| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mopntopon | Structured version Visualization version GIF version | ||
| Description: The set of open sets of a metric space 𝑋 is a topology on 𝑋. Remark in [Kreyszig] p. 19. This theorem connects the two concepts and makes available the theorems for topologies for use with metric spaces. (Contributed by Mario Carneiro, 24-Aug-2015.) |
| Ref | Expression |
|---|---|
| mopnval.1 | ⊢ 𝐽 = (MetOpen‘𝐷) |
| Ref | Expression |
|---|---|
| mopntopon | ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ (TopOn‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mopnval.1 | . . 3 ⊢ 𝐽 = (MetOpen‘𝐷) | |
| 2 | 1 | mopnval 24326 | . 2 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐽 = (topGen‘ran (ball‘𝐷))) |
| 3 | blbas 24318 | . . . 4 ⊢ (𝐷 ∈ (∞Met‘𝑋) → ran (ball‘𝐷) ∈ TopBases) | |
| 4 | tgtopon 22858 | . . . 4 ⊢ (ran (ball‘𝐷) ∈ TopBases → (topGen‘ran (ball‘𝐷)) ∈ (TopOn‘∪ ran (ball‘𝐷))) | |
| 5 | 3, 4 | syl 17 | . . 3 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (topGen‘ran (ball‘𝐷)) ∈ (TopOn‘∪ ran (ball‘𝐷))) |
| 6 | unirnbl 24308 | . . . 4 ⊢ (𝐷 ∈ (∞Met‘𝑋) → ∪ ran (ball‘𝐷) = 𝑋) | |
| 7 | 6 | fveq2d 6862 | . . 3 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (TopOn‘∪ ran (ball‘𝐷)) = (TopOn‘𝑋)) |
| 8 | 5, 7 | eleqtrd 2830 | . 2 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (topGen‘ran (ball‘𝐷)) ∈ (TopOn‘𝑋)) |
| 9 | 2, 8 | eqeltrd 2828 | 1 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ (TopOn‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∪ cuni 4871 ran crn 5639 ‘cfv 6511 topGenctg 17400 ∞Metcxmet 21249 ballcbl 21251 MetOpencmopn 21254 TopOnctopon 22797 TopBasesctb 22832 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-sup 9393 df-inf 9394 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-n0 12443 df-z 12530 df-uz 12794 df-q 12908 df-rp 12952 df-xneg 13072 df-xadd 13073 df-xmul 13074 df-topgen 17406 df-psmet 21256 df-xmet 21257 df-bl 21259 df-mopn 21260 df-top 22781 df-topon 22798 df-bases 22833 |
| This theorem is referenced by: mopntop 24328 mopnuni 24329 mopnm 24332 mopnss 24334 isxms2 24336 methaus 24408 prdsxmslem2 24417 metcnp3 24428 metcn 24431 metcnpi3 24434 txmetcn 24436 cnfldms 24663 cnfldtopn 24669 metdseq0 24743 metdscn2 24746 iitopon 24772 lebnumlem2 24861 lmmbr 25158 cfilfcls 25174 cmetcaulem 25188 iscmet3lem2 25192 lmle 25201 nglmle 25202 caublcls 25209 metcnp4 25210 metcn4 25211 metsscmetcld 25215 cmetss 25216 relcmpcmet 25218 bcth2 25230 vmcn 30628 dipcn 30649 blocni 30734 ipasslem7 30765 ubthlem1 30799 ubthlem2 30800 minvecolem4b 30807 minvecolem4 30809 axhcompl-zf 30927 hlimadd 31122 hlim0 31164 occllem 31232 hmopidmchi 32080 fmcncfil 33921 ismtyhmeolem 37798 heiborlem9 37813 bfplem2 37817 |
| Copyright terms: Public domain | W3C validator |