Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mrsubff Structured version   Visualization version   GIF version

Theorem mrsubff 31918
Description: A substitution is a function from 𝑅 to 𝑅. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mrsubvr.v 𝑉 = (mVR‘𝑇)
mrsubvr.r 𝑅 = (mREx‘𝑇)
mrsubvr.s 𝑆 = (mRSubst‘𝑇)
Assertion
Ref Expression
mrsubff (𝑇𝑊𝑆:(𝑅pm 𝑉)⟶(𝑅𝑚 𝑅))

Proof of Theorem mrsubff
Dummy variables 𝑒 𝑓 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvex 6422 . . . . . . . . 9 (mCN‘𝑇) ∈ V
2 mrsubvr.v . . . . . . . . . 10 𝑉 = (mVR‘𝑇)
32fvexi 6423 . . . . . . . . 9 𝑉 ∈ V
41, 3unex 7188 . . . . . . . 8 ((mCN‘𝑇) ∪ 𝑉) ∈ V
5 eqid 2797 . . . . . . . . 9 (freeMnd‘((mCN‘𝑇) ∪ 𝑉)) = (freeMnd‘((mCN‘𝑇) ∪ 𝑉))
65frmdmnd 17709 . . . . . . . 8 (((mCN‘𝑇) ∪ 𝑉) ∈ V → (freeMnd‘((mCN‘𝑇) ∪ 𝑉)) ∈ Mnd)
74, 6mp1i 13 . . . . . . 7 (((𝑇𝑊𝑓 ∈ (𝑅pm 𝑉)) ∧ 𝑒𝑅) → (freeMnd‘((mCN‘𝑇) ∪ 𝑉)) ∈ Mnd)
8 simpr 478 . . . . . . . . 9 (((𝑇𝑊𝑓 ∈ (𝑅pm 𝑉)) ∧ 𝑒𝑅) → 𝑒𝑅)
9 eqid 2797 . . . . . . . . . . 11 (mCN‘𝑇) = (mCN‘𝑇)
10 mrsubvr.r . . . . . . . . . . 11 𝑅 = (mREx‘𝑇)
119, 2, 10mrexval 31907 . . . . . . . . . 10 (𝑇𝑊𝑅 = Word ((mCN‘𝑇) ∪ 𝑉))
1211ad2antrr 718 . . . . . . . . 9 (((𝑇𝑊𝑓 ∈ (𝑅pm 𝑉)) ∧ 𝑒𝑅) → 𝑅 = Word ((mCN‘𝑇) ∪ 𝑉))
138, 12eleqtrd 2878 . . . . . . . 8 (((𝑇𝑊𝑓 ∈ (𝑅pm 𝑉)) ∧ 𝑒𝑅) → 𝑒 ∈ Word ((mCN‘𝑇) ∪ 𝑉))
14 elpmi 8112 . . . . . . . . . . . . . 14 (𝑓 ∈ (𝑅pm 𝑉) → (𝑓:dom 𝑓𝑅 ∧ dom 𝑓𝑉))
1514simpld 489 . . . . . . . . . . . . 13 (𝑓 ∈ (𝑅pm 𝑉) → 𝑓:dom 𝑓𝑅)
1615ad3antlr 723 . . . . . . . . . . . 12 ((((𝑇𝑊𝑓 ∈ (𝑅pm 𝑉)) ∧ 𝑒𝑅) ∧ 𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉)) → 𝑓:dom 𝑓𝑅)
1716ffvelrnda 6583 . . . . . . . . . . 11 (((((𝑇𝑊𝑓 ∈ (𝑅pm 𝑉)) ∧ 𝑒𝑅) ∧ 𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉)) ∧ 𝑣 ∈ dom 𝑓) → (𝑓𝑣) ∈ 𝑅)
1812ad2antrr 718 . . . . . . . . . . 11 (((((𝑇𝑊𝑓 ∈ (𝑅pm 𝑉)) ∧ 𝑒𝑅) ∧ 𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉)) ∧ 𝑣 ∈ dom 𝑓) → 𝑅 = Word ((mCN‘𝑇) ∪ 𝑉))
1917, 18eleqtrd 2878 . . . . . . . . . 10 (((((𝑇𝑊𝑓 ∈ (𝑅pm 𝑉)) ∧ 𝑒𝑅) ∧ 𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉)) ∧ 𝑣 ∈ dom 𝑓) → (𝑓𝑣) ∈ Word ((mCN‘𝑇) ∪ 𝑉))
20 simplr 786 . . . . . . . . . . 11 (((((𝑇𝑊𝑓 ∈ (𝑅pm 𝑉)) ∧ 𝑒𝑅) ∧ 𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉)) ∧ ¬ 𝑣 ∈ dom 𝑓) → 𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉))
2120s1cld 13619 . . . . . . . . . 10 (((((𝑇𝑊𝑓 ∈ (𝑅pm 𝑉)) ∧ 𝑒𝑅) ∧ 𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉)) ∧ ¬ 𝑣 ∈ dom 𝑓) → ⟨“𝑣”⟩ ∈ Word ((mCN‘𝑇) ∪ 𝑉))
2219, 21ifclda 4309 . . . . . . . . 9 ((((𝑇𝑊𝑓 ∈ (𝑅pm 𝑉)) ∧ 𝑒𝑅) ∧ 𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉)) → if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩) ∈ Word ((mCN‘𝑇) ∪ 𝑉))
