Step | Hyp | Ref
| Expression |
1 | | fvex 6769 |
. . . . . . . . 9
⊢
(mCN‘𝑇) ∈
V |
2 | | mrsubvr.v |
. . . . . . . . . 10
⊢ 𝑉 = (mVR‘𝑇) |
3 | 2 | fvexi 6770 |
. . . . . . . . 9
⊢ 𝑉 ∈ V |
4 | 1, 3 | unex 7574 |
. . . . . . . 8
⊢
((mCN‘𝑇) ∪
𝑉) ∈
V |
5 | | eqid 2738 |
. . . . . . . . 9
⊢
(freeMnd‘((mCN‘𝑇) ∪ 𝑉)) = (freeMnd‘((mCN‘𝑇) ∪ 𝑉)) |
6 | 5 | frmdmnd 18413 |
. . . . . . . 8
⊢
(((mCN‘𝑇)
∪ 𝑉) ∈ V →
(freeMnd‘((mCN‘𝑇) ∪ 𝑉)) ∈ Mnd) |
7 | 4, 6 | mp1i 13 |
. . . . . . 7
⊢ (((𝑇 ∈ 𝑊 ∧ 𝑓 ∈ (𝑅 ↑pm 𝑉)) ∧ 𝑒 ∈ 𝑅) → (freeMnd‘((mCN‘𝑇) ∪ 𝑉)) ∈ Mnd) |
8 | | simpr 484 |
. . . . . . . . 9
⊢ (((𝑇 ∈ 𝑊 ∧ 𝑓 ∈ (𝑅 ↑pm 𝑉)) ∧ 𝑒 ∈ 𝑅) → 𝑒 ∈ 𝑅) |
9 | | eqid 2738 |
. . . . . . . . . . 11
⊢
(mCN‘𝑇) =
(mCN‘𝑇) |
10 | | mrsubvr.r |
. . . . . . . . . . 11
⊢ 𝑅 = (mREx‘𝑇) |
11 | 9, 2, 10 | mrexval 33363 |
. . . . . . . . . 10
⊢ (𝑇 ∈ 𝑊 → 𝑅 = Word ((mCN‘𝑇) ∪ 𝑉)) |
12 | 11 | ad2antrr 722 |
. . . . . . . . 9
⊢ (((𝑇 ∈ 𝑊 ∧ 𝑓 ∈ (𝑅 ↑pm 𝑉)) ∧ 𝑒 ∈ 𝑅) → 𝑅 = Word ((mCN‘𝑇) ∪ 𝑉)) |
13 | 8, 12 | eleqtrd 2841 |
. . . . . . . 8
⊢ (((𝑇 ∈ 𝑊 ∧ 𝑓 ∈ (𝑅 ↑pm 𝑉)) ∧ 𝑒 ∈ 𝑅) → 𝑒 ∈ Word ((mCN‘𝑇) ∪ 𝑉)) |
14 | | elpmi 8592 |
. . . . . . . . . . . . . 14
⊢ (𝑓 ∈ (𝑅 ↑pm 𝑉) → (𝑓:dom 𝑓⟶𝑅 ∧ dom 𝑓 ⊆ 𝑉)) |
15 | 14 | simpld 494 |
. . . . . . . . . . . . 13
⊢ (𝑓 ∈ (𝑅 ↑pm 𝑉) → 𝑓:dom 𝑓⟶𝑅) |
16 | 15 | ad3antlr 727 |
. . . . . . . . . . . 12
⊢ ((((𝑇 ∈ 𝑊 ∧ 𝑓 ∈ (𝑅 ↑pm 𝑉)) ∧ 𝑒 ∈ 𝑅) ∧ 𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉)) → 𝑓:dom 𝑓⟶𝑅) |
17 | 16 | ffvelrnda 6943 |
. . . . . . . . . . 11
⊢
(((((𝑇 ∈ 𝑊 ∧ 𝑓 ∈ (𝑅 ↑pm 𝑉)) ∧ 𝑒 ∈ 𝑅) ∧ 𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉)) ∧ 𝑣 ∈ dom 𝑓) → (𝑓‘𝑣) ∈ 𝑅) |
18 | 12 | ad2antrr 722 |
. . . . . . . . . . 11
⊢
(((((𝑇 ∈ 𝑊 ∧ 𝑓 ∈ (𝑅 ↑pm 𝑉)) ∧ 𝑒 ∈ 𝑅) ∧ 𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉)) ∧ 𝑣 ∈ dom 𝑓) → 𝑅 = Word ((mCN‘𝑇) ∪ 𝑉)) |
19 | 17, 18 | eleqtrd 2841 |
. . . . . . . . . 10
⊢
(((((𝑇 ∈ 𝑊 ∧ 𝑓 ∈ (𝑅 ↑pm 𝑉)) ∧ 𝑒 ∈ 𝑅) ∧ 𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉)) ∧ 𝑣 ∈ dom 𝑓) → (𝑓‘𝑣) ∈ Word ((mCN‘𝑇) ∪ 𝑉)) |
