Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrpnf Structured version   Visualization version   GIF version

Theorem xrpnf 41629
Description: An extended real is plus infinity iff it's larger than all real numbers. (Contributed by Glauco Siliprandi, 13-Feb-2022.)
Assertion
Ref Expression
xrpnf (𝐴 ∈ ℝ* → (𝐴 = +∞ ↔ ∀𝑥 ∈ ℝ 𝑥𝐴))
Distinct variable group:   𝑥,𝐴

Proof of Theorem xrpnf
StepHypRef Expression
1 rexr 10679 . . . . . 6 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*)
21adantl 482 . . . . 5 ((𝐴 = +∞ ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℝ*)
3 id 22 . . . . . . 7 (𝐴 = +∞ → 𝐴 = +∞)
4 pnfxr 10687 . . . . . . . 8 +∞ ∈ ℝ*
54a1i 11 . . . . . . 7 (𝐴 = +∞ → +∞ ∈ ℝ*)
63, 5eqeltrd 2917 . . . . . 6 (𝐴 = +∞ → 𝐴 ∈ ℝ*)
76adantr 481 . . . . 5 ((𝐴 = +∞ ∧ 𝑥 ∈ ℝ) → 𝐴 ∈ ℝ*)
8 ltpnf 12508 . . . . . . 7 (𝑥 ∈ ℝ → 𝑥 < +∞)
98adantl 482 . . . . . 6 ((𝐴 = +∞ ∧ 𝑥 ∈ ℝ) → 𝑥 < +∞)
10 simpl 483 . . . . . 6 ((𝐴 = +∞ ∧ 𝑥 ∈ ℝ) → 𝐴 = +∞)
119, 10breqtrrd 5090 . . . . 5 ((𝐴 = +∞ ∧ 𝑥 ∈ ℝ) → 𝑥 < 𝐴)
122, 7, 11xrltled 12536 . . . 4 ((𝐴 = +∞ ∧ 𝑥 ∈ ℝ) → 𝑥𝐴)
1312ralrimiva 3186 . . 3 (𝐴 = +∞ → ∀𝑥 ∈ ℝ 𝑥𝐴)
1413adantl 482 . 2 ((𝐴 ∈ ℝ*𝐴 = +∞) → ∀𝑥 ∈ ℝ 𝑥𝐴)
15 simpll 763 . . . . 5 (((𝐴 ∈ ℝ* ∧ ∀𝑥 ∈ ℝ 𝑥𝐴) ∧ 𝐴 < +∞) → 𝐴 ∈ ℝ*)
16 0red 10636 . . . . . . . . . . . 12 (∀𝑥 ∈ ℝ 𝑥𝐴 → 0 ∈ ℝ)
17 id 22 . . . . . . . . . . . 12 (∀𝑥 ∈ ℝ 𝑥𝐴 → ∀𝑥 ∈ ℝ 𝑥𝐴)
18 breq1 5065 . . . . . . . . . . . . 13 (𝑥 = 0 → (𝑥𝐴 ↔ 0 ≤ 𝐴))
1918rspcva 3624 . . . . . . . . . . . 12 ((0 ∈ ℝ ∧ ∀𝑥 ∈ ℝ 𝑥𝐴) → 0 ≤ 𝐴)
2016, 17, 19syl2anc 584 . . . . . . . . . . 11 (∀𝑥 ∈ ℝ 𝑥𝐴 → 0 ≤ 𝐴)
2120adantr 481 . . . . . . . . . 10 ((∀𝑥 ∈ ℝ 𝑥𝐴𝐴 = -∞) → 0 ≤ 𝐴)
22 simpr 485 . . . . . . . . . 10 ((∀𝑥 ∈ ℝ 𝑥𝐴𝐴 = -∞) → 𝐴 = -∞)
2321, 22breqtrd 5088 . . . . . . . . 9 ((∀𝑥 ∈ ℝ 𝑥𝐴𝐴 = -∞) → 0 ≤ -∞)
2423adantll 710 . . . . . . . 8 (((𝐴 ∈ ℝ* ∧ ∀𝑥 ∈ ℝ 𝑥𝐴) ∧ 𝐴 = -∞) → 0 ≤ -∞)
25 mnflt0 12513 . . . . . . . . . 10 -∞ < 0
26 mnfxr 10690 . . . . . . . . . . 11 -∞ ∈ ℝ*
27 0xr 10680 . . . . . . . . . . 11 0 ∈ ℝ*
28 xrltnle 10700 . . . . . . . . . . 11 ((-∞ ∈ ℝ* ∧ 0 ∈ ℝ*) → (-∞ < 0 ↔ ¬ 0 ≤ -∞))
2926, 27, 28mp2an 688 . . . . . . . . . 10 (-∞ < 0 ↔ ¬ 0 ≤ -∞)
3025, 29mpbi 231 . . . . . . . . 9 ¬ 0 ≤ -∞
3130a1i 11 . . . . . . . 8 (((𝐴 ∈ ℝ* ∧ ∀𝑥 ∈ ℝ 𝑥𝐴) ∧ 𝐴 = -∞) → ¬ 0 ≤ -∞)
3224, 31pm2.65da 813 . . . . . . 7 ((𝐴 ∈ ℝ* ∧ ∀𝑥 ∈ ℝ 𝑥𝐴) → ¬ 𝐴 = -∞)
3332neqned 3027 . . . . . 6 ((𝐴 ∈ ℝ* ∧ ∀𝑥 ∈ ℝ 𝑥𝐴) → 𝐴 ≠ -∞)
3433adantr 481 . . . . 5 (((𝐴 ∈ ℝ* ∧ ∀𝑥 ∈ ℝ 𝑥𝐴) ∧ 𝐴 < +∞) → 𝐴 ≠ -∞)