2322fmpttd 6609 . . . . . . . 8 (((𝑇𝑊𝑓 ∈ (𝑅pm 𝑉)) ∧ 𝑒𝑅) → (𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)):((mCN‘𝑇) ∪ 𝑉)⟶Word ((mCN‘𝑇) ∪ 𝑉))
24 wrdco 13913 . . . . . . . 8 ((𝑒 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ (𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)):((mCN‘𝑇) ∪ 𝑉)⟶Word ((mCN‘𝑇) ∪ 𝑉)) → ((𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑒) ∈ Word Word ((mCN‘𝑇) ∪ 𝑉))
2513, 23, 24syl2anc 580 . . . . . . 7 (((𝑇𝑊𝑓 ∈ (𝑅pm 𝑉)) ∧ 𝑒𝑅) → ((𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑒) ∈ Word Word ((mCN‘𝑇) ∪ 𝑉))
26 eqid 2797 . . . . . . . . . . 11 (Base‘(freeMnd‘((mCN‘𝑇) ∪ 𝑉))) = (Base‘(freeMnd‘((mCN‘𝑇) ∪ 𝑉)))
275, 26frmdbas 17702 . . . . . . . . . 10 (((mCN‘𝑇) ∪ 𝑉) ∈ V → (Base‘(freeMnd‘((mCN‘𝑇) ∪ 𝑉))) = Word ((mCN‘𝑇) ∪ 𝑉))
284, 27ax-mp 5 . . . . . . . . 9 (Base‘(freeMnd‘((mCN‘𝑇) ∪ 𝑉))) = Word ((mCN‘𝑇) ∪ 𝑉)
2928eqcomi 2806 . . . . . . . 8 Word ((mCN‘𝑇) ∪ 𝑉) = (Base‘(freeMnd‘((mCN‘𝑇) ∪ 𝑉)))
3029gsumwcl 17689 . . . . . . 7 (((freeMnd‘((mCN‘𝑇) ∪ 𝑉)) ∈ Mnd ∧ ((𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑒) ∈ Word Word ((mCN‘𝑇) ∪ 𝑉)) → ((freeMnd‘((mCN‘𝑇) ∪ 𝑉)) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑒)) ∈ Word ((mCN‘𝑇) ∪ 𝑉))
317, 25, 30syl2anc 580 . . . . . 6 (((𝑇𝑊𝑓 ∈ (𝑅pm 𝑉)) ∧ 𝑒𝑅) → ((freeMnd‘((mCN‘𝑇) ∪ 𝑉)) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑒)) ∈ Word ((mCN‘𝑇) ∪ 𝑉))
3231, 12eleqtrrd 2879 . . . . 5 (((𝑇𝑊𝑓 ∈ (𝑅pm 𝑉)) ∧ 𝑒𝑅) → ((freeMnd‘((mCN‘𝑇) ∪ 𝑉)) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑒)) ∈ 𝑅)
3332fmpttd 6609 . . . 4 ((𝑇𝑊𝑓 ∈ (𝑅pm 𝑉)) → (𝑒𝑅 ↦ ((freeMnd‘((mCN‘𝑇) ∪ 𝑉)) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑒))):𝑅𝑅)
3410fvexi 6423 . . . . 5 𝑅 ∈ V
3534, 34elmap 8122 . . . 4 ((𝑒𝑅 ↦ ((freeMnd‘((mCN‘𝑇) ∪ 𝑉)) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑒))) ∈ (𝑅𝑚 𝑅) ↔ (𝑒𝑅 ↦ ((freeMnd‘((mCN‘𝑇) ∪ 𝑉)) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑒))):𝑅𝑅)
3633, 35sylibr 226 . . 3 ((𝑇𝑊𝑓 ∈ (𝑅pm 𝑉)) → (𝑒𝑅 ↦ ((freeMnd‘((mCN‘𝑇) ∪ 𝑉)) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑒))) ∈ (𝑅𝑚 𝑅))
3736fmpttd 6609 . 2 (𝑇𝑊 → (𝑓 ∈ (𝑅pm 𝑉) ↦ (𝑒𝑅 ↦ ((freeMnd‘((mCN‘𝑇) ∪ 𝑉)) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑒)))):(𝑅pm 𝑉)⟶(𝑅𝑚 𝑅))
38 mrsubvr.s . . . 4 𝑆 = (mRSubst‘𝑇)
399, 2, 10, 38, 5mrsubffval 31913 . . 3 (𝑇𝑊𝑆 = (𝑓 ∈ (𝑅pm 𝑉) ↦ (𝑒𝑅 ↦ ((freeMnd‘((mCN‘𝑇) ∪ 𝑉)) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑒)))))
4039feq1d 6239 . 2 (𝑇𝑊 → (𝑆:(𝑅pm 𝑉)⟶(𝑅𝑚 𝑅) ↔ (𝑓 ∈ (𝑅pm 𝑉) ↦ (𝑒𝑅 ↦ ((freeMnd‘((mCN‘𝑇) ∪ 𝑉)) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑒)))):(𝑅pm 𝑉)⟶(𝑅𝑚 𝑅)))
