Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ismtyhmeolem Structured version   Visualization version   GIF version

Theorem ismtyhmeolem 37811
Description: Lemma for ismtyhmeo 37812. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 12-Sep-2015.)
Hypotheses
Ref Expression
ismtyhmeo.1 𝐽 = (MetOpen‘𝑀)
ismtyhmeo.2 𝐾 = (MetOpen‘𝑁)
ismtyhmeolem.3 (𝜑𝑀 ∈ (∞Met‘𝑋))
ismtyhmeolem.4 (𝜑𝑁 ∈ (∞Met‘𝑌))
ismtyhmeolem.5 (𝜑𝐹 ∈ (𝑀 Ismty 𝑁))
Assertion
Ref Expression
ismtyhmeolem (𝜑𝐹 ∈ (𝐽 Cn 𝐾))

Proof of Theorem ismtyhmeolem
Dummy variables 𝑢 𝑟 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ismtyhmeolem.5 . . . . 5 (𝜑𝐹 ∈ (𝑀 Ismty 𝑁))
2 ismtyhmeolem.3 . . . . . 6 (𝜑𝑀 ∈ (∞Met‘𝑋))
3 ismtyhmeolem.4 . . . . . 6 (𝜑𝑁 ∈ (∞Met‘𝑌))
4 isismty 37808 . . . . . 6 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) → (𝐹 ∈ (𝑀 Ismty 𝑁) ↔ (𝐹:𝑋1-1-onto𝑌 ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) = ((𝐹𝑥)𝑁(𝐹𝑦)))))
52, 3, 4syl2anc 584 . . . . 5 (𝜑 → (𝐹 ∈ (𝑀 Ismty 𝑁) ↔ (𝐹:𝑋1-1-onto𝑌 ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) = ((𝐹𝑥)𝑁(𝐹𝑦)))))
61, 5mpbid 232 . . . 4 (𝜑 → (𝐹:𝑋1-1-onto𝑌 ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) = ((𝐹𝑥)𝑁(𝐹𝑦))))
76simpld 494 . . 3 (𝜑𝐹:𝑋1-1-onto𝑌)
8 f1of 6848 . . 3 (𝐹:𝑋1-1-onto𝑌𝐹:𝑋𝑌)
97, 8syl 17 . 2 (𝜑𝐹:𝑋𝑌)
103adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑤𝑌𝑟 ∈ ℝ*)) → 𝑁 ∈ (∞Met‘𝑌))
112adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑤𝑌𝑟 ∈ ℝ*)) → 𝑀 ∈ (∞Met‘𝑋))
12 ismtycnv 37809 . . . . . . . . . 10 ((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑁 ∈ (∞Met‘𝑌)) → (𝐹 ∈ (𝑀 Ismty 𝑁) → 𝐹 ∈ (𝑁 Ismty 𝑀)))
132, 3, 12syl2anc 584 . . . . . . . . 9 (𝜑 → (𝐹 ∈ (𝑀 Ismty 𝑁) → 𝐹 ∈ (𝑁 Ismty 𝑀)))
141, 13mpd 15 . . . . . . . 8 (𝜑𝐹 ∈ (𝑁 Ismty 𝑀))
