Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrpnf Structured version   Visualization version   GIF version

Theorem xrpnf 40189
Description: An extended real is plus infinity iff it's larger than all real numbers. (Contributed by Glauco Siliprandi, 13-Feb-2022.)
Assertion
Ref Expression
xrpnf (𝐴 ∈ ℝ* → (𝐴 = +∞ ↔ ∀𝑥 ∈ ℝ 𝑥𝐴))
Distinct variable group:   𝑥,𝐴

Proof of Theorem xrpnf
StepHypRef Expression
1 rexr 10366 . . . . . 6 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*)
21adantl 469 . . . . 5 ((𝐴 = +∞ ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℝ*)
3 id 22 . . . . . . 7 (𝐴 = +∞ → 𝐴 = +∞)
4 pnfxr 10373 . . . . . . . 8 +∞ ∈ ℝ*
54a1i 11 . . . . . . 7 (𝐴 = +∞ → +∞ ∈ ℝ*)
63, 5eqeltrd 2885 . . . . . 6 (𝐴 = +∞ → 𝐴 ∈ ℝ*)
76adantr 468 . . . . 5 ((𝐴 = +∞ ∧ 𝑥 ∈ ℝ) → 𝐴 ∈ ℝ*)
8 ltpnf 12166 . . . . . . 7 (𝑥 ∈ ℝ → 𝑥 < +∞)
98adantl 469 . . . . . 6 ((𝐴 = +∞ ∧ 𝑥 ∈ ℝ) → 𝑥 < +∞)
10 simpl 470 . . . . . 6 ((𝐴 = +∞ ∧ 𝑥 ∈ ℝ) → 𝐴 = +∞)
119, 10breqtrrd 4872 . . . . 5 ((𝐴 = +∞ ∧ 𝑥 ∈ ℝ) → 𝑥 < 𝐴)
122, 7, 11xrltled 12195 . . . 4 ((𝐴 = +∞ ∧ 𝑥 ∈ ℝ) → 𝑥𝐴)
1312ralrimiva 3154 . . 3 (𝐴 = +∞ → ∀𝑥 ∈ ℝ 𝑥𝐴)
1413adantl 469 . 2 ((𝐴 ∈ ℝ*𝐴 = +∞) → ∀𝑥 ∈ ℝ 𝑥𝐴)
15 simpll 774 . . . . 5 (((𝐴 ∈ ℝ* ∧ ∀𝑥 ∈ ℝ 𝑥𝐴) ∧ 𝐴 < +∞) → 𝐴 ∈ ℝ*)
16 0red 10324 . . . . . . . . . . . 12 (∀𝑥 ∈ ℝ 𝑥𝐴 → 0 ∈ ℝ)
17 id 22 . . . . . . . . . . . 12 (∀𝑥 ∈ ℝ 𝑥𝐴 → ∀𝑥 ∈ ℝ 𝑥𝐴)
18 breq1 4847 . . . . . . . . . . . . 13 (𝑥 = 0 → (𝑥𝐴 ↔ 0 ≤ 𝐴))
1918rspcva 3500 . . . . . . . . . . . 12 ((0 ∈ ℝ ∧ ∀𝑥 ∈ ℝ 𝑥𝐴) → 0 ≤ 𝐴)
2016, 17, 19syl2anc 575 . . . . . . . . . . 11 (∀𝑥 ∈ ℝ 𝑥𝐴 → 0 ≤ 𝐴)
2120adantr 468 . . . . . . . . . 10 ((∀𝑥 ∈ ℝ 𝑥𝐴𝐴 = -∞) → 0 ≤ 𝐴)
22 simpr 473 . . . . . . . . . 10 ((∀𝑥 ∈ ℝ 𝑥𝐴𝐴 = -∞) → 𝐴 = -∞)
2321, 22breqtrd 4870 . . . . . . . . 9 ((∀𝑥 ∈ ℝ 𝑥𝐴𝐴 = -∞) → 0 ≤ -∞)
2423adantll 696 . . . . . . . 8 (((𝐴 ∈ ℝ* ∧ ∀𝑥 ∈ ℝ 𝑥𝐴) ∧ 𝐴 = -∞) → 0 ≤ -∞)
25 mnflt0 12171 . . . . . . . . . 10 -∞ < 0
26 mnfxr 10377 . . . . . . . . . . 11 -∞ ∈ ℝ*
