MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mopnuni Structured version   Visualization version   GIF version

Theorem mopnuni 22467
Description: The union of all open sets in a metric space is its underlying set. (Contributed by NM, 4-Sep-2006.) (Revised by Mario Carneiro, 12-Nov-2013.)
Hypothesis
Ref Expression
mopnval.1 𝐽 = (MetOpen‘𝐷)
Assertion
Ref Expression
mopnuni (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = 𝐽)

Proof of Theorem mopnuni
StepHypRef Expression
1 mopnval.1 . . 3 𝐽 = (MetOpen‘𝐷)
21mopntopon 22465 . 2 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ (TopOn‘𝑋))
3 toponuni 20940 . 2 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
42, 3syl 17 1 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = 𝐽)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1631  wcel 2145   cuni 4575  cfv 6032  ∞Metcxmt 19947  MetOpencmopn 19952  TopOnctopon 20936
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7097  ax-cnex 10195  ax-resscn 10196  ax-1cn 10197  ax-icn 10198  ax-addcl 10199  ax-addrcl 10200  ax-mulcl 10201  ax-mulrcl 10202  ax-mulcom 10203  ax-addass 10204  ax-mulass 10205  ax-distr 10206  ax-i2m1 10207  ax-1ne0 10208  ax-1rid 10209  ax-rnegex 10210  ax-rrecex 10211  ax-cnre 10212  ax-pre-lttri 10213  ax-pre-lttrn 10214  ax-pre-ltadd 10215  ax-pre-mulgt0 10216  ax-pre-sup 10217
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 829  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3589  df-csb 3684  df-dif 3727  df-un 3729  df-in 3731  df-ss 3738  df-pss 3740  df-nul 4065  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5824  df-ord 5870  df-on 5871  df-lim 5872  df-suc 5873  df-iota 5995  df-fun 6034  df-fn 6035  df-f 6036  df-f1 6037  df-fo 6038  df-f1o 6039  df-fv 6040  df-riota 6755  df-ov 6797  df-oprab 6798  df-mpt2 6799  df-om 7214  df-1st 7316  df-2nd 7317  df-wrecs 7560  df-recs 7622  df-rdg 7660  df-er 7897  df-map 8012  df-en 8111  df-dom 8112  df-sdom 8113  df-sup 8505  df-inf 8506  df-pnf 10279  df-mnf 10280  df-xr 10281  df-ltxr 10282  df-le 10283  df-sub 10471  df-neg 10472  df-div 10888  df-nn 11224  df-2 11282  df-n0 11496  df-z 11581  df-uz 11890  df-q 11993  df-rp 12037  df-xneg 12152  df-xadd 12153  df-xmul 12154  df-topgen 16313  df-psmet 19954  df-xmet 19955  df-bl 19957  df-mopn 19958  df-top 20920  df-topon 20937  df-bases 20972
This theorem is referenced by:  mopnfss  22469  setsmstopn  22504  neibl  22527  lpbl  22529  blcld  22531  met1stc  22547  met2ndci  22548  met2ndc  22549  metcnpi  22570  metcnpi2  22571  metcnpi3  22572  tngtopn  22675  recld2  22838  xmetdcn  22862  metnrmlem1a  22882  metnrmlem1  22883  metnrmlem2  22884  metnrmlem3  22885  lebnumlem1  22981  lebnumlem3  22983  lebnum  22984  metelcls  23323  metcld  23324  flimcfil  23332  cmetss  23333  cmpcmet  23336  bcthlem2  23342  bcthlem4  23344  bcthlem5  23345  bcth3  23348  heicant  33778  heibor1lem  33941  heibor1  33942  heiborlem3  33945  heiborlem8  33950  heiborlem10  33952  heibor  33953
  Copyright terms: Public domain W3C validator