20 | | simplr 765 |
. . . . . . . . . . 11
⊢
(((((𝑇 ∈ 𝑊 ∧ 𝑓 ∈ (𝑅 ↑pm 𝑉)) ∧ 𝑒 ∈ 𝑅) ∧ 𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉)) ∧ ¬ 𝑣 ∈ dom 𝑓) → 𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉)) |
21 | 20 | s1cld 14236 |
. . . . . . . . . 10
⊢
(((((𝑇 ∈ 𝑊 ∧ 𝑓 ∈ (𝑅 ↑pm 𝑉)) ∧ 𝑒 ∈ 𝑅) ∧ 𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉)) ∧ ¬ 𝑣 ∈ dom 𝑓) → 〈“𝑣”〉 ∈ Word ((mCN‘𝑇) ∪ 𝑉)) |
22 | 19, 21 | ifclda 4491 |
. . . . . . . . 9
⊢ ((((𝑇 ∈ 𝑊 ∧ 𝑓 ∈ (𝑅 ↑pm 𝑉)) ∧ 𝑒 ∈ 𝑅) ∧ 𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉)) → if(𝑣 ∈ dom 𝑓, (𝑓‘𝑣), 〈“𝑣”〉) ∈ Word ((mCN‘𝑇) ∪ 𝑉)) |
23 | 22 | fmpttd 6971 |
. . . . . . . 8
⊢ (((𝑇 ∈ 𝑊 ∧ 𝑓 ∈ (𝑅 ↑pm 𝑉)) ∧ 𝑒 ∈ 𝑅) → (𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓‘𝑣), 〈“𝑣”〉)):((mCN‘𝑇) ∪ 𝑉)⟶Word ((mCN‘𝑇) ∪ 𝑉)) |
24 | | wrdco 14472 |
. . . . . . . 8
⊢ ((𝑒 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ (𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓‘𝑣), 〈“𝑣”〉)):((mCN‘𝑇) ∪ 𝑉)⟶Word ((mCN‘𝑇) ∪ 𝑉)) → ((𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓‘𝑣), 〈“𝑣”〉)) ∘ 𝑒) ∈ Word Word ((mCN‘𝑇) ∪ 𝑉)) |
25 | 13, 23, 24 | syl2anc 583 |
. . . . . . 7
⊢ (((𝑇 ∈ 𝑊 ∧ 𝑓 ∈ (𝑅 ↑pm 𝑉)) ∧ 𝑒 ∈ 𝑅) → ((𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓‘𝑣), 〈“𝑣”〉)) ∘ 𝑒) ∈ Word Word ((mCN‘𝑇) ∪ 𝑉)) |
26 | | eqid 2738 |
. . . . . . . . . . 11
⊢
(Base‘(freeMnd‘((mCN‘𝑇) ∪ 𝑉))) =
(Base‘(freeMnd‘((mCN‘𝑇) ∪ 𝑉))) |
27 | 5, 26 | frmdbas 18406 |
. . . . . . . . . 10
⊢
(((mCN‘𝑇)
∪ 𝑉) ∈ V →
(Base‘(freeMnd‘((mCN‘𝑇) ∪ 𝑉))) = Word ((mCN‘𝑇) ∪ 𝑉)) |
28 | 4, 27 | ax-mp 5 |
. . . . . . . . 9
⊢
(Base‘(freeMnd‘((mCN‘𝑇) ∪ 𝑉))) = Word ((mCN‘𝑇) ∪ 𝑉) |
29 | 28 | eqcomi 2747 |
. . . . . . . 8
⊢ Word
((mCN‘𝑇) ∪ 𝑉) =
(Base‘(freeMnd‘((mCN‘𝑇) ∪ 𝑉))) |
30 | 29 | gsumwcl 18392 |
. . . . . . 7
⊢
