Proof of Theorem xrpnf
| Step | Hyp | Ref
| Expression |
| 1 | | rexr 11307 |
. . . . . 6
⊢ (𝑥 ∈ ℝ → 𝑥 ∈
ℝ*) |
| 2 | 1 | adantl 481 |
. . . . 5
⊢ ((𝐴 = +∞ ∧ 𝑥 ∈ ℝ) → 𝑥 ∈
ℝ*) |
| 3 | | id 22 |
. . . . . . 7
⊢ (𝐴 = +∞ → 𝐴 = +∞) |
| 4 | | pnfxr 11315 |
. . . . . . . 8
⊢ +∞
∈ ℝ* |
| 5 | 4 | a1i 11 |
. . . . . . 7
⊢ (𝐴 = +∞ → +∞
∈ ℝ*) |
| 6 | 3, 5 | eqeltrd 2841 |
. . . . . 6
⊢ (𝐴 = +∞ → 𝐴 ∈
ℝ*) |
| 7 | 6 | adantr 480 |
. . . . 5
⊢ ((𝐴 = +∞ ∧ 𝑥 ∈ ℝ) → 𝐴 ∈
ℝ*) |
| 8 | | ltpnf 13162 |
. . . . . . 7
⊢ (𝑥 ∈ ℝ → 𝑥 < +∞) |
| 9 | 8 | adantl 481 |
. . . . . 6
⊢ ((𝐴 = +∞ ∧ 𝑥 ∈ ℝ) → 𝑥 < +∞) |
| 10 | | simpl 482 |
. . . . . 6
⊢ ((𝐴 = +∞ ∧ 𝑥 ∈ ℝ) → 𝐴 = +∞) |
| 11 | 9, 10 | breqtrrd 5171 |
. . . . 5
⊢ ((𝐴 = +∞ ∧ 𝑥 ∈ ℝ) → 𝑥 < 𝐴) |
| 12 | 2, 7, 11 | xrltled 13192 |
. . . 4
⊢ ((𝐴 = +∞ ∧ 𝑥 ∈ ℝ) → 𝑥 ≤ 𝐴) |
| 13 | 12 | ralrimiva 3146 |
. . 3
⊢ (𝐴 = +∞ → ∀𝑥 ∈ ℝ 𝑥 ≤ 𝐴) |
| 14 | 13 | adantl 481 |
. 2
⊢ ((𝐴 ∈ ℝ*
∧ 𝐴 = +∞) →
∀𝑥 ∈ ℝ
𝑥 ≤ 𝐴) |
| 15 | | simpll 767 |
. . . . 5
⊢ (((𝐴 ∈ ℝ*
∧ ∀𝑥 ∈
ℝ 𝑥 ≤ 𝐴) ∧ 𝐴 < +∞) → 𝐴 ∈
ℝ*) |
| 16 | | 0red 11264 |
. . . . . . . . . . . 12
⊢
(∀𝑥 ∈
ℝ 𝑥 ≤ 𝐴 → 0 ∈
ℝ) |
| 17 | | id 22 |
. . . . . . . . . . . 12
⊢
(∀𝑥 ∈
ℝ 𝑥 ≤ 𝐴 → ∀𝑥 ∈ ℝ 𝑥 ≤ 𝐴) |
| 18 | | breq1 5146 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 0 → (𝑥 ≤ 𝐴 ↔ 0 ≤ 𝐴)) |
| 19 | 18 | rspcva 3620 |
. . . . . . . . . . . 12
⊢ ((0
∈ ℝ ∧ ∀𝑥 ∈ ℝ 𝑥 ≤ 𝐴) → 0 ≤ 𝐴) |
| 20 | 16, 17, 19 | syl2anc 584 |
. . . . . . . . . . 11
⊢
(∀𝑥 ∈
ℝ 𝑥 ≤ 𝐴 → 0 ≤ 𝐴) |
| 21 | 20 | adantr 480 |
. . . . . . . . . 10
⊢
((∀𝑥 ∈
ℝ 𝑥 ≤ 𝐴 ∧ 𝐴 = -∞) → 0 ≤ 𝐴) |
| 22 | | simpr 484 |
