Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ismtyhmeolem Structured version   Visualization version   GIF version

Theorem ismtyhmeolem 35958
Description: Lemma for ismtyhmeo 35959. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 12-Sep-2015.)
Hypotheses
Ref Expression
ismtyhmeo.1 𝐽 = (MetOpen‘𝑀)
ismtyhmeo.2 𝐾 = (MetOpen‘𝑁)
ismtyhmeolem.3 (𝜑𝑀 ∈ (∞Met‘𝑋))
ismtyhmeolem.4 (𝜑𝑁 ∈ (∞Met‘𝑌))
ismtyhmeolem.5 (𝜑𝐹 ∈ (𝑀 Ismty 𝑁))
Assertion
Ref Expression
ismtyhmeolem (𝜑𝐹 ∈ (𝐽 Cn 𝐾))

Proof of Theorem ismtyhmeolem
Dummy variables 𝑢 𝑟 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ismtyhmeolem.5 . . . . 5 (𝜑𝐹 ∈ (𝑀 Ismty 𝑁))
2 ismtyhmeolem.3 . . . . . 6 (𝜑𝑀 ∈ (∞Met‘𝑋))
3 ismtyhmeolem.4 . . . . . 6 (𝜑𝑁 ∈ (∞Met‘𝑌))
4 isismty 35955 . . . . . 6 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) → (𝐹 ∈ (𝑀 Ismty 𝑁) ↔ (𝐹:𝑋1-1-onto𝑌 ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) = ((𝐹𝑥)𝑁(𝐹𝑦)))))
52, 3, 4syl2anc 584 . . . . 5 (𝜑 → (𝐹 ∈ (𝑀 Ismty 𝑁) ↔ (𝐹:𝑋1-1-onto𝑌 ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) = ((𝐹𝑥)𝑁(𝐹𝑦)))))
61, 5mpbid 231 . . . 4 (𝜑 → (𝐹:𝑋1-1-onto𝑌 ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) = ((𝐹𝑥)𝑁(𝐹𝑦))))
76simpld 495 . . 3 (𝜑𝐹:𝑋1-1-onto𝑌)
8 f1of 6714 . . 3 (𝐹:𝑋1-1-onto𝑌𝐹:𝑋𝑌)
97, 8syl 17 . 2 (𝜑𝐹:𝑋𝑌)
103adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑤𝑌𝑟 ∈ ℝ*)) → 𝑁 ∈ (∞Met‘𝑌))
112adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑤𝑌𝑟 ∈ ℝ*)) → 𝑀 ∈ (∞Met‘𝑋))
12 ismtycnv 35956 . . . . . . . . . 10 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) → (𝐹 ∈ (𝑀 Ismty 𝑁) → 𝐹 ∈ (𝑁 Ismty 𝑀)))
132, 3, 12syl2anc 584 . . . . . . . . 9 (𝜑 → (𝐹 ∈ (𝑀 Ismty 𝑁) → 𝐹 ∈ (𝑁 Ismty 𝑀)))
141, 13mpd 15 . . . . . . . 8 (𝜑𝐹 ∈ (𝑁 Ismty 𝑀))
1514adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑤𝑌𝑟 ∈ ℝ*)) → 𝐹 ∈ (𝑁 Ismty 𝑀))
16 simprl 768 . . . . . . 7 ((𝜑 ∧ (𝑤𝑌𝑟 ∈ ℝ*)) → 𝑤𝑌)
17 simprr 770 . . . . . . 7 ((𝜑 ∧ (𝑤𝑌𝑟 ∈ ℝ*)) → 𝑟 ∈ ℝ*)
18 ismtyima 35957 . . . . . . 7 (((𝑁 ∈ (∞Met‘𝑌) ∧ 𝑀 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (𝑁 Ismty 𝑀)) ∧ (𝑤𝑌𝑟 ∈ ℝ*)) → (𝐹 “ (𝑤(ball‘𝑁)𝑟)) = ((𝐹𝑤)(ball‘𝑀)𝑟))
