1) + 𝐴))) → (𝑥 ∈ (𝐴[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥)))
4440, 41, 43mpbir2and 700 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) ∧ 𝑥 ∈ (𝐴[,](((vol*‘(𝐴[,)+∞)) + 1) + 𝐴))) → 𝑥 ∈ (𝐴[,)+∞))
4544ex 405 . . . . . . 7 ((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) → (𝑥 ∈ (𝐴[,](((vol*‘(𝐴[,)+∞)) + 1) + 𝐴)) → 𝑥 ∈ (𝐴[,)+∞)))
4645ssrdv 3860 . . . . . 6 ((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) → (𝐴[,](((vol*‘(𝐴[,)+∞)) + 1) + 𝐴)) ⊆ (𝐴[,)+∞))
47 ovolss 23779 . . . . . 6 (((𝐴[,](((vol*‘(𝐴[,)+∞)) + 1) + 𝐴)) ⊆ (𝐴[,)+∞) ∧ (𝐴[,)+∞) ⊆ ℝ) → (vol*‘(𝐴[,](((vol*‘(𝐴[,)+∞)) + 1) + 𝐴))) ≤ (vol*‘(𝐴[,)+∞)))
4846, 4, 47syl2anc 576 . . . . 5 ((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) → (vol*‘(𝐴[,](((vol*‘(𝐴[,)+∞)) + 1) + 𝐴))) ≤ (vol*‘(𝐴[,)+∞)))
4936, 48eqbrtrrd 4947 . . . 4 ((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) → ((vol*‘(𝐴[,)+∞)) + 1) ≤ (vol*‘(𝐴[,)+∞)))
5023, 20, 49lensymd 10583 . . 3 ((𝐴 ∈ ℝ ∧ (vol*‘(𝐴[,)+∞)) < +∞) → ¬ (vol*‘(𝐴[,)+∞)) < ((vol*‘(𝐴[,)+∞)) + 1))
5121, 50pm2.65da 804 . 2 (𝐴 ∈ ℝ → ¬ (vol*‘(𝐴[,)+∞)) < +∞)
52 nltpnft 12367 . . 3 ((vol*‘(𝐴[,)+∞)) ∈ ℝ* → ((vol*‘(𝐴[,)+∞)) = +∞ ↔ ¬ (vol*‘(𝐴[,)+∞)) < +∞))
5311, 52syl 17 . 2 (𝐴 ∈ ℝ → ((vol*‘(𝐴[,)+∞)) = +∞ ↔ ¬ (vol*‘(𝐴[,)+∞)) < +∞))
5451, 53mpbird 249 1 (𝐴 ∈ ℝ → (vol*‘(𝐴[,)+∞)) = +∞)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 387  w3a 1068   = wceq 1507  wcel 2048  wss 3825   class class class wbr 4923  cfv 6182  (class class class)co 6970  cr 10326  0cc0 10327  1c1 10328   + caddc 10330  +∞cpnf 10463  -∞cmnf 10464  *cxr 10465   < clt 10466  cle 10467  cmin 10662  [,)cico 12549  [,]cicc 12550  vol*covol 23756
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1964  ax-8 2050  ax-9 2057  ax-10 2077  ax-11 2091  ax-12 2104  ax-13 2299  ax-ext 2745  ax-rep 5043  ax-sep 5054  ax-nul 5061  ax-pow 5113  ax-pr 5180  ax-un 7273  ax-inf2 8890  ax-cnex 10383  ax-resscn 10384  ax-1cn 10385  ax-icn 10386  ax-addcl 10387  ax-addrcl 10388  ax-mulcl 10389  ax-mulrcl 10390  ax-mulcom 10391  ax-addass 10392  ax-mulass 10393  ax-distr 10394  ax-i2m1 10395  ax-1ne0 10396  ax-1rid 10397  ax-rnegex 10398  ax-rrecex 10399  ax-cnre 10400  ax-pre-lttri 10401  ax-pre-lttrn 10402  ax-pre-ltadd 10403  ax-pre-mulgt0 10404  ax-pre-sup 10405
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-fal 1520  df-ex 1743  df-nf 1747  df-sb 2014  df-mo 2544  df-eu 2580  df-clab 2754  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-nel 3068  df-ral 3087  df-rex 3088  df-reu 3089  df-rmo 3090  df-rab 3091  df-v 3411  df-sbc 3678  df-csb 3783  df-dif 3828  df-un 3830  df-in 3832  df-ss 3839  df-pss 3841  df-nul 4174  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-tp 4440  df-op 4442  df-uni 4707  df-int 4744  df-iun 4788  df-br 4924  df-opab 4986  df-mpt 5003  df-tr 5025  df-id 5305  df-eprel 5310  df-po 5319  df-so 5320  df-fr 5359  df-se 5360  df-we 5361  df-xp 5406  df-rel 5407  df-cnv 5408  df-co 5409  df-dm 5410  df-rn 5411  df-res 5412  df-ima 5413  df-pred 5980  df-ord 6026  df-on 6027  df-lim 6028  df-suc 6029  df-iota 6146  df-fun 6184  df-fn 6185  df-f 6186  df-f1 6187  df-fo 6188  df-f1o 6189  df-fv 6190  df-isom 6191  df-riota 6931  df-ov 6973  df-oprab 6974  df-mpo 6975  df-om 7391  df-1st 7494  df-2nd 7495  df-wrecs 7743  df-recs 7805  df-rdg 7843  df-1o 7897  df-oadd 7901  df-er 8081  df-map 8200  df-en 8299  df-dom 8300  df-sdom 8301  df-fin 8302  df-fi 8662  df-sup 8693  df-inf 8694  df-oi 8761  df-card 9154  df-pnf 10468  df-mnf 10469  df-xr 10470  df-ltxr 10471  df-le 10472  df-sub 10664  df-neg 10665  df-div 11091  df-nn 11432  df-2 11496  df-3 11497  df-n0 11701  df-z 11787  df-uz 12052  df-q 12156  df-rp 12198  df-xneg 12317  df-xadd 12318  df-xmul 12319  df-ioo 12551  df-ico 12553  df-icc 12554  df-fz 12702  df-fzo 12843  df-seq 13178  df-exp 13238  df-hash 13499  df-cj 14309  df-re 14310  df-im 14311  df-sqrt 14445  df-abs 14446  df-clim 14696  df-sum 14894  df-rest 16542  df-topgen 16563  df-psmet 20229  df-xmet 20230  df-met 20231  df-bl 20232  df-mopn 20233  df-top 21196  df-topon 21213  df-bases 21248  df-cmp 21689  df-ovol 23758
This theorem is referenced by:  ovolre  23819
  Copyright terms: Public domain W3C validator