Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrpnf Structured version   Visualization version   GIF version

Theorem xrpnf 45465
Description: An extended real is plus infinity iff it's larger than all real numbers. (Contributed by Glauco Siliprandi, 13-Feb-2022.)
Assertion
Ref Expression
xrpnf (𝐴 ∈ ℝ* → (𝐴 = +∞ ↔ ∀𝑥 ∈ ℝ 𝑥𝐴))
Distinct variable group:   𝑥,𝐴

Proof of Theorem xrpnf
StepHypRef Expression
1 rexr 11180 . . . . . 6 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*)
21adantl 481 . . . . 5 ((𝐴 = +∞ ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℝ*)
3 id 22 . . . . . . 7 (𝐴 = +∞ → 𝐴 = +∞)
4 pnfxr 11188 . . . . . . . 8 +∞ ∈ ℝ*
54a1i 11 . . . . . . 7 (𝐴 = +∞ → +∞ ∈ ℝ*)
63, 5eqeltrd 2828 . . . . . 6 (𝐴 = +∞ → 𝐴 ∈ ℝ*)
76adantr 480 . . . . 5 ((𝐴 = +∞ ∧ 𝑥 ∈ ℝ) → 𝐴 ∈ ℝ*)
8 ltpnf 13040 . . . . . . 7 (𝑥 ∈ ℝ → 𝑥 < +∞)
98adantl 481 . . . . . 6 ((𝐴 = +∞ ∧ 𝑥 ∈ ℝ) → 𝑥 < +∞)
10 simpl 482 . . . . . 6 ((𝐴 = +∞ ∧ 𝑥 ∈ ℝ) → 𝐴 = +∞)
119, 10breqtrrd 5123 . . . . 5 ((𝐴 = +∞ ∧ 𝑥 ∈ ℝ) → 𝑥 < 𝐴)
122, 7, 11xrltled 13070 . . . 4 ((𝐴 = +∞ ∧ 𝑥 ∈ ℝ) → 𝑥𝐴)
1312ralrimiva 3121 . . 3 (𝐴 = +∞ → ∀𝑥 ∈ ℝ 𝑥𝐴)
1413adantl 481 . 2 ((𝐴 ∈ ℝ*𝐴 = +∞) → ∀𝑥 ∈ ℝ 𝑥𝐴)
15 simpll 766 . . . . 5 (((𝐴 ∈ ℝ* ∧ ∀𝑥 ∈ ℝ 𝑥𝐴) ∧ 𝐴 < +∞) → 𝐴 ∈ ℝ*)
16 0red 11137 . . . . . . . . . . . 12 (∀𝑥 ∈ ℝ 𝑥𝐴 → 0 ∈ ℝ)
17 id 22 . . . . . . . . . . . 12 (∀𝑥 ∈ ℝ 𝑥𝐴 → ∀𝑥 ∈ ℝ 𝑥𝐴)
18 breq1 5098 . . . . . . . . . . . . 13 (𝑥 = 0 → (𝑥𝐴 ↔ 0 ≤ 𝐴))
1918rspcva 3577 . . . . . . . . . . . 12 ((0 ∈ ℝ ∧ ∀𝑥 ∈ ℝ 𝑥𝐴) → 0 ≤ 𝐴)
2016, 17, 19syl2anc 584 . . . . . . . . . . 11 (∀𝑥 ∈ ℝ 𝑥𝐴 → 0 ≤ 𝐴)
2120adantr 480 . . . . . . . . . 10 ((∀𝑥 ∈ ℝ 𝑥𝐴𝐴 = -∞) → 0 ≤ 𝐴)
22 simpr 484 . . . . . . . . . 10 ((∀𝑥 ∈ ℝ 𝑥𝐴𝐴 = -∞) → 𝐴 = -∞)
2321, 22breqtrd 5121 . . . . . . . . 9 ((∀𝑥 ∈ ℝ 𝑥𝐴𝐴 = -∞) → 0 ≤ -∞)
2423adantll 714 . . . . . . . 8 (((𝐴 ∈ ℝ* ∧ ∀𝑥 ∈ ℝ 𝑥𝐴) ∧ 𝐴 = -∞) → 0 ≤ -∞)
25 mnflt0 13045 . . . . . . . . . 10 -∞ < 0
26 mnfxr 11191 . . . . . . . . . . 11 -∞ ∈ ℝ*
27 0xr 11181 . . . . . . . . . . 11 0 ∈ ℝ*
28 xrltnle 11201 . . . . . . . . . . 11 ((-∞ ∈ ℝ* ∧ 0 ∈ ℝ*) → (-∞ < 0 ↔ ¬ 0 ≤ -∞))
2926, 27, 28mp2an 692 . . . . . . . . . 10 (-∞ < 0 ↔ ¬ 0 ≤ -∞)
3025, 29mpbi 230 . . . . . . . . 9 ¬ 0 ≤ -∞
3130a1i 11 . . . . . . . 8 (((𝐴 ∈ ℝ* ∧ ∀𝑥 ∈ ℝ 𝑥𝐴) ∧ 𝐴 = -∞) → ¬ 0 ≤ -∞)
