MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mopnuni Structured version   Visualization version   GIF version

Theorem mopnuni 23187
Description: The union of all open sets in a metric space is its underlying set. (Contributed by NM, 4-Sep-2006.) (Revised by Mario Carneiro, 12-Nov-2013.)
Hypothesis
Ref Expression
mopnval.1 𝐽 = (MetOpen‘𝐷)
Assertion
Ref Expression
mopnuni (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = 𝐽)

Proof of Theorem mopnuni
StepHypRef Expression
1 mopnval.1 . . 3 𝐽 = (MetOpen‘𝐷)
21mopntopon 23185 . 2 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ (TopOn‘𝑋))
3 toponuni 21658 . 2 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
42, 3syl 17 1 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = 𝐽)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wcel 2113   cuni 4793  cfv 6333  ∞Metcxmet 20195  MetOpencmopn 20200  TopOnctopon 21654
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2161  ax-12 2178  ax-ext 2710  ax-sep 5164  ax-nul 5171  ax-pow 5229  ax-pr 5293  ax-un 7473  ax-cnex 10664  ax-resscn 10665  ax-1cn 10666  ax-icn 10667  ax-addcl 10668  ax-addrcl 10669  ax-mulcl 10670  ax-mulrcl 10671  ax-mulcom 10672  ax-addass 10673  ax-mulass 10674  ax-distr 10675  ax-i2m1 10676  ax-1ne0 10677  ax-1rid 10678  ax-rnegex 10679  ax-rrecex 10680  ax-cnre 10681  ax-pre-lttri 10682  ax-pre-lttrn 10683  ax-pre-ltadd 10684  ax-pre-mulgt0 10685  ax-pre-sup 10686
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2074  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3399  df-sbc 3680  df-csb 3789  df-dif 3844  df-un 3846  df-in 3848  df-ss 3858  df-pss 3860  df-nul 4210  df-if 4412  df-pw 4487  df-sn 4514  df-pr 4516  df-tp 4518  df-op 4520  df-uni 4794  df-iun 4880  df-br 5028  df-opab 5090  df-mpt 5108  df-tr 5134  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6123  df-ord 6169  df-on 6170  df-lim 6171  df-suc 6172  df-iota 6291  df-fun 6335  df-fn 6336  df-f 6337  df-f1 6338  df-fo 6339  df-f1o 6340  df-fv 6341  df-riota 7121  df-ov 7167  df-oprab 7168  df-mpo 7169  df-om 7594  df-1st 7707  df-2nd 7708  df-wrecs 7969  df-recs 8030  df-rdg 8068  df-er 8313  df-map 8432  df-en 8549  df-dom 8550  df-sdom 8551  df-sup 8972  df-inf 8973  df-pnf 10748  df-mnf 10749  df-xr 10750  df-ltxr 10751  df-le 10752  df-sub 10943  df-neg 10944  df-div 11369  df-nn 11710  df-2 11772  df-n0 11970  df-z 12056  df-uz 12318  df-q 12424  df-rp 12466  df-xneg 12583  df-xadd 12584  df-xmul 12585  df-topgen 16813  df-psmet 20202  df-xmet 20203  df-bl 20205  df-mopn 20206  df-top 21638  df-topon 21655  df-bases 21690
This theorem is referenced by:  mopnfss  23189  setsmstopn  23224  neibl  23247  lpbl  23249  blcld  23251  met1stc  23267  met2ndci  23268  met2ndc  23269  metcnpi  23290  metcnpi2  23291  metcnpi3  23292  tngtopn  23396  recld2  23559  xmetdcn  23583  metnrmlem1a  23603  metnrmlem1  23604  metnrmlem2  23605  metnrmlem3  23606  lebnumlem1  23706  lebnumlem3  23708  lebnum  23709  metelcls  24050  metcld  24051  flimcfil  24059  metsscmetcld  24060  cmetss  24061  cmpcmet  24064  bcthlem2  24070  bcthlem4  24072  bcthlem5  24073  bcth3  24076  heicant  35424  heibor1lem  35579  heibor1  35580  heiborlem3  35583  heiborlem8  35588  heiborlem10  35590  heibor  35591
  Copyright terms: Public domain W3C validator