MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mopntopon Structured version   Visualization version   GIF version

Theorem mopntopon 23945
Description: The set of open sets of a metric space 𝑋 is a topology on 𝑋. Remark in [Kreyszig] p. 19. This theorem connects the two concepts and makes available the theorems for topologies for use with metric spaces. (Contributed by Mario Carneiro, 24-Aug-2015.)
Hypothesis
Ref Expression
mopnval.1 𝐽 = (MetOpen‘𝐷)
Assertion
Ref Expression
mopntopon (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ (TopOn‘𝑋))

Proof of Theorem mopntopon
StepHypRef Expression
1 mopnval.1 . . 3 𝐽 = (MetOpen‘𝐷)
21mopnval 23944 . 2 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 = (topGen‘ran (ball‘𝐷)))
3 blbas 23936 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → ran (ball‘𝐷) ∈ TopBases)
4 tgtopon 22474 . . . 4 (ran (ball‘𝐷) ∈ TopBases → (topGen‘ran (ball‘𝐷)) ∈ (TopOn‘ ran (ball‘𝐷)))
53, 4syl 17 . . 3 (𝐷 ∈ (∞Met‘𝑋) → (topGen‘ran (ball‘𝐷)) ∈ (TopOn‘ ran (ball‘𝐷)))
6 unirnbl 23926 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → ran (ball‘𝐷) = 𝑋)
76fveq2d 6896 . . 3 (𝐷 ∈ (∞Met‘𝑋) → (TopOn‘ ran (ball‘𝐷)) = (TopOn‘𝑋))
85, 7eleqtrd 2836 . 2 (𝐷 ∈ (∞Met‘𝑋) → (topGen‘ran (ball‘𝐷)) ∈ (TopOn‘𝑋))
92, 8eqeltrd 2834 1 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ (TopOn‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wcel 2107   cuni 4909  ran crn 5678  cfv 6544  topGenctg 17383  ∞Metcxmet 20929  ballcbl 20931  MetOpencmopn 20934  TopOnctopon 22412  TopBasesctb 22448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187  ax-pre-sup 11188
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-1st 7975  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-er 8703  df-map 8822  df-en 8940  df-dom 8941  df-sdom 8942  df-sup 9437  df-inf 9438  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-div 11872  df-nn 12213  df-2 12275  df-n0 12473  df-z 12559  df-uz 12823  df-q 12933  df-rp 12975  df-xneg 13092  df-xadd 13093  df-xmul 13094  df-topgen 17389  df-psmet 20936  df-xmet 20937  df-bl 20939  df-mopn 20940  df-top 22396  df-topon 22413  df-bases 22449
This theorem is referenced by:  mopntop  23946  mopnuni  23947  mopnm  23950  mopnss  23952  isxms2  23954  methaus  24029  prdsxmslem2  24038  metcnp3  24049  metcn  24052  metcnpi3  24055  txmetcn  24057  cnfldms  24292  cnfldtopn  24298  metdseq0  24370  metdscn2  24373  iitopon  24395  lebnumlem2  24478  lmmbr  24775  cfilfcls  24791  cmetcaulem  24805  iscmet3lem2  24809  lmle  24818  nglmle  24819  caublcls  24826  metcnp4  24827  metcn4  24828  metsscmetcld  24832  cmetss  24833  relcmpcmet  24835  bcth2  24847  vmcn  29952  dipcn  29973  blocni  30058  ipasslem7  30089  ubthlem1  30123  ubthlem2  30124  minvecolem4b  30131  minvecolem4  30133  axhcompl-zf  30251  hlimadd  30446  hlim0  30488  occllem  30556  hmopidmchi  31404  fmcncfil  32911  ismtyhmeolem  36672  heiborlem9  36687  bfplem2  36691
  Copyright terms: Public domain W3C validator