Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > mvrsfpw | Structured version Visualization version GIF version |
Description: The set of variables in an expression is a finite subset of 𝑉. (Contributed by Mario Carneiro, 18-Jul-2016.) |
Ref | Expression |
---|---|
mvrsval.v | ⊢ 𝑉 = (mVR‘𝑇) |
mvrsval.e | ⊢ 𝐸 = (mEx‘𝑇) |
mvrsval.w | ⊢ 𝑊 = (mVars‘𝑇) |
Ref | Expression |
---|---|
mvrsfpw | ⊢ (𝑋 ∈ 𝐸 → (𝑊‘𝑋) ∈ (𝒫 𝑉 ∩ Fin)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mvrsval.v | . . 3 ⊢ 𝑉 = (mVR‘𝑇) | |
2 | mvrsval.e | . . 3 ⊢ 𝐸 = (mEx‘𝑇) | |
3 | mvrsval.w | . . 3 ⊢ 𝑊 = (mVars‘𝑇) | |
4 | 1, 2, 3 | mvrsval 33367 | . 2 ⊢ (𝑋 ∈ 𝐸 → (𝑊‘𝑋) = (ran (2nd ‘𝑋) ∩ 𝑉)) |
5 | inss2 4160 | . . . 4 ⊢ (ran (2nd ‘𝑋) ∩ 𝑉) ⊆ 𝑉 | |
6 | 5 | a1i 11 | . . 3 ⊢ (𝑋 ∈ 𝐸 → (ran (2nd ‘𝑋) ∩ 𝑉) ⊆ 𝑉) |
7 | fzofi 13622 | . . . . 5 ⊢ (0..^(♯‘(2nd ‘𝑋))) ∈ Fin | |
8 | xp2nd 7837 | . . . . . . . 8 ⊢ (𝑋 ∈ ((mTC‘𝑇) × Word ((mCN‘𝑇) ∪ 𝑉)) → (2nd ‘𝑋) ∈ Word ((mCN‘𝑇) ∪ 𝑉)) | |
9 | eqid 2738 | . . . . . . . . 9 ⊢ (mTC‘𝑇) = (mTC‘𝑇) | |
10 | eqid 2738 | . . . . . . . . 9 ⊢ (mCN‘𝑇) = (mCN‘𝑇) | |
11 | 9, 2, 10, 1 | mexval2 33365 | . . . . . . . 8 ⊢ 𝐸 = ((mTC‘𝑇) × Word ((mCN‘𝑇) ∪ 𝑉)) |
12 | 8, 11 | eleq2s 2857 | . . . . . . 7 ⊢ (𝑋 ∈ 𝐸 → (2nd ‘𝑋) ∈ Word ((mCN‘𝑇) ∪ 𝑉)) |
13 | wrdf 14150 | . . . . . . 7 ⊢ ((2nd ‘𝑋) ∈ Word ((mCN‘𝑇) ∪ 𝑉) → (2nd ‘𝑋):(0..^(♯‘(2nd ‘𝑋)))⟶((mCN‘𝑇) ∪ 𝑉)) | |
14 | ffn 6584 | . . . . . . 7 ⊢ ((2nd ‘𝑋):(0..^(♯‘(2nd ‘𝑋)))⟶((mCN‘𝑇) ∪ 𝑉) → (2nd ‘𝑋) Fn (0..^(♯‘(2nd ‘𝑋)))) | |
15 | 12, 13, 14 | 3syl 18 | . . . . . 6 ⊢ (𝑋 ∈ 𝐸 → (2nd ‘𝑋) Fn (0..^(♯‘(2nd ‘𝑋)))) |
16 | dffn4 6678 | . . . . . 6 ⊢ ((2nd ‘𝑋) Fn (0..^(♯‘(2nd ‘𝑋))) ↔ (2nd ‘𝑋):(0..^(♯‘(2nd ‘𝑋)))–onto→ran (2nd ‘𝑋)) | |
17 | 15, 16 | sylib 217 | . . . . 5 ⊢ (𝑋 ∈ 𝐸 → (2nd ‘𝑋):(0..^(♯‘(2nd ‘𝑋)))–onto→ran (2nd ‘𝑋)) |
18 | fofi 9035 | . . . . 5 ⊢ (((0..^(♯‘(2nd ‘𝑋))) ∈ Fin ∧ (2nd ‘𝑋):(0..^(♯‘(2nd ‘𝑋)))–onto→ran (2nd ‘𝑋)) → ran (2nd ‘𝑋) ∈ Fin) | |
19 | 7, 17, 18 | sylancr 586 | . . . 4 ⊢ (𝑋 ∈ 𝐸 → ran (2nd ‘𝑋) ∈ Fin) |
20 | inss1 4159 | . . . 4 ⊢ (ran (2nd ‘𝑋) ∩ 𝑉) ⊆ ran (2nd ‘𝑋) | |
21 | ssfi 8918 | . . . 4 ⊢ ((ran (2nd ‘𝑋) ∈ Fin ∧ (ran (2nd ‘𝑋) ∩ 𝑉) ⊆ ran (2nd ‘𝑋)) → (ran (2nd ‘𝑋) ∩ 𝑉) ∈ Fin) | |
22 | 19, 20, 21 | sylancl 585 | . . 3 ⊢ (𝑋 ∈ 𝐸 → (ran (2nd ‘𝑋) ∩ 𝑉) ∈ Fin) |
23 | elfpw 9051 | . . 3 ⊢ ((ran (2nd ‘𝑋) ∩ 𝑉) ∈ (𝒫 𝑉 ∩ Fin) ↔ ((ran (2nd ‘𝑋) ∩ 𝑉) ⊆ 𝑉 ∧ (ran (2nd ‘𝑋) ∩ 𝑉) ∈ Fin)) | |
24 | 6, 22, 23 | sylanbrc 582 | . 2 ⊢ (𝑋 ∈ 𝐸 → (ran (2nd ‘𝑋) ∩ 𝑉) ∈ (𝒫 𝑉 ∩ Fin)) |
25 | 4, 24 | eqeltrd 2839 | 1 ⊢ (𝑋 ∈ 𝐸 → (𝑊‘𝑋) ∈ (𝒫 𝑉 ∩ Fin)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ∪ cun 3881 ∩ cin 3882 ⊆ wss 3883 𝒫 cpw 4530 × cxp 5578 ran crn 5581 Fn wfn 6413 ⟶wf 6414 –onto→wfo 6416 ‘cfv 6418 (class class class)co 7255 2nd c2nd 7803 Fincfn 8691 0cc0 10802 ..^cfzo 13311 ♯chash 13972 Word cword 14145 mCNcmcn 33322 mVRcmvar 33323 mTCcmtc 33326 mExcmex 33329 mVarscmvrs 33331 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-n0 12164 df-z 12250 df-uz 12512 df-fz 13169 df-fzo 13312 df-hash 13973 df-word 14146 df-mrex 33348 df-mex 33349 df-mvrs 33351 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |