Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mrsubff Structured version   Visualization version   GIF version

Theorem mrsubff 32656
Description: A substitution is a function from 𝑅 to 𝑅. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mrsubvr.v 𝑉 = (mVR‘𝑇)
mrsubvr.r 𝑅 = (mREx‘𝑇)
mrsubvr.s 𝑆 = (mRSubst‘𝑇)
Assertion
Ref Expression
mrsubff (𝑇𝑊𝑆:(𝑅pm 𝑉)⟶(𝑅m 𝑅))

Proof of Theorem mrsubff
Dummy variables 𝑒 𝑓 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvex 6676 . . . . . . . . 9 (mCN‘𝑇) ∈ V
2 mrsubvr.v . . . . . . . . . 10 𝑉 = (mVR‘𝑇)
32fvexi 6677 . . . . . . . . 9 𝑉 ∈ V
41, 3unex 7458 . . . . . . . 8 ((mCN‘𝑇) ∪ 𝑉) ∈ V
5 eqid 2818 . . . . . . . . 9 (freeMnd‘((mCN‘𝑇) ∪ 𝑉)) = (freeMnd‘((mCN‘𝑇) ∪ 𝑉))
65frmdmnd 18012 . . . . . . . 8 (((mCN‘𝑇) ∪ 𝑉) ∈ V → (freeMnd‘((mCN‘𝑇) ∪ 𝑉)) ∈ Mnd)
74, 6mp1i 13 . . . . . . 7 (((𝑇𝑊𝑓 ∈ (𝑅pm 𝑉)) ∧ 𝑒𝑅) → (freeMnd‘((mCN‘𝑇) ∪ 𝑉)) ∈ Mnd)
8 simpr 485 . . . . . . . . 9 (((𝑇𝑊𝑓 ∈ (𝑅pm 𝑉)) ∧ 𝑒𝑅) → 𝑒𝑅)
9 eqid 2818 . . . . . . . . . . 11 (mCN‘𝑇) = (mCN‘𝑇)
10 mrsubvr.r . . . . . . . . . . 11 𝑅 = (mREx‘𝑇)
119, 2, 10mrexval 32645 . . . . . . . . . 10 (𝑇𝑊𝑅 = Word ((mCN‘𝑇) ∪ 𝑉))
1211ad2antrr 722 . . . . . . . . 9 (((𝑇𝑊𝑓 ∈ (𝑅pm 𝑉)) ∧ 𝑒𝑅) → 𝑅 = Word ((mCN‘𝑇) ∪ 𝑉))
138, 12eleqtrd 2912 . . . . . . . 8 (((𝑇𝑊𝑓 ∈ (𝑅pm 𝑉)) ∧ 𝑒𝑅) → 𝑒 ∈ Word ((mCN‘𝑇) ∪ 𝑉))
14 elpmi 8414 . . . . . . . . . . . . . 14 (𝑓 ∈ (𝑅pm 𝑉) → (𝑓:dom 𝑓𝑅 ∧ dom 𝑓𝑉))
1514simpld 495 . . . . . . . . . . . . 13 (𝑓 ∈ (𝑅pm 𝑉) → 𝑓:dom 𝑓𝑅)
1615ad3antlr 727 . . . . . . . . . . . 12 ((((𝑇𝑊𝑓 ∈ (𝑅pm 𝑉)) ∧ 𝑒𝑅) ∧ 𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉)) → 𝑓:dom 𝑓𝑅)
1716ffvelrnda 6843 . . . . . . . . . . 11 (((((𝑇𝑊𝑓 ∈ (𝑅pm 𝑉)) ∧ 𝑒𝑅) ∧ 𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉)) ∧ 𝑣 ∈ dom 𝑓) → (𝑓𝑣) ∈ 𝑅)
1812ad2antrr 722 . . . . . . . . . . 11 (((((𝑇𝑊𝑓 ∈ (𝑅pm 𝑉)) ∧ 𝑒𝑅) ∧ 𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉)) ∧ 𝑣 ∈ dom 𝑓) → 𝑅 = Word ((mCN‘𝑇) ∪ 𝑉))
1917, 18eleqtrd 2912 . . . . . . . . . 10 (((((𝑇𝑊𝑓 ∈ (𝑅pm 𝑉)) ∧ 𝑒𝑅) ∧ 𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉)) ∧ 𝑣 ∈ dom 𝑓) → (𝑓𝑣) ∈ Word ((mCN‘𝑇) ∪ 𝑉))
20 simplr 765 . . . . . . . . . . 11 (((((𝑇𝑊𝑓 ∈ (𝑅pm 𝑉)) ∧ 𝑒𝑅) ∧ 𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉)) ∧ ¬ 𝑣 ∈ dom 𝑓) → 𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉))