3224, 31pm2.65da 816 . . . . . . 7 ((𝐴 ∈ ℝ* ∧ ∀𝑥 ∈ ℝ 𝑥𝐴) → ¬ 𝐴 = -∞)
3332neqned 2932 . . . . . 6 ((𝐴 ∈ ℝ* ∧ ∀𝑥 ∈ ℝ 𝑥𝐴) → 𝐴 ≠ -∞)
3433adantr 480 . . . . 5 (((𝐴 ∈ ℝ* ∧ ∀𝑥 ∈ ℝ 𝑥𝐴) ∧ 𝐴 < +∞) → 𝐴 ≠ -∞)
35 simpl 482 . . . . . . 7 ((𝐴 ∈ ℝ*𝐴 < +∞) → 𝐴 ∈ ℝ*)
364a1i 11 . . . . . . 7 ((𝐴 ∈ ℝ*𝐴 < +∞) → +∞ ∈ ℝ*)
37 simpr 484 . . . . . . 7 ((𝐴 ∈ ℝ*𝐴 < +∞) → 𝐴 < +∞)
3835, 36, 37xrltned 45337 . . . . . 6 ((𝐴 ∈ ℝ*𝐴 < +∞) → 𝐴 ≠ +∞)
3938adantlr 715 . . . . 5 (((𝐴 ∈ ℝ* ∧ ∀𝑥 ∈ ℝ 𝑥𝐴) ∧ 𝐴 < +∞) → 𝐴 ≠ +∞)
4015, 34, 39xrred 45345 . . . 4 (((𝐴 ∈ ℝ* ∧ ∀𝑥 ∈ ℝ 𝑥𝐴) ∧ 𝐴 < +∞) → 𝐴 ∈ ℝ)
41 peano2re 11307 . . . . . . . 8 (𝐴 ∈ ℝ → (𝐴 + 1) ∈ ℝ)
4241adantl 481 . . . . . . 7 ((∀𝑥 ∈ ℝ 𝑥𝐴𝐴 ∈ ℝ) → (𝐴 + 1) ∈ ℝ)
43 simpl 482 . . . . . . 7 ((∀𝑥 ∈ ℝ 𝑥𝐴𝐴 ∈ ℝ) → ∀𝑥 ∈ ℝ 𝑥𝐴)
44 breq1 5098 . . . . . . . 8 (𝑥 = (𝐴 + 1) → (𝑥𝐴 ↔ (𝐴 + 1) ≤ 𝐴))
4544rspcva 3577 . . . . . . 7 (((𝐴 + 1) ∈ ℝ ∧ ∀𝑥 ∈ ℝ 𝑥𝐴) → (𝐴 + 1) ≤ 𝐴)
4642, 43, 45syl2anc 584 . . . . . 6 ((∀𝑥 ∈ ℝ 𝑥𝐴𝐴 ∈ ℝ) → (𝐴 + 1) ≤ 𝐴)
47 ltp1 11982 . . . . . . . 8 (𝐴 ∈ ℝ → 𝐴 < (𝐴 + 1))
48 id 22 . . . . . . . . 9 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ)
4948, 41ltnled 11281 . . . . . . . 8 (𝐴 ∈ ℝ → (𝐴 < (𝐴 + 1) ↔ ¬ (𝐴 + 1) ≤ 𝐴))
5047, 49mpbid 232 . . . . . . 7 (𝐴 ∈ ℝ → ¬ (𝐴 + 1) ≤ 𝐴)
5150adantl 481 . . . . . 6 ((∀𝑥 ∈ ℝ 𝑥𝐴𝐴 ∈ ℝ) → ¬ (𝐴 + 1) ≤ 𝐴)
5246, 51pm2.65da 816 . . . . 5 (∀𝑥 ∈ ℝ 𝑥𝐴 → ¬ 𝐴 ∈ ℝ)
5352ad2antlr 727 . . . 4 (((𝐴 ∈ ℝ* ∧ ∀𝑥 ∈ ℝ 𝑥𝐴) ∧ 𝐴 < +∞) → ¬ 𝐴 ∈ ℝ)
5440, 53pm2.65da 816 . . 3 ((𝐴 ∈ ℝ* ∧ ∀𝑥 ∈ ℝ 𝑥𝐴) → ¬ 𝐴 < +∞)
55 nltpnft 13084 . . . 4 (𝐴 ∈ ℝ* → (𝐴 = +∞ ↔ ¬ 𝐴 < +∞))
5655adantr 480 . . 3 ((𝐴 ∈ ℝ* ∧ ∀𝑥 ∈ ℝ 𝑥𝐴) → (𝐴 = +∞ ↔ ¬ 𝐴 < +∞))
5754, 56mpbird 257 . 2 ((𝐴 ∈ ℝ* ∧ ∀𝑥 ∈ ℝ 𝑥𝐴) → 𝐴 = +∞)
5814, 57impbida 800 1 (𝐴 ∈ ℝ* → (𝐴 = +∞ ↔ ∀𝑥 ∈ ℝ 𝑥𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044   class class class wbr 5095  (class class class)co 7353  cr 11027  0cc0 11028  1c1 11029   + caddc 11031  +∞cpnf 11165  -∞cmnf 11166  *cxr 11167   < clt 11168  cle 11169
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-po 5531  df-so 5532  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368
This theorem is referenced by:  meaiuninc3v  46466
  Copyright terms: Public domain W3C validator