1910, 11, 15, 16, 17, 18syl32anc 1377 . . . . . 6 ((𝜑 ∧ (𝑤𝑌𝑟 ∈ ℝ*)) → (𝐹 “ (𝑤(ball‘𝑁)𝑟)) = ((𝐹𝑤)(ball‘𝑀)𝑟))
20 f1ocnv 6726 . . . . . . . . 9 (𝐹:𝑋1-1-onto𝑌𝐹:𝑌1-1-onto𝑋)
21 f1of 6714 . . . . . . . . 9 (𝐹:𝑌1-1-onto𝑋𝐹:𝑌𝑋)
227, 20, 213syl 18 . . . . . . . 8 (𝜑𝐹:𝑌𝑋)
23 simpl 483 . . . . . . . 8 ((𝑤𝑌𝑟 ∈ ℝ*) → 𝑤𝑌)
24 ffvelrn 6956 . . . . . . . 8 ((𝐹:𝑌𝑋𝑤𝑌) → (𝐹𝑤) ∈ 𝑋)
2522, 23, 24syl2an 596 . . . . . . 7 ((𝜑 ∧ (𝑤𝑌𝑟 ∈ ℝ*)) → (𝐹𝑤) ∈ 𝑋)
26 ismtyhmeo.1 . . . . . . . 8 𝐽 = (MetOpen‘𝑀)
2726blopn 23654 . . . . . . 7 ((𝑀 ∈ (∞Met‘𝑋) ∧ (𝐹𝑤) ∈ 𝑋𝑟 ∈ ℝ*) → ((𝐹𝑤)(ball‘𝑀)𝑟) ∈ 𝐽)
2811, 25, 17, 27syl3anc 1370 . . . . . 6 ((𝜑 ∧ (𝑤𝑌𝑟 ∈ ℝ*)) → ((𝐹𝑤)(ball‘𝑀)𝑟) ∈ 𝐽)
2919, 28eqeltrd 2841 . . . . 5 ((𝜑 ∧ (𝑤𝑌𝑟 ∈ ℝ*)) → (𝐹 “ (𝑤(ball‘𝑁)𝑟)) ∈ 𝐽)
3029ralrimivva 3117 . . . 4 (𝜑 → ∀𝑤𝑌𝑟 ∈ ℝ* (𝐹 “ (𝑤(ball‘𝑁)𝑟)) ∈ 𝐽)
31 fveq2 6771 . . . . . . . 8 (𝑧 = ⟨𝑤, 𝑟⟩ → ((ball‘𝑁)‘𝑧) = ((ball‘𝑁)‘⟨𝑤, 𝑟⟩))
32 df-ov 7274 . . . . . . . 8 (𝑤(ball‘𝑁)𝑟) = ((ball‘𝑁)‘⟨𝑤, 𝑟⟩)
3331, 32eqtr4di 2798 . . . . . . 7 (𝑧 = ⟨𝑤, 𝑟⟩ → ((ball‘𝑁)‘𝑧) = (𝑤(ball‘𝑁)𝑟))
3433imaeq2d 5968 . . . . . 6 (𝑧 = ⟨𝑤, 𝑟⟩ → (𝐹 “ ((ball‘𝑁)‘𝑧)) = (𝐹 “ (𝑤(ball‘𝑁)𝑟)))
3534eleq1d 2825 . . . . 5 (𝑧 = ⟨𝑤, 𝑟⟩ → ((𝐹 “ ((ball‘𝑁)‘𝑧)) ∈ 𝐽 ↔ (𝐹 “ (𝑤(ball‘𝑁)𝑟)) ∈ 𝐽))
3635ralxp 5749 . . . 4 (∀𝑧 ∈ (𝑌 × ℝ*)(𝐹 “ ((ball‘𝑁)‘𝑧)) ∈ 𝐽 ↔ ∀𝑤𝑌𝑟 ∈ ℝ* (𝐹 “ (𝑤(ball‘𝑁)𝑟)) ∈ 𝐽)
3730, 36sylibr 233 . . 3 (𝜑 → ∀𝑧 ∈ (𝑌 × ℝ*)(𝐹 “ ((ball‘𝑁)‘𝑧)) ∈ 𝐽)
38 blf 23558 . . . 4 (𝑁 ∈ (∞Met‘𝑌) → (ball‘𝑁):(𝑌 × ℝ*)⟶𝒫 𝑌)
39 ffn 6598 . . . 4 ((ball‘𝑁):(𝑌 × ℝ*)⟶𝒫 𝑌 → (ball‘𝑁) Fn (𝑌 × ℝ*))
40 imaeq2 5964 . . . . . 6 (𝑢 = ((ball‘𝑁)‘𝑧) → (𝐹𝑢) = (𝐹 “ ((ball‘𝑁)‘𝑧)))
4140eleq1d 2825 . . . . 5 (𝑢 = ((ball‘𝑁)‘𝑧) → ((𝐹𝑢) ∈ 𝐽 ↔ (𝐹 “ ((ball‘𝑁)‘𝑧)) ∈ 𝐽))
4241ralrn 6961 . . . 4 ((ball‘𝑁) Fn (𝑌 × ℝ*) → (∀𝑢 ∈ ran (ball‘𝑁)(𝐹𝑢) ∈ 𝐽 ↔ ∀𝑧 ∈ (𝑌 × ℝ*)(𝐹 “ ((ball‘𝑁)‘𝑧)) ∈ 𝐽))
433, 38, 39, 424syl 19 . . 3 (𝜑 → (∀𝑢 ∈ ran (ball‘𝑁)(𝐹𝑢) ∈ 𝐽 ↔ ∀𝑧 ∈ (𝑌 × ℝ*)(𝐹 “ ((ball‘𝑁)‘𝑧)) ∈ 𝐽))
4437, 43mpbird 256 . 2 (𝜑 → ∀𝑢 ∈ ran (ball‘𝑁)(𝐹𝑢) ∈ 𝐽)
4526mopntopon 23590 . . . 4 (𝑀 ∈ (∞Met‘𝑋) → 𝐽 ∈ (TopOn‘𝑋))