2120s1cld 13945 . . . . . . . . . 10 (((((𝑇𝑊𝑓 ∈ (𝑅pm 𝑉)) ∧ 𝑒𝑅) ∧ 𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉)) ∧ ¬ 𝑣 ∈ dom 𝑓) → ⟨“𝑣”⟩ ∈ Word ((mCN‘𝑇) ∪ 𝑉))
2219, 21ifclda 4497 . . . . . . . . 9 ((((𝑇𝑊𝑓 ∈ (𝑅pm 𝑉)) ∧ 𝑒𝑅) ∧ 𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉)) → if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩) ∈ Word ((mCN‘𝑇) ∪ 𝑉))
2322fmpttd 6871 . . . . . . . 8 (((𝑇𝑊𝑓 ∈ (𝑅pm 𝑉)) ∧ 𝑒𝑅) → (𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)):((mCN‘𝑇) ∪ 𝑉)⟶Word ((mCN‘𝑇) ∪ 𝑉))
24 wrdco 14181 . . . . . . . 8 ((𝑒 ∈ Word ((mCN‘𝑇) ∪ 𝑉) ∧ (𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)):((mCN‘𝑇) ∪ 𝑉)⟶Word ((mCN‘𝑇) ∪ 𝑉)) → ((𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑒) ∈ Word Word ((mCN‘𝑇) ∪ 𝑉))
2513, 23, 24syl2anc 584 . . . . . . 7 (((𝑇𝑊𝑓 ∈ (𝑅pm 𝑉)) ∧ 𝑒𝑅) → ((𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑒) ∈ Word Word ((mCN‘𝑇) ∪ 𝑉))
26 eqid 2818 . . . . . . . . . . 11 (Base‘(freeMnd‘((mCN‘𝑇) ∪ 𝑉))) = (Base‘(freeMnd‘((mCN‘𝑇) ∪ 𝑉)))
275, 26frmdbas 18005 . . . . . . . . . 10 (((mCN‘𝑇) ∪ 𝑉) ∈ V → (Base‘(freeMnd‘((mCN‘𝑇) ∪ 𝑉))) = Word ((mCN‘𝑇) ∪ 𝑉))
284, 27ax-mp 5 . . . . . . . . 9 (Base‘(freeMnd‘((mCN‘𝑇) ∪ 𝑉))) = Word ((mCN‘𝑇) ∪ 𝑉)
2928eqcomi 2827 . . . . . . . 8 Word ((mCN‘𝑇) ∪ 𝑉) = (Base‘(freeMnd‘((mCN‘𝑇) ∪ 𝑉)))
3029gsumwcl 17991 . . . . . . 7 (((freeMnd‘((mCN‘𝑇) ∪ 𝑉)) ∈ Mnd ∧ ((𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑒) ∈ Word Word ((mCN‘𝑇) ∪ 𝑉)) → ((freeMnd‘((mCN‘𝑇) ∪ 𝑉)) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑒)) ∈ Word ((mCN‘𝑇) ∪ 𝑉))
317, 25, 30syl2anc 584 . . . . . 6 (((𝑇𝑊𝑓 ∈ (𝑅pm 𝑉)) ∧ 𝑒𝑅) → ((freeMnd‘((mCN‘𝑇) ∪ 𝑉)) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑒)) ∈ Word ((mCN‘𝑇) ∪ 𝑉))
3231, 12eleqtrrd 2913 . . . . 5 (((𝑇𝑊𝑓 ∈ (𝑅pm 𝑉)) ∧ 𝑒𝑅) → ((freeMnd‘((mCN‘𝑇) ∪ 𝑉)) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑒)) ∈ 𝑅)
3332fmpttd 6871 . . . 4 ((𝑇𝑊𝑓 ∈ (𝑅pm 𝑉)) → (𝑒𝑅 ↦ ((freeMnd‘((mCN‘𝑇) ∪ 𝑉)) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑒))):𝑅𝑅)
3410fvexi 6677 . . . . 5 𝑅 ∈ V
