Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ismtyhmeolem Structured version   Visualization version   GIF version

Theorem ismtyhmeolem 34146
Description: Lemma for ismtyhmeo 34147. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 12-Sep-2015.)
Hypotheses
Ref Expression
ismtyhmeo.1 𝐽 = (MetOpen‘𝑀)
ismtyhmeo.2 𝐾 = (MetOpen‘𝑁)
ismtyhmeolem.3 (𝜑𝑀 ∈ (∞Met‘𝑋))
ismtyhmeolem.4 (𝜑𝑁 ∈ (∞Met‘𝑌))
ismtyhmeolem.5 (𝜑𝐹 ∈ (𝑀 Ismty 𝑁))
Assertion
Ref Expression
ismtyhmeolem (𝜑𝐹 ∈ (𝐽 Cn 𝐾))

Proof of Theorem ismtyhmeolem
Dummy variables 𝑢 𝑟 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ismtyhmeolem.5 . . . . 5 (𝜑𝐹 ∈ (𝑀 Ismty 𝑁))
2 ismtyhmeolem.3 . . . . . 6 (𝜑𝑀 ∈ (∞Met‘𝑋))
3 ismtyhmeolem.4 . . . . . 6 (𝜑𝑁 ∈ (∞Met‘𝑌))
4 isismty 34143 . . . . . 6 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) → (𝐹 ∈ (𝑀 Ismty 𝑁) ↔ (𝐹:𝑋1-1-onto𝑌 ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) = ((𝐹𝑥)𝑁(𝐹𝑦)))))
52, 3, 4syl2anc 581 . . . . 5 (𝜑 → (𝐹 ∈ (𝑀 Ismty 𝑁) ↔ (𝐹:𝑋1-1-onto𝑌 ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) = ((𝐹𝑥)𝑁(𝐹𝑦)))))
61, 5mpbid 224 . . . 4 (𝜑 → (𝐹:𝑋1-1-onto𝑌 ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) = ((𝐹𝑥)𝑁(𝐹𝑦))))
76simpld 490 . . 3 (𝜑𝐹:𝑋1-1-onto𝑌)
8 f1of 6379 . . 3 (𝐹:𝑋1-1-onto𝑌𝐹:𝑋𝑌)
97, 8syl 17 . 2 (𝜑𝐹:𝑋𝑌)
103adantr 474 . . . . . . 7 ((𝜑 ∧ (𝑤𝑌𝑟 ∈ ℝ*)) → 𝑁 ∈ (∞Met‘𝑌))
112adantr 474 . . . . . . 7 ((𝜑 ∧ (𝑤𝑌𝑟 ∈ ℝ*)) → 𝑀 ∈ (∞Met‘𝑋))
12 ismtycnv 34144 . . . . . . . . . 10 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) → (𝐹 ∈ (𝑀 Ismty 𝑁) → 𝐹 ∈ (𝑁 Ismty 𝑀)))
132, 3, 12syl2anc 581 . . . . . . . . 9 (𝜑 → (𝐹 ∈ (𝑀 Ismty 𝑁) → 𝐹 ∈ (𝑁 Ismty 𝑀)))
141, 13mpd 15 . . . . . . . 8 (𝜑𝐹 ∈ (𝑁 Ismty 𝑀))
1514adantr 474 . . . . . . 7 ((𝜑 ∧ (𝑤𝑌𝑟 ∈ ℝ*)) → 𝐹 ∈ (𝑁 Ismty 𝑀))
16 simprl 789 . . . . . . 7 ((𝜑 ∧ (𝑤𝑌𝑟 ∈ ℝ*)) → 𝑤𝑌)
17 simprr 791 . . . . . . 7 ((𝜑 ∧ (𝑤𝑌𝑟 ∈ ℝ*)) → 𝑟 ∈ ℝ*)
18 ismtyima 34145 . . . . . . 7 (((𝑁 ∈ (∞Met‘𝑌) ∧ 𝑀 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (𝑁 Ismty 𝑀)) ∧ (𝑤𝑌𝑟 ∈ ℝ*)) → (𝐹 “ (𝑤(ball‘𝑁)𝑟)) = ((𝐹𝑤)(ball‘𝑀)𝑟))
1910, 11, 15, 16, 17, 18syl32anc 1503 . . . . . 6 ((𝜑 ∧ (𝑤𝑌𝑟 ∈ ℝ*)) → (𝐹 “ (𝑤(ball‘𝑁)𝑟)) = ((𝐹𝑤)(ball‘𝑀)𝑟))
20 f1ocnv 6391 . . . . . . . . 9 (𝐹:𝑋1-1-onto𝑌𝐹:𝑌1-1-onto𝑋)
21 f1of 6379 . . . . . . . . 9 (𝐹:𝑌1-1-onto𝑋𝐹:𝑌𝑋)
227, 20, 213syl 18 . . . . . . . 8 (𝜑𝐹:𝑌𝑋)
