| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mopntopon | Structured version Visualization version GIF version | ||
| Description: The set of open sets of a metric space 𝑋 is a topology on 𝑋. Remark in [Kreyszig] p. 19. This theorem connects the two concepts and makes available the theorems for topologies for use with metric spaces. (Contributed by Mario Carneiro, 24-Aug-2015.) |
| Ref | Expression |
|---|---|
| mopnval.1 | ⊢ 𝐽 = (MetOpen‘𝐷) |
| Ref | Expression |
|---|---|
| mopntopon | ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ (TopOn‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mopnval.1 | . . 3 ⊢ 𝐽 = (MetOpen‘𝐷) | |
| 2 | 1 | mopnval 24348 | . 2 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐽 = (topGen‘ran (ball‘𝐷))) |
| 3 | blbas 24340 | . . . 4 ⊢ (𝐷 ∈ (∞Met‘𝑋) → ran (ball‘𝐷) ∈ TopBases) | |
| 4 | tgtopon 22881 | . . . 4 ⊢ (ran (ball‘𝐷) ∈ TopBases → (topGen‘ran (ball‘𝐷)) ∈ (TopOn‘∪ ran (ball‘𝐷))) | |
| 5 | 3, 4 | syl 17 | . . 3 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (topGen‘ran (ball‘𝐷)) ∈ (TopOn‘∪ ran (ball‘𝐷))) |
| 6 | unirnbl 24330 | . . . 4 ⊢ (𝐷 ∈ (∞Met‘𝑋) → ∪ ran (ball‘𝐷) = 𝑋) | |
| 7 | 6 | fveq2d 6821 | . . 3 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (TopOn‘∪ ran (ball‘𝐷)) = (TopOn‘𝑋)) |
| 8 | 5, 7 | eleqtrd 2833 | . 2 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (topGen‘ran (ball‘𝐷)) ∈ (TopOn‘𝑋)) |
| 9 | 2, 8 | eqeltrd 2831 | 1 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ (TopOn‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ∪ cuni 4854 ran crn 5612 ‘cfv 6476 topGenctg 17336 ∞Metcxmet 21271 ballcbl 21273 MetOpencmopn 21276 TopOnctopon 22820 TopBasesctb 22855 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 ax-pre-sup 11079 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-er 8617 df-map 8747 df-en 8865 df-dom 8866 df-sdom 8867 df-sup 9321 df-inf 9322 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-div 11770 df-nn 12121 df-2 12183 df-n0 12377 df-z 12464 df-uz 12728 df-q 12842 df-rp 12886 df-xneg 13006 df-xadd 13007 df-xmul 13008 df-topgen 17342 df-psmet 21278 df-xmet 21279 df-bl 21281 df-mopn 21282 df-top 22804 df-topon 22821 df-bases 22856 |
| This theorem is referenced by: mopntop 24350 mopnuni 24351 mopnm 24354 mopnss 24356 isxms2 24358 methaus 24430 prdsxmslem2 24439 metcnp3 24450 metcn 24453 metcnpi3 24456 txmetcn 24458 cnfldms 24685 cnfldtopn 24691 metdseq0 24765 metdscn2 24768 iitopon 24794 lebnumlem2 24883 lmmbr 25180 cfilfcls 25196 cmetcaulem 25210 iscmet3lem2 25214 lmle 25223 nglmle 25224 caublcls 25231 metcnp4 25232 metcn4 25233 metsscmetcld 25237 cmetss 25238 relcmpcmet 25240 bcth2 25252 vmcn 30671 dipcn 30692 blocni 30777 ipasslem7 30808 ubthlem1 30842 ubthlem2 30843 minvecolem4b 30850 minvecolem4 30852 axhcompl-zf 30970 hlimadd 31165 hlim0 31207 occllem 31275 hmopidmchi 32123 fmcncfil 33936 ismtyhmeolem 37844 heiborlem9 37859 bfplem2 37863 |
| Copyright terms: Public domain | W3C validator |