Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mrsubfval Structured version   Visualization version   GIF version

Theorem mrsubfval 33370
Description: The substitution of some variables for expressions in a raw expression. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mrsubffval.c 𝐶 = (mCN‘𝑇)
mrsubffval.v 𝑉 = (mVR‘𝑇)
mrsubffval.r 𝑅 = (mREx‘𝑇)
mrsubffval.s 𝑆 = (mRSubst‘𝑇)
mrsubffval.g 𝐺 = (freeMnd‘(𝐶𝑉))
Assertion
Ref Expression
mrsubfval ((𝐹:𝐴𝑅𝐴𝑉) → (𝑆𝐹) = (𝑒𝑅 ↦ (𝐺 Σg ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩)) ∘ 𝑒))))
Distinct variable groups:   𝑣,𝑒,𝐴   𝐶,𝑒,𝑣   𝑒,𝐹,𝑣   𝑅,𝑒,𝑣   𝑒,𝐺   𝑇,𝑒,𝑣   𝑒,𝑉,𝑣
Allowed substitution hints:   𝑆(𝑣,𝑒)   𝐺(𝑣)

Proof of Theorem mrsubfval
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 mrsubffval.c . . . . . 6 𝐶 = (mCN‘𝑇)
2 mrsubffval.v . . . . . 6 𝑉 = (mVR‘𝑇)
3 mrsubffval.r . . . . . 6 𝑅 = (mREx‘𝑇)
4 mrsubffval.s . . . . . 6 𝑆 = (mRSubst‘𝑇)
5 mrsubffval.g . . . . . 6 𝐺 = (freeMnd‘(𝐶𝑉))
61, 2, 3, 4, 5mrsubffval 33369 . . . . 5 (𝑇 ∈ V → 𝑆 = (𝑓 ∈ (𝑅pm 𝑉) ↦ (𝑒𝑅 ↦ (𝐺 Σg ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑒)))))
76adantr 480 . . . 4 ((𝑇 ∈ V ∧ (𝐹:𝐴𝑅𝐴𝑉)) → 𝑆 = (𝑓 ∈ (𝑅pm 𝑉) ↦ (𝑒𝑅 ↦ (𝐺 Σg ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑒)))))
8 dmeq 5801 . . . . . . . . . . 11 (𝑓 = 𝐹 → dom 𝑓 = dom 𝐹)
9 fdm 6593 . . . . . . . . . . . 12 (𝐹:𝐴𝑅 → dom 𝐹 = 𝐴)
109ad2antrl 724 . . . . . . . . . . 11 ((𝑇 ∈ V ∧ (𝐹:𝐴𝑅𝐴𝑉)) → dom 𝐹 = 𝐴)
118, 10sylan9eqr 2801 . . . . . . . . . 10 (((𝑇 ∈ V ∧ (𝐹:𝐴𝑅𝐴𝑉)) ∧ 𝑓 = 𝐹) → dom 𝑓 = 𝐴)
1211eleq2d 2824 . . . . . . . . 9 (((𝑇 ∈ V ∧ (𝐹:𝐴𝑅𝐴𝑉)) ∧ 𝑓 = 𝐹) → (𝑣 ∈ dom 𝑓𝑣𝐴))
13 simpr 484 . . . . . . . . . 10 (((𝑇 ∈ V ∧ (𝐹:𝐴𝑅𝐴𝑉)) ∧ 𝑓 = 𝐹) → 𝑓 = 𝐹)
1413fveq1d 6758 . . . . . . . . 9 (((𝑇 ∈ V ∧ (𝐹:𝐴𝑅𝐴𝑉)) ∧ 𝑓 = 𝐹) → (𝑓𝑣) = (𝐹𝑣))
1512, 14ifbieq1d 4480 . . . . . . . 8 (((𝑇 ∈ V ∧ (𝐹:𝐴𝑅𝐴𝑉)) ∧ 𝑓 = 𝐹) → if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩) = if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩))
1615mpteq2dv 5172 . . . . . . 7 (((𝑇 ∈ V ∧ (𝐹:𝐴𝑅𝐴𝑉)) ∧ 𝑓 = 𝐹) → (𝑣 ∈ (𝐶𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)) = (𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩)))
1716coeq1d 5759 . . . . . 6 (((𝑇 ∈ V ∧ (𝐹:𝐴𝑅𝐴𝑉)) ∧ 𝑓 = 𝐹) → ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑒) = ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩)) ∘ 𝑒))
1817oveq2d 7271 . . . . 5 (((𝑇 ∈ V ∧ (𝐹:𝐴𝑅𝐴𝑉)) ∧ 𝑓 = 𝐹) → (𝐺 Σg ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑒)) = (𝐺 Σg ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩)) ∘ 𝑒)))