(((freeMnd‘((mCN‘𝑇) ∪ 𝑉)) ∈ Mnd ∧ ((𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓‘𝑣), 〈“𝑣”〉)) ∘ 𝑒) ∈ Word Word ((mCN‘𝑇) ∪ 𝑉)) → ((freeMnd‘((mCN‘𝑇) ∪ 𝑉)) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓‘𝑣), 〈“𝑣”〉)) ∘ 𝑒)) ∈ Word ((mCN‘𝑇) ∪ 𝑉)) |
31 | 7, 25, 30 | syl2anc 583 |
. . . . . 6
⊢ (((𝑇 ∈ 𝑊 ∧ 𝑓 ∈ (𝑅 ↑pm 𝑉)) ∧ 𝑒 ∈ 𝑅) → ((freeMnd‘((mCN‘𝑇) ∪ 𝑉)) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓‘𝑣), 〈“𝑣”〉)) ∘ 𝑒)) ∈ Word ((mCN‘𝑇) ∪ 𝑉)) |
32 | 31, 12 | eleqtrrd 2842 |
. . . . 5
⊢ (((𝑇 ∈ 𝑊 ∧ 𝑓 ∈ (𝑅 ↑pm 𝑉)) ∧ 𝑒 ∈ 𝑅) → ((freeMnd‘((mCN‘𝑇) ∪ 𝑉)) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓‘𝑣), 〈“𝑣”〉)) ∘ 𝑒)) ∈ 𝑅) |
33 | 32 | fmpttd 6971 |
. . . 4
⊢ ((𝑇 ∈ 𝑊 ∧ 𝑓 ∈ (𝑅 ↑pm 𝑉)) → (𝑒 ∈ 𝑅 ↦ ((freeMnd‘((mCN‘𝑇) ∪ 𝑉)) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓‘𝑣), 〈“𝑣”〉)) ∘ 𝑒))):𝑅⟶𝑅) |
34 | 10 | fvexi 6770 |
. . . . 5
⊢ 𝑅 ∈ V |
35 | 34, 34 | elmap 8617 |
. . . 4
⊢ ((𝑒 ∈ 𝑅 ↦ ((freeMnd‘((mCN‘𝑇) ∪ 𝑉)) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓‘𝑣), 〈“𝑣”〉)) ∘ 𝑒))) ∈ (𝑅 ↑m 𝑅) ↔ (𝑒 ∈ 𝑅 ↦ ((freeMnd‘((mCN‘𝑇) ∪ 𝑉)) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓‘𝑣), 〈“𝑣”〉)) ∘ 𝑒))):𝑅⟶𝑅) |
36 | 33, 35 | sylibr 233 |
. . 3
⊢ ((𝑇 ∈ 𝑊 ∧ 𝑓 ∈ (𝑅 ↑pm 𝑉)) → (𝑒 ∈ 𝑅 ↦ ((freeMnd‘((mCN‘𝑇) ∪ 𝑉)) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓‘𝑣), 〈“𝑣”〉)) ∘ 𝑒))) ∈ (𝑅 ↑m 𝑅)) |
37 | 36 | fmpttd 6971 |
. 2
⊢ (𝑇 ∈ 𝑊 → (𝑓 ∈ (𝑅 ↑pm 𝑉) ↦ (𝑒 ∈ 𝑅 ↦ ((freeMnd‘((mCN‘𝑇) ∪ 𝑉)) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓‘𝑣), 〈“𝑣”〉)) ∘ 𝑒)))):(𝑅 ↑pm 𝑉)⟶(𝑅 ↑m 𝑅)) |
38 | | mrsubvr.s |
. . . 4
⊢ 𝑆 = (mRSubst‘𝑇) |
39 | 9, 2, 10, 38, 5 | mrsubffval 33369 |
. . 3
⊢ (𝑇 ∈ 𝑊 → 𝑆 = (𝑓 ∈ (𝑅 ↑pm 𝑉) ↦ (𝑒 ∈ 𝑅 ↦ ((freeMnd‘((mCN‘𝑇) ∪ 𝑉)) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓‘𝑣), 〈“𝑣”〉)) ∘ 𝑒))))) |
40 | 39 | feq1d 6569 |
. 2
⊢ (𝑇 ∈ 𝑊 → (𝑆:(𝑅 ↑pm 𝑉)⟶(𝑅 ↑m 𝑅) ↔ (𝑓 ∈ (𝑅 ↑pm 𝑉) ↦ (𝑒 ∈ 𝑅 ↦ ((freeMnd‘((mCN‘𝑇) ∪ 𝑉)) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓‘𝑣), 〈“𝑣”〉)) ∘ 𝑒)))):(𝑅 ↑pm 𝑉)⟶(𝑅 ↑m 𝑅))) |
41 | 37, 40 | mpbird 256 |
1
⊢ (𝑇 ∈ 𝑊 → 𝑆:(𝑅 ↑pm 𝑉)⟶(𝑅 ↑m 𝑅)) |