![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mopnuni | Structured version Visualization version GIF version |
Description: The union of all open sets in a metric space is its underlying set. (Contributed by NM, 4-Sep-2006.) (Revised by Mario Carneiro, 12-Nov-2013.) |
Ref | Expression |
---|---|
mopnval.1 | β’ π½ = (MetOpenβπ·) |
Ref | Expression |
---|---|
mopnuni | β’ (π· β (βMetβπ) β π = βͺ π½) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mopnval.1 | . . 3 β’ π½ = (MetOpenβπ·) | |
2 | 1 | mopntopon 24265 | . 2 β’ (π· β (βMetβπ) β π½ β (TopOnβπ)) |
3 | toponuni 22736 | . 2 β’ (π½ β (TopOnβπ) β π = βͺ π½) | |
4 | 2, 3 | syl 17 | 1 β’ (π· β (βMetβπ) β π = βͺ π½) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1540 β wcel 2105 βͺ cuni 4908 βcfv 6543 βMetcxmet 21218 MetOpencmopn 21223 TopOnctopon 22732 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11172 ax-resscn 11173 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-mulcom 11180 ax-addass 11181 ax-mulass 11182 ax-distr 11183 ax-i2m1 11184 ax-1ne0 11185 ax-1rid 11186 ax-rnegex 11187 ax-rrecex 11188 ax-cnre 11189 ax-pre-lttri 11190 ax-pre-lttrn 11191 ax-pre-ltadd 11192 ax-pre-mulgt0 11193 ax-pre-sup 11194 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-1st 7979 df-2nd 7980 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-er 8709 df-map 8828 df-en 8946 df-dom 8947 df-sdom 8948 df-sup 9443 df-inf 9444 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 df-le 11261 df-sub 11453 df-neg 11454 df-div 11879 df-nn 12220 df-2 12282 df-n0 12480 df-z 12566 df-uz 12830 df-q 12940 df-rp 12982 df-xneg 13099 df-xadd 13100 df-xmul 13101 df-topgen 17396 df-psmet 21225 df-xmet 21226 df-bl 21228 df-mopn 21229 df-top 22716 df-topon 22733 df-bases 22769 |
This theorem is referenced by: mopnfss 24269 setsmstopn 24306 neibl 24330 lpbl 24332 blcld 24334 met1stc 24350 met2ndci 24351 met2ndc 24352 metcnpi 24373 metcnpi2 24374 metcnpi3 24375 tngtopn 24487 recld2 24650 xmetdcn 24674 metnrmlem1a 24694 metnrmlem1 24695 metnrmlem2 24696 metnrmlem3 24697 lebnumlem1 24807 lebnumlem3 24809 lebnum 24810 metelcls 25153 metcld 25154 flimcfil 25162 metsscmetcld 25163 cmetss 25164 cmpcmet 25167 bcthlem2 25173 bcthlem4 25175 bcthlem5 25176 bcth3 25179 heicant 36987 heibor1lem 37141 heibor1 37142 heiborlem3 37145 heiborlem8 37150 heiborlem10 37152 heibor 37153 |
Copyright terms: Public domain | W3C validator |