Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrpnf Structured version   Visualization version   GIF version

Theorem xrpnf 42701
Description: An extended real is plus infinity iff it's larger than all real numbers. (Contributed by Glauco Siliprandi, 13-Feb-2022.)
Assertion
Ref Expression
xrpnf (𝐴 ∈ ℝ* → (𝐴 = +∞ ↔ ∀𝑥 ∈ ℝ 𝑥𝐴))
Distinct variable group:   𝑥,𝐴

Proof of Theorem xrpnf
StepHypRef Expression
1 rexr 10879 . . . . . 6 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*)
21adantl 485 . . . . 5 ((𝐴 = +∞ ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℝ*)
3 id 22 . . . . . . 7 (𝐴 = +∞ → 𝐴 = +∞)
4 pnfxr 10887 . . . . . . . 8 +∞ ∈ ℝ*
54a1i 11 . . . . . . 7 (𝐴 = +∞ → +∞ ∈ ℝ*)
63, 5eqeltrd 2838 . . . . . 6 (𝐴 = +∞ → 𝐴 ∈ ℝ*)
76adantr 484 . . . . 5 ((𝐴 = +∞ ∧ 𝑥 ∈ ℝ) → 𝐴 ∈ ℝ*)
8 ltpnf 12712 . . . . . . 7 (𝑥 ∈ ℝ → 𝑥 < +∞)
98adantl 485 . . . . . 6 ((𝐴 = +∞ ∧ 𝑥 ∈ ℝ) → 𝑥 < +∞)
10 simpl 486 . . . . . 6 ((𝐴 = +∞ ∧ 𝑥 ∈ ℝ) → 𝐴 = +∞)
119, 10breqtrrd 5081 . . . . 5 ((𝐴 = +∞ ∧ 𝑥 ∈ ℝ) → 𝑥 < 𝐴)
122, 7, 11xrltled 12740 . . . 4 ((𝐴 = +∞ ∧ 𝑥 ∈ ℝ) → 𝑥𝐴)
1312ralrimiva 3105 . . 3 (𝐴 = +∞ → ∀𝑥 ∈ ℝ 𝑥𝐴)
1413adantl 485 . 2 ((𝐴 ∈ ℝ*𝐴 = +∞) → ∀𝑥 ∈ ℝ 𝑥𝐴)
15 simpll 767 . . . . 5 (((𝐴 ∈ ℝ* ∧ ∀𝑥 ∈ ℝ 𝑥𝐴) ∧ 𝐴 < +∞) → 𝐴 ∈ ℝ*)
16 0red 10836 . . . . . . . . . . . 12 (∀𝑥 ∈ ℝ 𝑥𝐴 → 0 ∈ ℝ)
17 id 22 . . . . . . . . . . . 12 (∀𝑥 ∈ ℝ 𝑥𝐴 → ∀𝑥 ∈ ℝ 𝑥𝐴)
18 breq1 5056 . . . . . . . . . . . . 13 (𝑥 = 0 → (𝑥𝐴 ↔ 0 ≤ 𝐴))
1918rspcva 3535 . . . . . . . . . . . 12 ((0 ∈ ℝ ∧ ∀𝑥 ∈ ℝ 𝑥𝐴) → 0 ≤ 𝐴)
2016, 17, 19syl2anc 587 . . . . . . . . . . 11 (∀𝑥 ∈ ℝ 𝑥𝐴 → 0 ≤ 𝐴)
2120adantr 484 . . . . . . . . . 10 ((∀𝑥 ∈ ℝ 𝑥𝐴𝐴 = -∞) → 0 ≤ 𝐴)
22 simpr 488 . . . . . . . . . 10 ((∀𝑥 ∈ ℝ 𝑥𝐴𝐴 = -∞) → 𝐴 = -∞)
2321, 22breqtrd 5079 . . . . . . . . 9 ((∀𝑥 ∈ ℝ 𝑥𝐴𝐴 = -∞) → 0 ≤ -∞)
2423adantll 714 . . . . . . . 8 (((𝐴 ∈ ℝ* ∧ ∀𝑥 ∈ ℝ 𝑥𝐴) ∧ 𝐴 = -∞) → 0 ≤ -∞)
25 mnflt0 12717 . . . . . . . . . 10 -∞ < 0
26 mnfxr 10890 . . . . . . . . . . 11 -∞ ∈ ℝ*
27 0xr 10880 . . . . . . . . . . 11 0 ∈ ℝ*
28 xrltnle 10900 . . . . . . . . . . 11 ((-∞ ∈ ℝ* ∧ 0 ∈ ℝ*) → (-∞ < 0 ↔ ¬ 0 ≤ -∞))
2926, 27, 28mp2an 692 . . . . . . . . . 10 (-∞ < 0 ↔ ¬ 0 ≤ -∞)
3025, 29mpbi 233 . . . . . . . . 9 ¬ 0 ≤ -∞
3130a1i 11 . . . . . . . 8 (((𝐴 ∈ ℝ* ∧ ∀𝑥 ∈ ℝ 𝑥𝐴) ∧ 𝐴 = -∞) → ¬ 0 ≤ -∞)
3224, 31pm2.65da 817 . . . . . . 7 ((𝐴 ∈ ℝ* ∧ ∀𝑥 ∈ ℝ 𝑥𝐴) → ¬ 𝐴 = -∞)