35 simpl 483 . . . . . . 7 ((𝐴 ∈ ℝ*𝐴 < +∞) → 𝐴 ∈ ℝ*)
364a1i 11 . . . . . . 7 ((𝐴 ∈ ℝ*𝐴 < +∞) → +∞ ∈ ℝ*)
37 simpr 485 . . . . . . 7 ((𝐴 ∈ ℝ*𝐴 < +∞) → 𝐴 < +∞)
3835, 36, 37xrltned 41492 . . . . . 6 ((𝐴 ∈ ℝ*𝐴 < +∞) → 𝐴 ≠ +∞)
3938adantlr 711 . . . . 5 (((𝐴 ∈ ℝ* ∧ ∀𝑥 ∈ ℝ 𝑥𝐴) ∧ 𝐴 < +∞) → 𝐴 ≠ +∞)
4015, 34, 39xrred 41500 . . . 4 (((𝐴 ∈ ℝ* ∧ ∀𝑥 ∈ ℝ 𝑥𝐴) ∧ 𝐴 < +∞) → 𝐴 ∈ ℝ)
41 peano2re 10805 . . . . . . . 8 (𝐴 ∈ ℝ → (𝐴 + 1) ∈ ℝ)
4241adantl 482 . . . . . . 7 ((∀𝑥 ∈ ℝ 𝑥𝐴𝐴 ∈ ℝ) → (𝐴 + 1) ∈ ℝ)
43 simpl 483 . . . . . . 7 ((∀𝑥 ∈ ℝ 𝑥𝐴𝐴 ∈ ℝ) → ∀𝑥 ∈ ℝ 𝑥𝐴)
44 breq1 5065 . . . . . . . 8 (𝑥 = (𝐴 + 1) → (𝑥𝐴 ↔ (𝐴 + 1) ≤ 𝐴))
4544rspcva 3624 . . . . . . 7 (((𝐴 + 1) ∈ ℝ ∧ ∀𝑥 ∈ ℝ 𝑥𝐴) → (𝐴 + 1) ≤ 𝐴)
4642, 43, 45syl2anc 584 . . . . . 6 ((∀𝑥 ∈ ℝ 𝑥𝐴𝐴 ∈ ℝ) → (𝐴 + 1) ≤ 𝐴)
47 ltp1 11472 . . . . . . . 8 (𝐴 ∈ ℝ → 𝐴 < (𝐴 + 1))
48 id 22 . . . . . . . . 9 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ)
4948, 41ltnled 10779 . . . . . . . 8 (𝐴 ∈ ℝ → (𝐴 < (𝐴 + 1) ↔ ¬ (𝐴 + 1) ≤ 𝐴))
5047, 49mpbid 233 . . . . . . 7 (𝐴 ∈ ℝ → ¬ (𝐴 + 1) ≤ 𝐴)
5150adantl 482 . . . . . 6 ((∀𝑥 ∈ ℝ 𝑥𝐴𝐴 ∈ ℝ) → ¬ (𝐴 + 1) ≤ 𝐴)
5246, 51pm2.65da 813 . . . . 5 (∀𝑥 ∈ ℝ 𝑥𝐴 → ¬ 𝐴 ∈ ℝ)
5352ad2antlr 723 . . . 4 (((𝐴 ∈ ℝ* ∧ ∀𝑥 ∈ ℝ 𝑥𝐴) ∧ 𝐴 < +∞) → ¬ 𝐴 ∈ ℝ)
5440, 53pm2.65da 813 . . 3 ((𝐴 ∈ ℝ* ∧ ∀𝑥 ∈ ℝ 𝑥𝐴) → ¬ 𝐴 < +∞)
55 nltpnft 12550 . . . 4 (𝐴 ∈ ℝ* → (𝐴 = +∞ ↔ ¬ 𝐴 < +∞))
5655adantr 481 . . 3 ((𝐴 ∈ ℝ* ∧ ∀𝑥 ∈ ℝ 𝑥𝐴) → (𝐴 = +∞ ↔ ¬ 𝐴 < +∞))
5754, 56mpbird 258 . 2 ((𝐴 ∈ ℝ* ∧ ∀𝑥 ∈ ℝ 𝑥𝐴) → 𝐴 = +∞)
5814, 57impbida 797 1 (𝐴 ∈ ℝ* → (𝐴 = +∞ ↔ ∀𝑥 ∈ ℝ 𝑥𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396   = wceq 1530  wcel 2107  wne 3020  wral 3142   class class class wbr 5062  (class class class)co 7151  cr 10528  0cc0 10529  1c1 10530   + caddc 10532  +∞cpnf 10664  -∞cmnf 10665  *cxr 10666   < clt 10667  cle 10668
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2797  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2619  df-eu 2651  df-clab 2804  df-cleq 2818  df-clel 2897  df-nfc 2967  df-ne 3021  df-nel 3128  df-ral 3147  df-rex 3148  df-reu 3149  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-op 4570  df-uni 4837  df-br 5063  df-opab 5125  df-mpt 5143  df-id 5458  df-po 5472  df-so 5473  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-er 8282  df-en 8502  df-dom 8503  df-sdom 8504  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865
This theorem is referenced by:  meaiuninc3v  42634
  Copyright terms: Public domain W3C validator