1514adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑤𝑌𝑟 ∈ ℝ*)) → 𝐹 ∈ (𝑁 Ismty 𝑀))
16 simprl 771 . . . . . . 7 ((𝜑 ∧ (𝑤𝑌𝑟 ∈ ℝ*)) → 𝑤𝑌)
17 simprr 773 . . . . . . 7 ((𝜑 ∧ (𝑤𝑌𝑟 ∈ ℝ*)) → 𝑟 ∈ ℝ*)
18 ismtyima 37810 . . . . . . 7 (((𝑁 ∈ (∞Met‘𝑌) ∧ 𝑀 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (𝑁 Ismty 𝑀)) ∧ (𝑤𝑌𝑟 ∈ ℝ*)) → (𝐹 “ (𝑤(ball‘𝑁)𝑟)) = ((𝐹𝑤)(ball‘𝑀)𝑟))
1910, 11, 15, 16, 17, 18syl32anc 1380 . . . . . 6 ((𝜑 ∧ (𝑤𝑌𝑟 ∈ ℝ*)) → (𝐹 “ (𝑤(ball‘𝑁)𝑟)) = ((𝐹𝑤)(ball‘𝑀)𝑟))
20 f1ocnv 6860 . . . . . . . . 9 (𝐹:𝑋1-1-onto𝑌𝐹:𝑌1-1-onto𝑋)
21 f1of 6848 . . . . . . . . 9 (𝐹:𝑌1-1-onto𝑋𝐹:𝑌𝑋)
227, 20, 213syl 18 . . . . . . . 8 (𝜑𝐹:𝑌𝑋)
23 simpl 482 . . . . . . . 8 ((𝑤𝑌𝑟 ∈ ℝ*) → 𝑤𝑌)
24 ffvelcdm 7101 . . . . . . . 8 ((𝐹:𝑌𝑋𝑤𝑌) → (𝐹𝑤) ∈ 𝑋)
2522, 23, 24syl2an 596 . . . . . . 7 ((𝜑 ∧ (𝑤𝑌𝑟 ∈ ℝ*)) → (𝐹𝑤) ∈ 𝑋)
26 ismtyhmeo.1 . . . . . . . 8 𝐽 = (MetOpen‘𝑀)
2726blopn 24513 . . . . . . 7 ((𝑀 ∈ (∞Met‘𝑋) ∧ (𝐹𝑤) ∈ 𝑋𝑟 ∈ ℝ*) → ((𝐹𝑤)(ball‘𝑀)𝑟) ∈ 𝐽)
2811, 25, 17, 27syl3anc 1373 . . . . . 6 ((𝜑 ∧ (𝑤𝑌𝑟 ∈ ℝ*)) → ((𝐹𝑤)(ball‘𝑀)𝑟) ∈ 𝐽)
2919, 28eqeltrd 2841 . . . . 5 ((𝜑 ∧ (𝑤𝑌𝑟 ∈ ℝ*)) → (𝐹 “ (𝑤(ball‘𝑁)𝑟)) ∈ 𝐽)
3029ralrimivva 3202 . . . 4 (𝜑 → ∀𝑤𝑌𝑟 ∈ ℝ* (𝐹 “ (𝑤(ball‘𝑁)𝑟)) ∈ 𝐽)
31 fveq2 6906 . . . . . . . 8 (𝑧 = ⟨𝑤, 𝑟⟩ → ((ball‘𝑁)‘𝑧) = ((ball‘𝑁)‘⟨𝑤, 𝑟⟩))
32 df-ov 7434 . . . . . . . 8 (𝑤(ball‘𝑁)𝑟) = ((ball‘𝑁)‘⟨𝑤, 𝑟⟩)
3331, 32eqtr4di 2795 . . . . . . 7 (𝑧 = ⟨𝑤, 𝑟⟩ → ((ball‘𝑁)‘𝑧) = (𝑤(ball‘𝑁)𝑟))
3433imaeq2d 6078 . . . . . 6 (𝑧 = ⟨𝑤, 𝑟⟩ → (𝐹 “ ((ball‘𝑁)‘𝑧)) = (𝐹 “ (𝑤(ball‘𝑁)𝑟)))
3534eleq1d 2826 . . . . 5 (𝑧 = ⟨𝑤, 𝑟⟩ → ((𝐹 “ ((ball‘𝑁)‘𝑧)) ∈ 𝐽 ↔ (𝐹 “ (𝑤(ball‘𝑁)𝑟)) ∈ 𝐽))
3635ralxp 5852 . . . 4 (∀𝑧 ∈ (𝑌 × ℝ*)(𝐹 “ ((ball‘𝑁)‘𝑧)) ∈ 𝐽 ↔ ∀𝑤𝑌𝑟 ∈ ℝ* (𝐹 “ (𝑤(ball‘𝑁)𝑟)) ∈ 𝐽)
3730, 36sylibr 234 . . 3 (𝜑 → ∀𝑧 ∈ (𝑌 × ℝ*)(𝐹 “ ((ball‘𝑁)‘𝑧)) ∈ 𝐽)
38 blf 24417 . . . 4 (𝑁 ∈ (∞Met‘𝑌) → (ball‘𝑁):(𝑌 × ℝ*)⟶𝒫 𝑌)