23 simpl 476 . . . . . . . 8 ((𝑤𝑌𝑟 ∈ ℝ*) → 𝑤𝑌)
24 ffvelrn 6607 . . . . . . . 8 ((𝐹:𝑌𝑋𝑤𝑌) → (𝐹𝑤) ∈ 𝑋)
2522, 23, 24syl2an 591 . . . . . . 7 ((𝜑 ∧ (𝑤𝑌𝑟 ∈ ℝ*)) → (𝐹𝑤) ∈ 𝑋)
26 ismtyhmeo.1 . . . . . . . 8 𝐽 = (MetOpen‘𝑀)
2726blopn 22676 . . . . . . 7 ((𝑀 ∈ (∞Met‘𝑋) ∧ (𝐹𝑤) ∈ 𝑋𝑟 ∈ ℝ*) → ((𝐹𝑤)(ball‘𝑀)𝑟) ∈ 𝐽)
2811, 25, 17, 27syl3anc 1496 . . . . . 6 ((𝜑 ∧ (𝑤𝑌𝑟 ∈ ℝ*)) → ((𝐹𝑤)(ball‘𝑀)𝑟) ∈ 𝐽)
2919, 28eqeltrd 2907 . . . . 5 ((𝜑 ∧ (𝑤𝑌𝑟 ∈ ℝ*)) → (𝐹 “ (𝑤(ball‘𝑁)𝑟)) ∈ 𝐽)
3029ralrimivva 3181 . . . 4 (𝜑 → ∀𝑤𝑌𝑟 ∈ ℝ* (𝐹 “ (𝑤(ball‘𝑁)𝑟)) ∈ 𝐽)
31 fveq2 6434 . . . . . . . 8 (𝑧 = ⟨𝑤, 𝑟⟩ → ((ball‘𝑁)‘𝑧) = ((ball‘𝑁)‘⟨𝑤, 𝑟⟩))
32 df-ov 6909 . . . . . . . 8 (𝑤(ball‘𝑁)𝑟) = ((ball‘𝑁)‘⟨𝑤, 𝑟⟩)
3331, 32syl6eqr 2880 . . . . . . 7 (𝑧 = ⟨𝑤, 𝑟⟩ → ((ball‘𝑁)‘𝑧) = (𝑤(ball‘𝑁)𝑟))
3433imaeq2d 5708 . . . . . 6 (𝑧 = ⟨𝑤, 𝑟⟩ → (𝐹 “ ((ball‘𝑁)‘𝑧)) = (𝐹 “ (𝑤(ball‘𝑁)𝑟)))
3534eleq1d 2892 . . . . 5 (𝑧 = ⟨𝑤, 𝑟⟩ → ((𝐹 “ ((ball‘𝑁)‘𝑧)) ∈ 𝐽 ↔ (𝐹 “ (𝑤(ball‘𝑁)𝑟)) ∈ 𝐽))
3635ralxp 5497 . . . 4 (∀𝑧 ∈ (𝑌 × ℝ*)(𝐹 “ ((ball‘𝑁)‘𝑧)) ∈ 𝐽 ↔ ∀𝑤𝑌𝑟 ∈ ℝ* (𝐹 “ (𝑤(ball‘𝑁)𝑟)) ∈ 𝐽)
3730, 36sylibr 226 . . 3 (𝜑 → ∀𝑧 ∈ (𝑌 × ℝ*)(𝐹 “ ((ball‘𝑁)‘𝑧)) ∈ 𝐽)
38 blf 22583 . . . 4 (𝑁 ∈ (∞Met‘𝑌) → (ball‘𝑁):(𝑌 × ℝ*)⟶𝒫 𝑌)
39 ffn 6279 . . . 4 ((ball‘𝑁):(𝑌 × ℝ*)⟶𝒫 𝑌 → (ball‘𝑁) Fn (𝑌 × ℝ*))
40 imaeq2 5704 . . . . . 6 (𝑢 = ((ball‘𝑁)‘𝑧) → (𝐹𝑢) = (𝐹 “ ((ball‘𝑁)‘𝑧)))
4140eleq1d 2892 . . . . 5 (𝑢 = ((ball‘𝑁)‘𝑧) → ((𝐹𝑢) ∈ 𝐽 ↔ (𝐹 “ ((ball‘𝑁)‘𝑧)) ∈ 𝐽))
4241ralrn 6612 . . . 4 ((ball‘𝑁) Fn (𝑌 × ℝ*) → (∀𝑢 ∈ ran (ball‘𝑁)(𝐹𝑢) ∈ 𝐽 ↔ ∀𝑧 ∈ (𝑌 × ℝ*)(𝐹 “ ((ball‘𝑁)‘𝑧)) ∈ 𝐽))
433, 38, 39, 424syl 19 . . 3 (𝜑 → (∀𝑢 ∈ ran (ball‘𝑁)(𝐹𝑢) ∈ 𝐽 ↔ ∀𝑧 ∈ (𝑌 × ℝ*)(𝐹 “ ((ball‘𝑁)‘𝑧)) ∈ 𝐽))
4437, 43mpbird 249 . 2 (𝜑 → ∀𝑢 ∈ ran (ball‘𝑁)(𝐹𝑢) ∈ 𝐽)
4526mopntopon 22615 . . . 4 (𝑀 ∈ (∞Met‘𝑋) → 𝐽 ∈ (TopOn‘𝑋))
462, 45syl 17 . . 3 (𝜑𝐽 ∈ (TopOn‘𝑋))
47 ismtyhmeo.2 . . . . 5 𝐾 = (MetOpen‘𝑁)
4847mopnval 22614 . . . 4 (𝑁 ∈ (∞Met‘𝑌) → 𝐾 = (topGen‘ran (ball‘𝑁)))
493, 48syl 17 . . 3 (𝜑𝐾 = (topGen‘ran (ball‘𝑁)))
5047mopntopon 22615 . . . 4 (𝑁 ∈ (∞Met‘𝑌) → 𝐾 ∈ (TopOn‘𝑌))
513, 50syl 17 . . 3 (𝜑𝐾 ∈ (TopOn‘𝑌))
5246, 49, 51tgcn 21428 . 2 (𝜑 → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑢 ∈ ran (ball‘𝑁)(𝐹𝑢) ∈ 𝐽)))