4137, 40mpbird 249 1 (𝑇𝑊𝑆:(𝑅pm 𝑉)⟶(𝑅𝑚 𝑅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 385   = wceq 1653  wcel 2157  Vcvv 3383  cun 3765  wss 3767  ifcif 4275  cmpt 4920  dom cdm 5310  ccom 5314  wf 6095  cfv 6099  (class class class)co 6876  𝑚 cmap 8093  pm cpm 8094  Word cword 13530  ⟨“cs1 13611  Basecbs 16181   Σg cgsu 16413  Mndcmnd 17606  freeMndcfrmd 17697  mCNcmcn 31866  mVRcmvar 31867  mRExcmrex 31872  mRSubstcmrsub 31876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2354  ax-ext 2775  ax-rep 4962  ax-sep 4973  ax-nul 4981  ax-pow 5033  ax-pr 5095  ax-un 7181  ax-cnex 10278  ax-resscn 10279  ax-1cn 10280  ax-icn 10281  ax-addcl 10282  ax-addrcl 10283  ax-mulcl 10284  ax-mulrcl 10285  ax-mulcom 10286  ax-addass 10287  ax-mulass 10288  ax-distr 10289  ax-i2m1 10290  ax-1ne0 10291  ax-1rid 10292  ax-rnegex 10293  ax-rrecex 10294  ax-cnre 10295  ax-pre-lttri 10296  ax-pre-lttrn 10297  ax-pre-ltadd 10298  ax-pre-mulgt0 10299
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2590  df-eu 2607  df-clab 2784  df-cleq 2790  df-clel 2793  df-nfc 2928  df-ne 2970  df-nel 3073  df-ral 3092  df-rex 3093  df-reu 3094  df-rmo 3095  df-rab 3096  df-v 3385  df-sbc 3632  df-csb 3727  df-dif 3770  df-un 3772  df-in 3774  df-ss 3781  df-pss 3783  df-nul 4114  df-if 4276  df-pw 4349  df-sn 4367  df-pr 4369  df-tp 4371  df-op 4373  df-uni 4627  df-int 4666  df-iun 4710  df-br 4842  df-opab 4904  df-mpt 4921  df-tr 4944  df-id 5218  df-eprel 5223  df-po 5231  df-so 5232  df-fr 5269  df-we 5271  df-xp 5316  df-rel 5317  df-cnv 5318  df-co 5319  df-dm 5320  df-rn 5321  df-res 5322  df-ima 5323  df-pred 5896  df-ord 5942  df-on 5943  df-lim 5944  df-suc 5945  df-iota 6062  df-fun 6101  df-fn 6102  df-f 6103  df-f1 6104  df-fo 6105  df-f1o 6106  df-fv 6107  df-riota 6837  df-ov 6879  df-oprab 6880  df-mpt2 6881  df-om 7298  df-1st 7399  df-2nd 7400  df-wrecs 7643  df-recs 7705  df-rdg 7743  df-1o 7797  df-oadd 7801  df-er 7980  df-map 8095  df-pm 8096  df-en 8194  df-dom 8195  df-sdom 8196  df-fin 8197  df-card 9049  df-pnf 10363  df-mnf 10364  df-xr 10365  df-ltxr 10366  df-le 10367  df-sub 10556  df-neg 10557  df-nn 11311  df-2 11372  df-n0 11577  df-z 11663  df-uz 11927  df-fz 12577  df-fzo 12717  df-seq 13052  df-hash 13367  df-word 13531  df-concat 13587  df-s1 13612  df-struct 16183  df-ndx 16184  df-slot 16185  df-base 16187  df-sets 16188  df-ress 16189  df-plusg 16277  df-0g 16414  df-gsum 16415  df-mgm 17554  df-sgrp 17596  df-mnd 17607  df-submnd 17648  df-frmd 17699  df-mrex 31892  df-mrsub 31896
This theorem is referenced by:  mrsubrn  31919  mrsubff1  31920  mrsub0  31922  mrsubf  31923  mrsubccat  31924  mrsubcn  31925  elmrsubrn  31926  elmsubrn  31934  msubrn  31935  msubff  31936  msubff1  31962
  Copyright terms: Public domain W3C validator