| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mopntopon | Structured version Visualization version GIF version | ||
| Description: The set of open sets of a metric space 𝑋 is a topology on 𝑋. Remark in [Kreyszig] p. 19. This theorem connects the two concepts and makes available the theorems for topologies for use with metric spaces. (Contributed by Mario Carneiro, 24-Aug-2015.) |
| Ref | Expression |
|---|---|
| mopnval.1 | ⊢ 𝐽 = (MetOpen‘𝐷) |
| Ref | Expression |
|---|---|
| mopntopon | ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ (TopOn‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mopnval.1 | . . 3 ⊢ 𝐽 = (MetOpen‘𝐷) | |
| 2 | 1 | mopnval 24448 | . 2 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐽 = (topGen‘ran (ball‘𝐷))) |
| 3 | blbas 24440 | . . . 4 ⊢ (𝐷 ∈ (∞Met‘𝑋) → ran (ball‘𝐷) ∈ TopBases) | |
| 4 | tgtopon 22978 | . . . 4 ⊢ (ran (ball‘𝐷) ∈ TopBases → (topGen‘ran (ball‘𝐷)) ∈ (TopOn‘∪ ran (ball‘𝐷))) | |
| 5 | 3, 4 | syl 17 | . . 3 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (topGen‘ran (ball‘𝐷)) ∈ (TopOn‘∪ ran (ball‘𝐷))) |
| 6 | unirnbl 24430 | . . . 4 ⊢ (𝐷 ∈ (∞Met‘𝑋) → ∪ ran (ball‘𝐷) = 𝑋) | |
| 7 | 6 | fveq2d 6910 | . . 3 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (TopOn‘∪ ran (ball‘𝐷)) = (TopOn‘𝑋)) |
| 8 | 5, 7 | eleqtrd 2843 | . 2 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (topGen‘ran (ball‘𝐷)) ∈ (TopOn‘𝑋)) |
| 9 | 2, 8 | eqeltrd 2841 | 1 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ (TopOn‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 ∪ cuni 4907 ran crn 5686 ‘cfv 6561 topGenctg 17482 ∞Metcxmet 21349 ballcbl 21351 MetOpencmopn 21354 TopOnctopon 22916 TopBasesctb 22952 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 ax-pre-sup 11233 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-er 8745 df-map 8868 df-en 8986 df-dom 8987 df-sdom 8988 df-sup 9482 df-inf 9483 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-div 11921 df-nn 12267 df-2 12329 df-n0 12527 df-z 12614 df-uz 12879 df-q 12991 df-rp 13035 df-xneg 13154 df-xadd 13155 df-xmul 13156 df-topgen 17488 df-psmet 21356 df-xmet 21357 df-bl 21359 df-mopn 21360 df-top 22900 df-topon 22917 df-bases 22953 |
| This theorem is referenced by: mopntop 24450 mopnuni 24451 mopnm 24454 mopnss 24456 isxms2 24458 methaus 24533 prdsxmslem2 24542 metcnp3 24553 metcn 24556 metcnpi3 24559 txmetcn 24561 cnfldms 24796 cnfldtopn 24802 metdseq0 24876 metdscn2 24879 iitopon 24905 lebnumlem2 24994 lmmbr 25292 cfilfcls 25308 cmetcaulem 25322 iscmet3lem2 25326 lmle 25335 nglmle 25336 caublcls 25343 metcnp4 25344 metcn4 25345 metsscmetcld 25349 cmetss 25350 relcmpcmet 25352 bcth2 25364 vmcn 30718 dipcn 30739 blocni 30824 ipasslem7 30855 ubthlem1 30889 ubthlem2 30890 minvecolem4b 30897 minvecolem4 30899 axhcompl-zf 31017 hlimadd 31212 hlim0 31254 occllem 31322 hmopidmchi 32170 fmcncfil 33930 ismtyhmeolem 37811 heiborlem9 37826 bfplem2 37830 |
| Copyright terms: Public domain | W3C validator |