Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ismtyhmeolem Structured version   Visualization version   GIF version

Theorem ismtyhmeolem 35074
Description: Lemma for ismtyhmeo 35075. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 12-Sep-2015.)
Hypotheses
Ref Expression
ismtyhmeo.1 𝐽 = (MetOpen‘𝑀)
ismtyhmeo.2 𝐾 = (MetOpen‘𝑁)
ismtyhmeolem.3 (𝜑𝑀 ∈ (∞Met‘𝑋))
ismtyhmeolem.4 (𝜑𝑁 ∈ (∞Met‘𝑌))
ismtyhmeolem.5 (𝜑𝐹 ∈ (𝑀 Ismty 𝑁))
Assertion
Ref Expression
ismtyhmeolem (𝜑𝐹 ∈ (𝐽 Cn 𝐾))

Proof of Theorem ismtyhmeolem
Dummy variables 𝑢 𝑟 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ismtyhmeolem.5 . . . . 5 (𝜑𝐹 ∈ (𝑀 Ismty 𝑁))
2 ismtyhmeolem.3 . . . . . 6 (𝜑𝑀 ∈ (∞Met‘𝑋))
3 ismtyhmeolem.4 . . . . . 6 (𝜑𝑁 ∈ (∞Met‘𝑌))
4 isismty 35071 . . . . . 6 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) → (𝐹 ∈ (𝑀 Ismty 𝑁) ↔ (𝐹:𝑋1-1-onto𝑌 ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) = ((𝐹𝑥)𝑁(𝐹𝑦)))))
52, 3, 4syl2anc 586 . . . . 5 (𝜑 → (𝐹 ∈ (𝑀 Ismty 𝑁) ↔ (𝐹:𝑋1-1-onto𝑌 ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) = ((𝐹𝑥)𝑁(𝐹𝑦)))))
61, 5mpbid 234 . . . 4 (𝜑 → (𝐹:𝑋1-1-onto𝑌 ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) = ((𝐹𝑥)𝑁(𝐹𝑦))))
76simpld 497 . . 3 (𝜑𝐹:𝑋1-1-onto𝑌)
8 f1of 6608 . . 3 (𝐹:𝑋1-1-onto𝑌𝐹:𝑋𝑌)
97, 8syl 17 . 2 (𝜑𝐹:𝑋𝑌)
103adantr 483 . . . . . . 7 ((𝜑 ∧ (𝑤𝑌𝑟 ∈ ℝ*)) → 𝑁 ∈ (∞Met‘𝑌))
112adantr 483 . . . . . . 7 ((𝜑 ∧ (𝑤𝑌𝑟 ∈ ℝ*)) → 𝑀 ∈ (∞Met‘𝑋))
12 ismtycnv 35072 . . . . . . . . . 10 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) → (𝐹 ∈ (𝑀 Ismty 𝑁) → 𝐹 ∈ (𝑁 Ismty 𝑀)))
132, 3, 12syl2anc 586 . . . . . . . . 9 (𝜑 → (𝐹 ∈ (𝑀 Ismty 𝑁) → 𝐹 ∈ (𝑁 Ismty 𝑀)))
141, 13mpd 15 . . . . . . . 8 (𝜑𝐹 ∈ (𝑁 Ismty 𝑀))
1514adantr 483 . . . . . . 7 ((𝜑 ∧ (𝑤𝑌𝑟 ∈ ℝ*)) → 𝐹 ∈ (𝑁 Ismty 𝑀))
16 simprl 769 . . . . . . 7 ((𝜑 ∧ (𝑤𝑌𝑟 ∈ ℝ*)) → 𝑤𝑌)