. . . . . . . . . 10
⊢
((∀𝑥 ∈
ℝ 𝑥 ≤ 𝐴 ∧ 𝐴 = -∞) → 𝐴 = -∞) |
| 23 | 21, 22 | breqtrd 5169 |
. . . . . . . . 9
⊢
((∀𝑥 ∈
ℝ 𝑥 ≤ 𝐴 ∧ 𝐴 = -∞) → 0 ≤
-∞) |
| 24 | 23 | adantll 714 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ*
∧ ∀𝑥 ∈
ℝ 𝑥 ≤ 𝐴) ∧ 𝐴 = -∞) → 0 ≤
-∞) |
| 25 | | mnflt0 13167 |
. . . . . . . . . 10
⊢ -∞
< 0 |
| 26 | | mnfxr 11318 |
. . . . . . . . . . 11
⊢ -∞
∈ ℝ* |
| 27 | | 0xr 11308 |
. . . . . . . . . . 11
⊢ 0 ∈
ℝ* |
| 28 | | xrltnle 11328 |
. . . . . . . . . . 11
⊢
((-∞ ∈ ℝ* ∧ 0 ∈
ℝ*) → (-∞ < 0 ↔ ¬ 0 ≤
-∞)) |
| 29 | 26, 27, 28 | mp2an 692 |
. . . . . . . . . 10
⊢ (-∞
< 0 ↔ ¬ 0 ≤ -∞) |
| 30 | 25, 29 | mpbi 230 |
. . . . . . . . 9
⊢ ¬ 0
≤ -∞ |
| 31 | 30 | a1i 11 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ*
∧ ∀𝑥 ∈
ℝ 𝑥 ≤ 𝐴) ∧ 𝐴 = -∞) → ¬ 0 ≤
-∞) |
| 32 | 24, 31 | pm2.65da 817 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ*
∧ ∀𝑥 ∈
ℝ 𝑥 ≤ 𝐴) → ¬ 𝐴 = -∞) |
| 33 | 32 | neqned 2947 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ*
∧ ∀𝑥 ∈
ℝ 𝑥 ≤ 𝐴) → 𝐴 ≠ -∞) |
| 34 | 33 | adantr 480 |
. . . . 5
⊢ (((𝐴 ∈ ℝ*
∧ ∀𝑥 ∈
ℝ 𝑥 ≤ 𝐴) ∧ 𝐴 < +∞) → 𝐴 ≠ -∞) |
| 35 | | simpl 482 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ*
∧ 𝐴 < +∞)
→ 𝐴 ∈
ℝ*) |
| 36 | 4 | a1i 11 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ*
∧ 𝐴 < +∞)
→ +∞ ∈ ℝ*) |
| 37 | | simpr 484 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ*
∧ 𝐴 < +∞)
→ 𝐴 <
+∞) |
| 38 | 35, 36, 37 | xrltned 45368 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ*
∧ 𝐴 < +∞)
→ 𝐴 ≠
+∞) |
| 39 | 38 | adantlr 715 |