3534, 34elmap 8424 . . . 4 ((𝑒𝑅 ↦ ((freeMnd‘((mCN‘𝑇) ∪ 𝑉)) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑒))) ∈ (𝑅m 𝑅) ↔ (𝑒𝑅 ↦ ((freeMnd‘((mCN‘𝑇) ∪ 𝑉)) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑒))):𝑅𝑅)
3633, 35sylibr 235 . . 3 ((𝑇𝑊𝑓 ∈ (𝑅pm 𝑉)) → (𝑒𝑅 ↦ ((freeMnd‘((mCN‘𝑇) ∪ 𝑉)) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑒))) ∈ (𝑅m 𝑅))
3736fmpttd 6871 . 2 (𝑇𝑊 → (𝑓 ∈ (𝑅pm 𝑉) ↦ (𝑒𝑅 ↦ ((freeMnd‘((mCN‘𝑇) ∪ 𝑉)) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑒)))):(𝑅pm 𝑉)⟶(𝑅m 𝑅))
38 mrsubvr.s . . . 4 𝑆 = (mRSubst‘𝑇)
399, 2, 10, 38, 5mrsubffval 32651 . . 3 (𝑇𝑊𝑆 = (𝑓 ∈ (𝑅pm 𝑉) ↦ (𝑒𝑅 ↦ ((freeMnd‘((mCN‘𝑇) ∪ 𝑉)) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑒)))))
4039feq1d 6492 . 2 (𝑇𝑊 → (𝑆:(𝑅pm 𝑉)⟶(𝑅m 𝑅) ↔ (𝑓 ∈ (𝑅pm 𝑉) ↦ (𝑒𝑅 ↦ ((freeMnd‘((mCN‘𝑇) ∪ 𝑉)) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ 𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑒)))):(𝑅pm 𝑉)⟶(𝑅m 𝑅)))
4137, 40mpbird 258 1 (𝑇𝑊𝑆:(𝑅pm 𝑉)⟶(𝑅m 𝑅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1528  wcel 2105  Vcvv 3492  cun 3931  wss 3933  ifcif 4463  cmpt 5137  dom cdm 5548  ccom 5552  wf 6344  cfv 6348  (class class class)co 7145  m cmap 8395  pm cpm 8396  Word cword 13849  ⟨“cs1 13937  Basecbs 16471   Σg cgsu 16702  Mndcmnd 17899  freeMndcfrmd 18000  mCNcmcn 32604  mVRcmvar 32605  mRExcmrex 32610  mRSubstcmrsub 32614
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-oadd 8095  df-er 8278  df-map 8397  df-pm 8398  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-card 9356  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-nn 11627  df-2 11688  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12881  df-fzo 13022  df-seq 13358  df-hash 13679  df-word 13850  df-concat 13911  df-s1 13938  df-struct 16473  df-ndx 16474  df-slot 16475  df-base 16477  df-sets 16478  df-ress 16479  df-plusg 16566  df-0g 16703  df-gsum 16704  df-mgm 17840  df-sgrp 17889  df-mnd 17900  df-submnd 17945  df-frmd 18002  df-mrex 32630  df-mrsub 32634
This theorem is referenced by:  mrsubrn  32657  mrsubff1  32658  mrsub0  32660  mrsubf  32661  mrsubccat  32662  mrsubcn  32663  elmrsubrn  32664  elmsubrn  32672  msubrn  32673  msubff  32674  msubff1  32700
  Copyright terms: Public domain W3C validator