1918mpteq2dv 5172 . . . 4 (((𝑇 ∈ V ∧ (𝐹:𝐴𝑅𝐴𝑉)) ∧ 𝑓 = 𝐹) → (𝑒𝑅 ↦ (𝐺 Σg ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑒))) = (𝑒𝑅 ↦ (𝐺 Σg ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩)) ∘ 𝑒))))
203fvexi 6770 . . . . . 6 𝑅 ∈ V
2120a1i 11 . . . . 5 ((𝑇 ∈ V ∧ (𝐹:𝐴𝑅𝐴𝑉)) → 𝑅 ∈ V)
222fvexi 6770 . . . . . 6 𝑉 ∈ V
2322a1i 11 . . . . 5 ((𝑇 ∈ V ∧ (𝐹:𝐴𝑅𝐴𝑉)) → 𝑉 ∈ V)
24 simprl 767 . . . . 5 ((𝑇 ∈ V ∧ (𝐹:𝐴𝑅𝐴𝑉)) → 𝐹:𝐴𝑅)
25 simprr 769 . . . . 5 ((𝑇 ∈ V ∧ (𝐹:𝐴𝑅𝐴𝑉)) → 𝐴𝑉)
26 elpm2r 8591 . . . . 5 (((𝑅 ∈ V ∧ 𝑉 ∈ V) ∧ (𝐹:𝐴𝑅𝐴𝑉)) → 𝐹 ∈ (𝑅pm 𝑉))
2721, 23, 24, 25, 26syl22anc 835 . . . 4 ((𝑇 ∈ V ∧ (𝐹:𝐴𝑅𝐴𝑉)) → 𝐹 ∈ (𝑅pm 𝑉))
2820mptex 7081 . . . . 5 (𝑒𝑅 ↦ (𝐺 Σg ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩)) ∘ 𝑒))) ∈ V
2928a1i 11 . . . 4 ((𝑇 ∈ V ∧ (𝐹:𝐴𝑅𝐴𝑉)) → (𝑒𝑅 ↦ (𝐺 Σg ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩)) ∘ 𝑒))) ∈ V)
307, 19, 27, 29fvmptd 6864 . . 3 ((𝑇 ∈ V ∧ (𝐹:𝐴𝑅𝐴𝑉)) → (𝑆𝐹) = (𝑒𝑅 ↦ (𝐺 Σg ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩)) ∘ 𝑒))))
3130ex 412 . 2 (𝑇 ∈ V → ((𝐹:𝐴𝑅𝐴𝑉) → (𝑆𝐹) = (𝑒𝑅 ↦ (𝐺 Σg ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩)) ∘ 𝑒)))))
32 0fv 6795 . . . 4 (∅‘𝐹) = ∅
33 fvprc 6748 . . . . . 6 𝑇 ∈ V → (mRSubst‘𝑇) = ∅)
344, 33syl5eq 2791 . . . . 5 𝑇 ∈ V → 𝑆 = ∅)
3534fveq1d 6758 . . . 4 𝑇 ∈ V → (𝑆𝐹) = (∅‘𝐹))
36 fvprc 6748 . . . . . . 7 𝑇 ∈ V → (mREx‘𝑇) = ∅)
373, 36syl5eq 2791 . . . . . 6 𝑇 ∈ V → 𝑅 = ∅)
3837mpteq1d 5165 . . . . 5 𝑇 ∈ V → (𝑒𝑅 ↦ (𝐺 Σg ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩)) ∘ 𝑒))) = (𝑒 ∈ ∅ ↦ (𝐺 Σg ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩)) ∘ 𝑒))))
39 mpt0 6559 . . . . 5 (𝑒 ∈ ∅ ↦ (𝐺 Σg ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩)) ∘ 𝑒))) = ∅
4038, 39eqtrdi 2795 . . . 4 𝑇 ∈ V → (𝑒𝑅 ↦ (𝐺 Σg ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩)) ∘ 𝑒))) = ∅)
4132, 35, 403eqtr4a 2805 . . 3 𝑇 ∈ V → (𝑆𝐹) = (𝑒𝑅 ↦ (𝐺 Σg ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩)) ∘ 𝑒))))
4241a1d 25 . 2 𝑇 ∈ V → ((𝐹:𝐴𝑅𝐴𝑉) → (𝑆𝐹) = (𝑒𝑅 ↦ (𝐺 Σg ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩)) ∘ 𝑒)))))
4331, 42pm2.61i 182 1 ((𝐹:𝐴𝑅𝐴𝑉) → (𝑆𝐹) = (𝑒𝑅 ↦ (𝐺 Σg ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩)) ∘ 𝑒))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1539  wcel 2108  Vcvv 3422  cun 3881  wss 3883  c0 4253  ifcif 4456  cmpt 5153  dom cdm 5580  ccom 5584  wf 6414  cfv 6418  (class class class)co 7255  pm cpm 8574  ⟨“cs1 14228   Σg cgsu 17068  freeMndcfrmd 18401  mCNcmcn 33322  mVRcmvar 33323  mRExcmrex 33328  mRSubstcmrsub 33332
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-pm 8576  df-mrsub 33352
This theorem is referenced by:  mrsubval  33371  mrsubrn  33375  elmrsubrn  33382
  Copyright terms: Public domain W3C validator