. . . . 5
⊢ (((𝐴 ∈ ℝ*
∧ ∀𝑥 ∈
ℝ 𝑥 ≤ 𝐴) ∧ 𝐴 < +∞) → 𝐴 ≠ +∞) |
| 40 | 15, 34, 39 | xrred 45376 |
. . . 4
⊢ (((𝐴 ∈ ℝ*
∧ ∀𝑥 ∈
ℝ 𝑥 ≤ 𝐴) ∧ 𝐴 < +∞) → 𝐴 ∈ ℝ) |
| 41 | | peano2re 11434 |
. . . . . . . 8
⊢ (𝐴 ∈ ℝ → (𝐴 + 1) ∈
ℝ) |
| 42 | 41 | adantl 481 |
. . . . . . 7
⊢
((∀𝑥 ∈
ℝ 𝑥 ≤ 𝐴 ∧ 𝐴 ∈ ℝ) → (𝐴 + 1) ∈ ℝ) |
| 43 | | simpl 482 |
. . . . . . 7
⊢
((∀𝑥 ∈
ℝ 𝑥 ≤ 𝐴 ∧ 𝐴 ∈ ℝ) → ∀𝑥 ∈ ℝ 𝑥 ≤ 𝐴) |
| 44 | | breq1 5146 |
. . . . . . . 8
⊢ (𝑥 = (𝐴 + 1) → (𝑥 ≤ 𝐴 ↔ (𝐴 + 1) ≤ 𝐴)) |
| 45 | 44 | rspcva 3620 |
. . . . . . 7
⊢ (((𝐴 + 1) ∈ ℝ ∧
∀𝑥 ∈ ℝ
𝑥 ≤ 𝐴) → (𝐴 + 1) ≤ 𝐴) |
| 46 | 42, 43, 45 | syl2anc 584 |
. . . . . 6
⊢
((∀𝑥 ∈
ℝ 𝑥 ≤ 𝐴 ∧ 𝐴 ∈ ℝ) → (𝐴 + 1) ≤ 𝐴) |
| 47 | | ltp1 12107 |
. . . . . . . 8
⊢ (𝐴 ∈ ℝ → 𝐴 < (𝐴 + 1)) |
| 48 | | id 22 |
. . . . . . . . 9
⊢ (𝐴 ∈ ℝ → 𝐴 ∈
ℝ) |
| 49 | 48, 41 | ltnled 11408 |
. . . . . . . 8
⊢ (𝐴 ∈ ℝ → (𝐴 < (𝐴 + 1) ↔ ¬ (𝐴 + 1) ≤ 𝐴)) |
| 50 | 47, 49 | mpbid 232 |
. . . . . . 7
⊢ (𝐴 ∈ ℝ → ¬
(𝐴 + 1) ≤ 𝐴) |
| 51 | 50 | adantl 481 |
. . . . . 6
⊢
((∀𝑥 ∈
ℝ 𝑥 ≤ 𝐴 ∧ 𝐴 ∈ ℝ) → ¬ (𝐴 + 1) ≤ 𝐴) |
| 52 | 46, 51 | pm2.65da 817 |
. . . . 5
⊢
(∀𝑥 ∈
ℝ 𝑥 ≤ 𝐴 → ¬ 𝐴 ∈ ℝ) |
| 53 | 52 | ad2antlr 727 |
. . . 4
⊢ (((𝐴 ∈ ℝ*
∧ ∀𝑥 ∈
ℝ 𝑥 ≤ 𝐴) ∧ 𝐴 < +∞) → ¬ 𝐴 ∈
ℝ) |
| 54 | 40, 53 | pm2.65da 817 |
. . 3
⊢ ((𝐴 ∈ ℝ*
∧ ∀𝑥 ∈
ℝ 𝑥 ≤ 𝐴) → ¬ 𝐴 < +∞) |
| 55 | | nltpnft 13206 |
. . . 4
⊢ (𝐴 ∈ ℝ*
→ (𝐴 = +∞ ↔
¬ 𝐴 <
+∞)) |
| 56 | 55 | adantr 480 |
. . 3
⊢ ((𝐴 ∈ ℝ*
∧ ∀𝑥 ∈
ℝ 𝑥 ≤ 𝐴) → (𝐴 = +∞ ↔ ¬ 𝐴 < +∞)) |
| 57 | 54, 56 | mpbird 257 |
. 2
⊢ ((𝐴 ∈ ℝ*
∧ ∀𝑥 ∈
ℝ 𝑥 ≤ 𝐴) → 𝐴 = +∞) |
| 58 | 14, 57 | impbida 801 |
1
⊢ (𝐴 ∈ ℝ*
→ (𝐴 = +∞ ↔
∀𝑥 ∈ ℝ
𝑥 ≤ 𝐴)) |