![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mopntop | Structured version Visualization version GIF version |
Description: The set of open sets of a metric space is a topology. (Contributed by NM, 28-Aug-2006.) (Revised by Mario Carneiro, 12-Nov-2013.) |
Ref | Expression |
---|---|
mopnval.1 | ⊢ 𝐽 = (MetOpen‘𝐷) |
Ref | Expression |
---|---|
mopntop | ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Top) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mopnval.1 | . . 3 ⊢ 𝐽 = (MetOpen‘𝐷) | |
2 | 1 | mopntopon 22767 | . 2 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ (TopOn‘𝑋)) |
3 | topontop 21240 | . 2 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top) | |
4 | 2, 3 | syl 17 | 1 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Top) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1508 ∈ wcel 2051 ‘cfv 6185 ∞Metcxmet 20247 MetOpencmopn 20252 Topctop 21220 TopOnctopon 21237 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-13 2302 ax-ext 2743 ax-sep 5056 ax-nul 5063 ax-pow 5115 ax-pr 5182 ax-un 7277 ax-cnex 10389 ax-resscn 10390 ax-1cn 10391 ax-icn 10392 ax-addcl 10393 ax-addrcl 10394 ax-mulcl 10395 ax-mulrcl 10396 ax-mulcom 10397 ax-addass 10398 ax-mulass 10399 ax-distr 10400 ax-i2m1 10401 ax-1ne0 10402 ax-1rid 10403 ax-rnegex 10404 ax-rrecex 10405 ax-cnre 10406 ax-pre-lttri 10407 ax-pre-lttrn 10408 ax-pre-ltadd 10409 ax-pre-mulgt0 10410 ax-pre-sup 10411 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3or 1070 df-3an 1071 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-mo 2548 df-eu 2585 df-clab 2752 df-cleq 2764 df-clel 2839 df-nfc 2911 df-ne 2961 df-nel 3067 df-ral 3086 df-rex 3087 df-reu 3088 df-rmo 3089 df-rab 3090 df-v 3410 df-sbc 3675 df-csb 3780 df-dif 3825 df-un 3827 df-in 3829 df-ss 3836 df-pss 3838 df-nul 4173 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-tp 4440 df-op 4442 df-uni 4709 df-iun 4790 df-br 4926 df-opab 4988 df-mpt 5005 df-tr 5027 df-id 5308 df-eprel 5313 df-po 5322 df-so 5323 df-fr 5362 df-we 5364 df-xp 5409 df-rel 5410 df-cnv 5411 df-co 5412 df-dm 5413 df-rn 5414 df-res 5415 df-ima 5416 df-pred 5983 df-ord 6029 df-on 6030 df-lim 6031 df-suc 6032 df-iota 6149 df-fun 6187 df-fn 6188 df-f 6189 df-f1 6190 df-fo 6191 df-f1o 6192 df-fv 6193 df-riota 6935 df-ov 6977 df-oprab 6978 df-mpo 6979 df-om 7395 df-1st 7499 df-2nd 7500 df-wrecs 7748 df-recs 7810 df-rdg 7848 df-er 8087 df-map 8206 df-en 8305 df-dom 8306 df-sdom 8307 df-sup 8699 df-inf 8700 df-pnf 10474 df-mnf 10475 df-xr 10476 df-ltxr 10477 df-le 10478 df-sub 10670 df-neg 10671 df-div 11097 df-nn 11438 df-2 11501 df-n0 11706 df-z 11792 df-uz 12057 df-q 12161 df-rp 12203 df-xneg 12322 df-xadd 12323 df-xmul 12324 df-topgen 16571 df-psmet 20254 df-xmet 20255 df-bl 20257 df-mopn 20258 df-top 21221 df-topon 21238 df-bases 21273 |
This theorem is referenced by: unimopn 22824 mopnin 22825 mopn0 22826 neibl 22829 blnei 22830 lpbl 22831 blcld 22833 met1stc 22849 met2ndci 22850 metrest 22852 prdsxmslem2 22857 metnrmlem2 23186 metnrm 23188 lebnumlem1 23283 metcld 23627 flimcfil 23635 metsscmetcld 23636 cmpcmet 23640 bcthlem2 23646 bcthlem4 23648 bcthlem5 23649 bcth3 23652 ubthlem1 28440 minvecolem4b 28448 minvecolem4 28450 hhsscms 28850 heibor1lem 34566 heiborlem8 34575 heibor 34578 |
Copyright terms: Public domain | W3C validator |