27 0xr 10367 . . . . . . . . . . 11 0 ∈ ℝ*
28 xrltnle 10386 . . . . . . . . . . 11 ((-∞ ∈ ℝ* ∧ 0 ∈ ℝ*) → (-∞ < 0 ↔ ¬ 0 ≤ -∞))
2926, 27, 28mp2an 675 . . . . . . . . . 10 (-∞ < 0 ↔ ¬ 0 ≤ -∞)
3025, 29mpbi 221 . . . . . . . . 9 ¬ 0 ≤ -∞
3130a1i 11 . . . . . . . 8 (((𝐴 ∈ ℝ* ∧ ∀𝑥 ∈ ℝ 𝑥𝐴) ∧ 𝐴 = -∞) → ¬ 0 ≤ -∞)
3224, 31pm2.65da 842 . . . . . . 7 ((𝐴 ∈ ℝ* ∧ ∀𝑥 ∈ ℝ 𝑥𝐴) → ¬ 𝐴 = -∞)
3332neqned 2985 . . . . . 6 ((𝐴 ∈ ℝ* ∧ ∀𝑥 ∈ ℝ 𝑥𝐴) → 𝐴 ≠ -∞)
3433adantr 468 . . . . 5 (((𝐴 ∈ ℝ* ∧ ∀𝑥 ∈ ℝ 𝑥𝐴) ∧ 𝐴 < +∞) → 𝐴 ≠ -∞)
35 simpl 470 . . . . . . 7 ((𝐴 ∈ ℝ*𝐴 < +∞) → 𝐴 ∈ ℝ*)
364a1i 11 . . . . . . 7 ((𝐴 ∈ ℝ*𝐴 < +∞) → +∞ ∈ ℝ*)
37 simpr 473 . . . . . . 7 ((𝐴 ∈ ℝ*𝐴 < +∞) → 𝐴 < +∞)
3835, 36, 37xrltned 40047 . . . . . 6 ((𝐴 ∈ ℝ*𝐴 < +∞) → 𝐴 ≠ +∞)
3938adantlr 697 . . . . 5 (((𝐴 ∈ ℝ* ∧ ∀𝑥 ∈ ℝ 𝑥𝐴) ∧ 𝐴 < +∞) → 𝐴 ≠ +∞)
4015, 34, 39xrred 40055 . . . 4 (((𝐴 ∈ ℝ* ∧ ∀𝑥 ∈ ℝ 𝑥𝐴) ∧ 𝐴 < +∞) → 𝐴 ∈ ℝ)
41 peano2re 10490 . . . . . . . 8 (𝐴 ∈ ℝ → (𝐴 + 1) ∈ ℝ)
4241adantl 469 . . . . . . 7 ((∀𝑥 ∈ ℝ 𝑥𝐴𝐴 ∈ ℝ) → (𝐴 + 1) ∈ ℝ)
43 simpl 470 . . . . . . 7 ((∀𝑥 ∈ ℝ 𝑥𝐴𝐴 ∈ ℝ) → ∀𝑥 ∈ ℝ 𝑥𝐴)
44 breq1 4847 . . . . . . . 8 (𝑥 = (𝐴 + 1) → (𝑥𝐴 ↔ (𝐴 + 1) ≤ 𝐴))
4544rspcva 3500 . . . . . . 7 (((𝐴 + 1) ∈ ℝ ∧ ∀𝑥 ∈ ℝ 𝑥𝐴) → (𝐴 + 1) ≤ 𝐴)
4642, 43, 45syl2anc 575 . . . . . 6 ((∀𝑥 ∈ ℝ 𝑥𝐴𝐴 ∈ ℝ) → (𝐴 + 1) ≤ 𝐴)
47 ltp1 11142 . . . . . . . 8 (𝐴 ∈ ℝ → 𝐴 < (𝐴 + 1))
48 id 22 . . . . . . . . 9 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ)
4948, 41ltnled 10465 . . . . . . . 8 (𝐴 ∈ ℝ → (𝐴 < (𝐴 + 1) ↔ ¬ (𝐴 + 1) ≤ 𝐴))
5047, 49mpbid 223 . . . . . . 7 (𝐴 ∈ ℝ → ¬ (𝐴 + 1) ≤ 𝐴)
5150adantl 469 . . . . . 6 ((∀𝑥 ∈ ℝ 𝑥𝐴𝐴 ∈ ℝ) → ¬ (𝐴 + 1) ≤ 𝐴)
5246, 51pm2.65da 842 . . . . 5 (∀𝑥 ∈ ℝ 𝑥𝐴 → ¬ 𝐴 ∈ ℝ)
5352ad2antlr 709 . . . 4 (((𝐴 ∈ ℝ* ∧ ∀𝑥 ∈ ℝ 𝑥𝐴) ∧ 𝐴 < +∞) → ¬ 𝐴 ∈ ℝ)
5440, 53pm2.65da 842 . . 3 ((𝐴 ∈ ℝ* ∧ ∀𝑥 ∈ ℝ 𝑥𝐴) → ¬ 𝐴 < +∞)
55 nltpnft 12209 . . . 4 (𝐴 ∈ ℝ* → (𝐴 = +∞ ↔ ¬ 𝐴 < +∞))
5655adantr 468 . . 3 ((𝐴 ∈ ℝ* ∧ ∀𝑥 ∈ ℝ 𝑥𝐴) → (𝐴 = +∞ ↔ ¬ 𝐴 < +∞))