39 ffn 6736 . . . 4 ((ball‘𝑁):(𝑌 × ℝ*)⟶𝒫 𝑌 → (ball‘𝑁) Fn (𝑌 × ℝ*))
40 imaeq2 6074 . . . . . 6 (𝑢 = ((ball‘𝑁)‘𝑧) → (𝐹𝑢) = (𝐹 “ ((ball‘𝑁)‘𝑧)))
4140eleq1d 2826 . . . . 5 (𝑢 = ((ball‘𝑁)‘𝑧) → ((𝐹𝑢) ∈ 𝐽 ↔ (𝐹 “ ((ball‘𝑁)‘𝑧)) ∈ 𝐽))
4241ralrn 7108 . . . 4 ((ball‘𝑁) Fn (𝑌 × ℝ*) → (∀𝑢 ∈ ran (ball‘𝑁)(𝐹𝑢) ∈ 𝐽 ↔ ∀𝑧 ∈ (𝑌 × ℝ*)(𝐹 “ ((ball‘𝑁)‘𝑧)) ∈ 𝐽))
433, 38, 39, 424syl 19 . . 3 (𝜑 → (∀𝑢 ∈ ran (ball‘𝑁)(𝐹𝑢) ∈ 𝐽 ↔ ∀𝑧 ∈ (𝑌 × ℝ*)(𝐹 “ ((ball‘𝑁)‘𝑧)) ∈ 𝐽))
4437, 43mpbird 257 . 2 (𝜑 → ∀𝑢 ∈ ran (ball‘𝑁)(𝐹𝑢) ∈ 𝐽)
4526mopntopon 24449 . . . 4 (𝑀 ∈ (∞Met‘𝑋) → 𝐽 ∈ (TopOn‘𝑋))
462, 45syl 17 . . 3 (𝜑𝐽 ∈ (TopOn‘𝑋))
47 ismtyhmeo.2 . . . . 5 𝐾 = (MetOpen‘𝑁)
4847mopnval 24448 . . . 4 (𝑁 ∈ (∞Met‘𝑌) → 𝐾 = (topGen‘ran (ball‘𝑁)))
493, 48syl 17 . . 3 (𝜑𝐾 = (topGen‘ran (ball‘𝑁)))
5047mopntopon 24449 . . . 4 (𝑁 ∈ (∞Met‘𝑌) → 𝐾 ∈ (TopOn‘𝑌))
513, 50syl 17 . . 3 (𝜑𝐾 ∈ (TopOn‘𝑌))
5246, 49, 51tgcn 23260 . 2 (𝜑 → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑢 ∈ ran (ball‘𝑁)(𝐹𝑢) ∈ 𝐽)))
539, 44, 52mpbir2and 713 1 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3061  𝒫 cpw 4600  cop 4632   × cxp 5683  ccnv 5684  ran crn 5686  cima 5688   Fn wfn 6556  wf 6557  1-1-ontowf1o 6560  cfv 6561  (class class class)co 7431  *cxr 11294  topGenctg 17482  ∞Metcxmet 21349  ballcbl 21351  MetOpencmopn 21354  TopOnctopon 22916   Cn ccn 23232   Ismty cismty 37805
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-sup 9482  df-inf 9483  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-n0 12527  df-z 12614  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-topgen 17488  df-psmet 21356  df-xmet 21357  df-bl 21359  df-mopn 21360  df-top 22900  df-topon 22917  df-bases 22953  df-cn 23235  df-ismty 37806
This theorem is referenced by:  ismtyhmeo  37812
  Copyright terms: Public domain W3C validator