462, 45syl 17 . . 3 (𝜑𝐽 ∈ (TopOn‘𝑋))
47 ismtyhmeo.2 . . . . 5 𝐾 = (MetOpen‘𝑁)
4847mopnval 23589 . . . 4 (𝑁 ∈ (∞Met‘𝑌) → 𝐾 = (topGen‘ran (ball‘𝑁)))
493, 48syl 17 . . 3 (𝜑𝐾 = (topGen‘ran (ball‘𝑁)))
5047mopntopon 23590 . . . 4 (𝑁 ∈ (∞Met‘𝑌) → 𝐾 ∈ (TopOn‘𝑌))
513, 50syl 17 . . 3 (𝜑𝐾 ∈ (TopOn‘𝑌))
5246, 49, 51tgcn 22401 . 2 (𝜑 → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑢 ∈ ran (ball‘𝑁)(𝐹𝑢) ∈ 𝐽)))
539, 44, 52mpbir2and 710 1 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1542  wcel 2110  wral 3066  𝒫 cpw 4539  cop 4573   × cxp 5588  ccnv 5589  ran crn 5591  cima 5593   Fn wfn 6427  wf 6428  1-1-ontowf1o 6431  cfv 6432  (class class class)co 7271  *cxr 11009  topGenctg 17146  ∞Metcxmet 20580  ballcbl 20582  MetOpencmopn 20585  TopOnctopon 22057   Cn ccn 22373   Ismty cismty 35952
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582  ax-cnex 10928  ax-resscn 10929  ax-1cn 10930  ax-icn 10931  ax-addcl 10932  ax-addrcl 10933  ax-mulcl 10934  ax-mulrcl 10935  ax-mulcom 10936  ax-addass 10937  ax-mulass 10938  ax-distr 10939  ax-i2m1 10940  ax-1ne0 10941  ax-1rid 10942  ax-rnegex 10943  ax-rrecex 10944  ax-cnre 10945  ax-pre-lttri 10946  ax-pre-lttrn 10947  ax-pre-ltadd 10948  ax-pre-mulgt0 10949  ax-pre-sup 10950
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-riota 7228  df-ov 7274  df-oprab 7275  df-mpo 7276  df-om 7707  df-1st 7824  df-2nd 7825  df-frecs 8088  df-wrecs 8119  df-recs 8193  df-rdg 8232  df-er 8481  df-map 8600  df-en 8717  df-dom 8718  df-sdom 8719  df-sup 9179  df-inf 9180  df-pnf 11012  df-mnf 11013  df-xr 11014  df-ltxr 11015  df-le 11016  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-n0 12234  df-z 12320  df-uz 12582  df-q 12688  df-rp 12730  df-xneg 12847  df-xadd 12848  df-xmul 12849  df-topgen 17152  df-psmet 20587  df-xmet 20588  df-bl 20590  df-mopn 20591  df-top 22041  df-topon 22058  df-bases 22094  df-cn 22376  df-ismty 35953
This theorem is referenced by:  ismtyhmeo  35959
  Copyright terms: Public domain W3C validator