3332neqned 2947 . . . . . 6 ((𝐴 ∈ ℝ* ∧ ∀𝑥 ∈ ℝ 𝑥𝐴) → 𝐴 ≠ -∞)
3433adantr 484 . . . . 5 (((𝐴 ∈ ℝ* ∧ ∀𝑥 ∈ ℝ 𝑥𝐴) ∧ 𝐴 < +∞) → 𝐴 ≠ -∞)
35 simpl 486 . . . . . . 7 ((𝐴 ∈ ℝ*𝐴 < +∞) → 𝐴 ∈ ℝ*)
364a1i 11 . . . . . . 7 ((𝐴 ∈ ℝ*𝐴 < +∞) → +∞ ∈ ℝ*)
37 simpr 488 . . . . . . 7 ((𝐴 ∈ ℝ*𝐴 < +∞) → 𝐴 < +∞)
3835, 36, 37xrltned 42569 . . . . . 6 ((𝐴 ∈ ℝ*𝐴 < +∞) → 𝐴 ≠ +∞)
3938adantlr 715 . . . . 5 (((𝐴 ∈ ℝ* ∧ ∀𝑥 ∈ ℝ 𝑥𝐴) ∧ 𝐴 < +∞) → 𝐴 ≠ +∞)
4015, 34, 39xrred 42577 . . . 4 (((𝐴 ∈ ℝ* ∧ ∀𝑥 ∈ ℝ 𝑥𝐴) ∧ 𝐴 < +∞) → 𝐴 ∈ ℝ)
41 peano2re 11005 . . . . . . . 8 (𝐴 ∈ ℝ → (𝐴 + 1) ∈ ℝ)
4241adantl 485 . . . . . . 7 ((∀𝑥 ∈ ℝ 𝑥𝐴𝐴 ∈ ℝ) → (𝐴 + 1) ∈ ℝ)
43 simpl 486 . . . . . . 7 ((∀𝑥 ∈ ℝ 𝑥𝐴𝐴 ∈ ℝ) → ∀𝑥 ∈ ℝ 𝑥𝐴)
44 breq1 5056 . . . . . . . 8 (𝑥 = (𝐴 + 1) → (𝑥𝐴 ↔ (𝐴 + 1) ≤ 𝐴))
4544rspcva 3535 . . . . . . 7 (((𝐴 + 1) ∈ ℝ ∧ ∀𝑥 ∈ ℝ 𝑥𝐴) → (𝐴 + 1) ≤ 𝐴)
4642, 43, 45syl2anc 587 . . . . . 6 ((∀𝑥 ∈ ℝ 𝑥𝐴𝐴 ∈ ℝ) → (𝐴 + 1) ≤ 𝐴)
47 ltp1 11672 . . . . . . . 8 (𝐴 ∈ ℝ → 𝐴 < (𝐴 + 1))
48 id 22 . . . . . . . . 9 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ)
4948, 41ltnled 10979 . . . . . . . 8 (𝐴 ∈ ℝ → (𝐴 < (𝐴 + 1) ↔ ¬ (𝐴 + 1) ≤ 𝐴))
5047, 49mpbid 235 . . . . . . 7 (𝐴 ∈ ℝ → ¬ (𝐴 + 1) ≤ 𝐴)
5150adantl 485 . . . . . 6 ((∀𝑥 ∈ ℝ 𝑥𝐴𝐴 ∈ ℝ) → ¬ (𝐴 + 1) ≤ 𝐴)
5246, 51pm2.65da 817 . . . . 5 (∀𝑥 ∈ ℝ 𝑥𝐴 → ¬ 𝐴 ∈ ℝ)
5352ad2antlr 727 . . . 4 (((𝐴 ∈ ℝ* ∧ ∀𝑥 ∈ ℝ 𝑥𝐴) ∧ 𝐴 < +∞) → ¬ 𝐴 ∈ ℝ)
5440, 53pm2.65da 817 . . 3 ((𝐴 ∈ ℝ* ∧ ∀𝑥 ∈ ℝ 𝑥𝐴) → ¬ 𝐴 < +∞)
55 nltpnft 12754 . . . 4 (𝐴 ∈ ℝ* → (𝐴 = +∞ ↔ ¬ 𝐴 < +∞))
5655adantr 484 . . 3 ((𝐴 ∈ ℝ* ∧ ∀𝑥 ∈ ℝ 𝑥𝐴) → (𝐴 = +∞ ↔ ¬ 𝐴 < +∞))
5754, 56mpbird 260 . 2 ((𝐴 ∈ ℝ* ∧ ∀𝑥 ∈ ℝ 𝑥𝐴) → 𝐴 = +∞)
5814, 57impbida 801 1 (𝐴 ∈ ℝ* → (𝐴 = +∞ ↔ ∀𝑥 ∈ ℝ 𝑥𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1543  wcel 2110  wne 2940  wral 3061   class class class wbr 5053  (class class class)co 7213  cr 10728  0cc0 10729  1c1 10730   + caddc 10732  +∞cpnf 10864  -∞cmnf 10865  *cxr 10866   < clt 10867  cle 10868
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-br 5054  df-opab 5116  df-mpt 5136  df-id 5455  df-po 5468  df-so 5469  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-er 8391  df-en 8627  df-dom 8628  df-sdom 8629  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065
This theorem is referenced by:  meaiuninc3v  43697
  Copyright terms: Public domain W3C validator