5754, 56mpbird 248 . 2 ((𝐴 ∈ ℝ* ∧ ∀𝑥 ∈ ℝ 𝑥𝐴) → 𝐴 = +∞)
5814, 57impbida 826 1 (𝐴 ∈ ℝ* → (𝐴 = +∞ ↔ ∀𝑥 ∈ ℝ 𝑥𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 384   = wceq 1637  wcel 2156  wne 2978  wral 3096   class class class wbr 4844  (class class class)co 6870  cr 10216  0cc0 10217  1c1 10218   + caddc 10220  +∞cpnf 10352  -∞cmnf 10353  *cxr 10354   < clt 10355  cle 10356
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2068  ax-7 2104  ax-8 2158  ax-9 2165  ax-10 2185  ax-11 2201  ax-12 2214  ax-13 2420  ax-ext 2784  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5096  ax-un 7175  ax-cnex 10273  ax-resscn 10274  ax-1cn 10275  ax-icn 10276  ax-addcl 10277  ax-addrcl 10278  ax-mulcl 10279  ax-mulrcl 10280  ax-mulcom 10281  ax-addass 10282  ax-mulass 10283  ax-distr 10284  ax-i2m1 10285  ax-1ne0 10286  ax-1rid 10287  ax-rnegex 10288  ax-rrecex 10289  ax-cnre 10290  ax-pre-lttri 10291  ax-pre-lttrn 10292  ax-pre-ltadd 10293  ax-pre-mulgt0 10294
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2061  df-eu 2634  df-mo 2635  df-clab 2793  df-cleq 2799  df-clel 2802  df-nfc 2937  df-ne 2979  df-nel 3082  df-ral 3101  df-rex 3102  df-reu 3103  df-rab 3105  df-v 3393  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-nul 4117  df-if 4280  df-pw 4353  df-sn 4371  df-pr 4373  df-op 4377  df-uni 4631  df-br 4845  df-opab 4907  df-mpt 4924  df-id 5219  df-po 5232  df-so 5233  df-xp 5317  df-rel 5318  df-cnv 5319  df-co 5320  df-dm 5321  df-rn 5322  df-res 5323  df-ima 5324  df-iota 6060  df-fun 6099  df-fn 6100  df-f 6101  df-f1 6102  df-fo 6103  df-f1o 6104  df-fv 6105  df-riota 6831  df-ov 6873  df-oprab 6874  df-mpt2 6875  df-er 7975  df-en 8189  df-dom 8190  df-sdom 8191  df-pnf 10357  df-mnf 10358  df-xr 10359  df-ltxr 10360  df-le 10361  df-sub 10549  df-neg 10550
This theorem is referenced by:  meaiuninc3v  41174
  Copyright terms: Public domain W3C validator