17 simprr 771 . . . . . . 7 ((𝜑 ∧ (𝑤𝑌𝑟 ∈ ℝ*)) → 𝑟 ∈ ℝ*)
18 ismtyima 35073 . . . . . . 7 (((𝑁 ∈ (∞Met‘𝑌) ∧ 𝑀 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (𝑁 Ismty 𝑀)) ∧ (𝑤𝑌𝑟 ∈ ℝ*)) → (𝐹 “ (𝑤(ball‘𝑁)𝑟)) = ((𝐹𝑤)(ball‘𝑀)𝑟))
1910, 11, 15, 16, 17, 18syl32anc 1373 . . . . . 6 ((𝜑 ∧ (𝑤𝑌𝑟 ∈ ℝ*)) → (𝐹 “ (𝑤(ball‘𝑁)𝑟)) = ((𝐹𝑤)(ball‘𝑀)𝑟))
20 f1ocnv 6620 . . . . . . . . 9 (𝐹:𝑋1-1-onto𝑌𝐹:𝑌1-1-onto𝑋)
21 f1of 6608 . . . . . . . . 9 (𝐹:𝑌1-1-onto𝑋𝐹:𝑌𝑋)
227, 20, 213syl 18 . . . . . . . 8 (𝜑𝐹:𝑌𝑋)
23 simpl 485 . . . . . . . 8 ((𝑤𝑌𝑟 ∈ ℝ*) → 𝑤𝑌)
24 ffvelrn 6842 . . . . . . . 8 ((𝐹:𝑌𝑋𝑤𝑌) → (𝐹𝑤) ∈ 𝑋)
2522, 23, 24syl2an 597 . . . . . . 7 ((𝜑 ∧ (𝑤𝑌𝑟 ∈ ℝ*)) → (𝐹𝑤) ∈ 𝑋)
26 ismtyhmeo.1 . . . . . . . 8 𝐽 = (MetOpen‘𝑀)
2726blopn 23102 . . . . . . 7 ((𝑀 ∈ (∞Met‘𝑋) ∧ (𝐹𝑤) ∈ 𝑋𝑟 ∈ ℝ*) → ((𝐹𝑤)(ball‘𝑀)𝑟) ∈ 𝐽)
2811, 25, 17, 27syl3anc 1366 . . . . . 6 ((𝜑 ∧ (𝑤𝑌𝑟 ∈ ℝ*)) → ((𝐹𝑤)(ball‘𝑀)𝑟) ∈ 𝐽)
2919, 28eqeltrd 2911 . . . . 5 ((𝜑 ∧ (𝑤𝑌𝑟 ∈ ℝ*)) → (𝐹 “ (𝑤(ball‘𝑁)𝑟)) ∈ 𝐽)
3029ralrimivva 3189 . . . 4 (𝜑 → ∀𝑤𝑌𝑟 ∈ ℝ* (𝐹 “ (𝑤(ball‘𝑁)𝑟)) ∈ 𝐽)
31 fveq2 6663 . . . . . . . 8 (𝑧 = ⟨𝑤, 𝑟⟩ → ((ball‘𝑁)‘𝑧) = ((ball‘𝑁)‘⟨𝑤, 𝑟⟩))
32 df-ov 7151 . . . . . . . 8 (𝑤(ball‘𝑁)𝑟) = ((ball‘𝑁)‘⟨𝑤, 𝑟⟩)
3331, 32syl6eqr 2872 . . . . . . 7 (𝑧 = ⟨𝑤, 𝑟⟩ → ((ball‘𝑁)‘𝑧) = (𝑤(ball‘𝑁)𝑟))
3433imaeq2d 5922 . . . . . 6 (𝑧 = ⟨𝑤, 𝑟⟩ → (𝐹 “ ((ball‘𝑁)‘𝑧)) = (𝐹 “ (𝑤(ball‘𝑁)𝑟)))
3534eleq1d 2895 . . . . 5 (𝑧 = ⟨𝑤, 𝑟⟩ → ((𝐹 “ ((ball‘𝑁)‘𝑧)) ∈ 𝐽 ↔ (𝐹 “ (𝑤(ball‘𝑁)𝑟)) ∈ 𝐽))
3635ralxp 5705 . . . 4 (∀𝑧 ∈ (𝑌 × ℝ*)(𝐹 “ ((ball‘𝑁)‘𝑧)) ∈ 𝐽 ↔ ∀𝑤𝑌𝑟 ∈ ℝ* (𝐹 “ (𝑤(ball‘𝑁)𝑟)) ∈ 𝐽)
3730, 36sylibr 236 . . 3 (𝜑 → ∀𝑧 ∈ (𝑌 × ℝ*)(𝐹 “ ((ball‘𝑁)‘𝑧)) ∈ 𝐽)
38 blf 23009 . . . 4 (𝑁 ∈ (∞Met‘𝑌) → (ball‘𝑁):(𝑌 × ℝ*)⟶𝒫 𝑌)
39 ffn 6507 . . . 4 ((ball‘𝑁):(𝑌 × ℝ*)⟶𝒫 𝑌 → (ball‘𝑁) Fn (𝑌 × ℝ*))
40 imaeq2 5918 . . . . . 6 (𝑢 = ((ball‘𝑁)‘𝑧) → (𝐹𝑢) = (𝐹 “ ((ball‘𝑁)‘𝑧)))
4140eleq1d 2895 . . . . 5 (𝑢 = ((ball‘𝑁)‘𝑧) → ((𝐹𝑢) ∈ 𝐽 ↔ (𝐹 “ ((ball‘𝑁)‘𝑧)) ∈ 𝐽))