539, 44, 52mpbir2and 706 1 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386   = wceq 1658  wcel 2166  wral 3118  𝒫 cpw 4379  cop 4404   × cxp 5341  ccnv 5342  ran crn 5344  cima 5346   Fn wfn 6119  wf 6120  1-1-ontowf1o 6123  cfv 6124  (class class class)co 6906  *cxr 10391  topGenctg 16452  ∞Metcxmet 20092  ballcbl 20094  MetOpencmopn 20097  TopOnctopon 21086   Cn ccn 21400   Ismty cismty 34140
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2804  ax-sep 5006  ax-nul 5014  ax-pow 5066  ax-pr 5128  ax-un 7210  ax-cnex 10309  ax-resscn 10310  ax-1cn 10311  ax-icn 10312  ax-addcl 10313  ax-addrcl 10314  ax-mulcl 10315  ax-mulrcl 10316  ax-mulcom 10317  ax-addass 10318  ax-mulass 10319  ax-distr 10320  ax-i2m1 10321  ax-1ne0 10322  ax-1rid 10323  ax-rnegex 10324  ax-rrecex 10325  ax-cnre 10326  ax-pre-lttri 10327  ax-pre-lttrn 10328  ax-pre-ltadd 10329  ax-pre-mulgt0 10330  ax-pre-sup 10331
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2606  df-eu 2641  df-clab 2813  df-cleq 2819  df-clel 2822  df-nfc 2959  df-ne 3001  df-nel 3104  df-ral 3123  df-rex 3124  df-reu 3125  df-rmo 3126  df-rab 3127  df-v 3417  df-sbc 3664  df-csb 3759  df-dif 3802  df-un 3804  df-in 3806  df-ss 3813  df-pss 3815  df-nul 4146  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4660  df-iun 4743  df-br 4875  df-opab 4937  df-mpt 4954  df-tr 4977  df-id 5251  df-eprel 5256  df-po 5264  df-so 5265  df-fr 5302  df-we 5304  df-xp 5349  df-rel 5350  df-cnv 5351  df-co 5352  df-dm 5353  df-rn 5354  df-res 5355  df-ima 5356  df-pred 5921  df-ord 5967  df-on 5968  df-lim 5969  df-suc 5970  df-iota 6087  df-fun 6126  df-fn 6127  df-f 6128  df-f1 6129  df-fo 6130  df-f1o 6131  df-fv 6132  df-riota 6867  df-ov 6909  df-oprab 6910  df-mpt2 6911  df-om 7328  df-1st 7429  df-2nd 7430  df-wrecs 7673  df-recs 7735  df-rdg 7773  df-er 8010  df-map 8125  df-en 8224  df-dom 8225  df-sdom 8226  df-sup 8618  df-inf 8619  df-pnf 10394  df-mnf 10395  df-xr 10396  df-ltxr 10397  df-le 10398  df-sub 10588  df-neg 10589  df-div 11011  df-nn 11352  df-2 11415  df-n0 11620  df-z 11706  df-uz 11970  df-q 12073  df-rp 12114  df-xneg 12233  df-xadd 12234  df-xmul 12235  df-topgen 16458  df-psmet 20099  df-xmet 20100  df-bl 20102  df-mopn 20103  df-top 21070  df-topon 21087  df-bases 21122  df-cn 21403  df-ismty 34141
This theorem is referenced by:  ismtyhmeo  34147
  Copyright terms: Public domain W3C validator