4241ralrn 6847 . . . 4 ((ball‘𝑁) Fn (𝑌 × ℝ*) → (∀𝑢 ∈ ran (ball‘𝑁)(𝐹𝑢) ∈ 𝐽 ↔ ∀𝑧 ∈ (𝑌 × ℝ*)(𝐹 “ ((ball‘𝑁)‘𝑧)) ∈ 𝐽))
433, 38, 39, 424syl 19 . . 3 (𝜑 → (∀𝑢 ∈ ran (ball‘𝑁)(𝐹𝑢) ∈ 𝐽 ↔ ∀𝑧 ∈ (𝑌 × ℝ*)(𝐹 “ ((ball‘𝑁)‘𝑧)) ∈ 𝐽))
4437, 43mpbird 259 . 2 (𝜑 → ∀𝑢 ∈ ran (ball‘𝑁)(𝐹𝑢) ∈ 𝐽)
4526mopntopon 23041 . . . 4 (𝑀 ∈ (∞Met‘𝑋) → 𝐽 ∈ (TopOn‘𝑋))
462, 45syl 17 . . 3 (𝜑𝐽 ∈ (TopOn‘𝑋))
47 ismtyhmeo.2 . . . . 5 𝐾 = (MetOpen‘𝑁)
4847mopnval 23040 . . . 4 (𝑁 ∈ (∞Met‘𝑌) → 𝐾 = (topGen‘ran (ball‘𝑁)))
493, 48syl 17 . . 3 (𝜑𝐾 = (topGen‘ran (ball‘𝑁)))
5047mopntopon 23041 . . . 4 (𝑁 ∈ (∞Met‘𝑌) → 𝐾 ∈ (TopOn‘𝑌))
513, 50syl 17 . . 3 (𝜑𝐾 ∈ (TopOn‘𝑌))
5246, 49, 51tgcn 21852 . 2 (𝜑 → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑢 ∈ ran (ball‘𝑁)(𝐹𝑢) ∈ 𝐽)))
539, 44, 52mpbir2and 711 1 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1531  wcel 2108  wral 3136  𝒫 cpw 4537  cop 4565   × cxp 5546  ccnv 5547  ran crn 5549  cima 5551   Fn wfn 6343  wf 6344  1-1-ontowf1o 6347  cfv 6348  (class class class)co 7148  *cxr 10666  topGenctg 16703  ∞Metcxmet 20522  ballcbl 20524  MetOpencmopn 20527  TopOnctopon 21510   Cn ccn 21824   Ismty cismty 35068
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7573  df-1st 7681  df-2nd 7682  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-er 8281  df-map 8400  df-en 8502  df-dom 8503  df-sdom 8504  df-sup 8898  df-inf 8899  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11692  df-n0 11890  df-z 11974  df-uz 12236  df-q 12341  df-rp 12382  df-xneg 12499  df-xadd 12500  df-xmul 12501  df-topgen 16709  df-psmet 20529  df-xmet 20530  df-bl 20532  df-mopn 20533  df-top 21494  df-topon 21511  df-bases 21546  df-cn 21827  df-ismty 35069
This theorem is referenced by:  ismtyhmeo  35075
  Copyright terms: Public domain W3C validator