Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mvrsfpw Structured version   Visualization version   GIF version

Theorem mvrsfpw 34492
Description: The set of variables in an expression is a finite subset of 𝑉. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mvrsval.v 𝑉 = (mVRβ€˜π‘‡)
mvrsval.e 𝐸 = (mExβ€˜π‘‡)
mvrsval.w π‘Š = (mVarsβ€˜π‘‡)
Assertion
Ref Expression
mvrsfpw (𝑋 ∈ 𝐸 β†’ (π‘Šβ€˜π‘‹) ∈ (𝒫 𝑉 ∩ Fin))

Proof of Theorem mvrsfpw
StepHypRef Expression
1 mvrsval.v . . 3 𝑉 = (mVRβ€˜π‘‡)
2 mvrsval.e . . 3 𝐸 = (mExβ€˜π‘‡)
3 mvrsval.w . . 3 π‘Š = (mVarsβ€˜π‘‡)
41, 2, 3mvrsval 34491 . 2 (𝑋 ∈ 𝐸 β†’ (π‘Šβ€˜π‘‹) = (ran (2nd β€˜π‘‹) ∩ 𝑉))
5 inss2 4229 . . . 4 (ran (2nd β€˜π‘‹) ∩ 𝑉) βŠ† 𝑉
65a1i 11 . . 3 (𝑋 ∈ 𝐸 β†’ (ran (2nd β€˜π‘‹) ∩ 𝑉) βŠ† 𝑉)
7 fzofi 13938 . . . . 5 (0..^(β™―β€˜(2nd β€˜π‘‹))) ∈ Fin
8 xp2nd 8007 . . . . . . . 8 (𝑋 ∈ ((mTCβ€˜π‘‡) Γ— Word ((mCNβ€˜π‘‡) βˆͺ 𝑉)) β†’ (2nd β€˜π‘‹) ∈ Word ((mCNβ€˜π‘‡) βˆͺ 𝑉))
9 eqid 2732 . . . . . . . . 9 (mTCβ€˜π‘‡) = (mTCβ€˜π‘‡)
10 eqid 2732 . . . . . . . . 9 (mCNβ€˜π‘‡) = (mCNβ€˜π‘‡)
119, 2, 10, 1mexval2 34489 . . . . . . . 8 𝐸 = ((mTCβ€˜π‘‡) Γ— Word ((mCNβ€˜π‘‡) βˆͺ 𝑉))
128, 11eleq2s 2851 . . . . . . 7 (𝑋 ∈ 𝐸 β†’ (2nd β€˜π‘‹) ∈ Word ((mCNβ€˜π‘‡) βˆͺ 𝑉))
13 wrdf 14468 . . . . . . 7 ((2nd β€˜π‘‹) ∈ Word ((mCNβ€˜π‘‡) βˆͺ 𝑉) β†’ (2nd β€˜π‘‹):(0..^(β™―β€˜(2nd β€˜π‘‹)))⟢((mCNβ€˜π‘‡) βˆͺ 𝑉))
14 ffn 6717 . . . . . . 7 ((2nd β€˜π‘‹):(0..^(β™―β€˜(2nd β€˜π‘‹)))⟢((mCNβ€˜π‘‡) βˆͺ 𝑉) β†’ (2nd β€˜π‘‹) Fn (0..^(β™―β€˜(2nd β€˜π‘‹))))
1512, 13, 143syl 18 . . . . . 6 (𝑋 ∈ 𝐸 β†’ (2nd β€˜π‘‹) Fn (0..^(β™―β€˜(2nd β€˜π‘‹))))
16 dffn4 6811 . . . . . 6 ((2nd β€˜π‘‹) Fn (0..^(β™―β€˜(2nd β€˜π‘‹))) ↔ (2nd β€˜π‘‹):(0..^(β™―β€˜(2nd β€˜π‘‹)))–ontoβ†’ran (2nd β€˜π‘‹))
1715, 16sylib 217 . . . . 5 (𝑋 ∈ 𝐸 β†’ (2nd β€˜π‘‹):(0..^(β™―β€˜(2nd β€˜π‘‹)))–ontoβ†’ran (2nd β€˜π‘‹))
18 fofi 9337 . . . . 5 (((0..^(β™―β€˜(2nd β€˜π‘‹))) ∈ Fin ∧ (2nd β€˜π‘‹):(0..^(β™―β€˜(2nd β€˜π‘‹)))–ontoβ†’ran (2nd β€˜π‘‹)) β†’ ran (2nd β€˜π‘‹) ∈ Fin)
197, 17, 18sylancr 587 . . . 4 (𝑋 ∈ 𝐸 β†’ ran (2nd β€˜π‘‹) ∈ Fin)
20 inss1 4228 . . . 4 (ran (2nd β€˜π‘‹) ∩ 𝑉) βŠ† ran (2nd β€˜π‘‹)
21 ssfi 9172 . . . 4 ((ran (2nd β€˜π‘‹) ∈ Fin ∧ (ran (2nd β€˜π‘‹) ∩ 𝑉) βŠ† ran (2nd β€˜π‘‹)) β†’ (ran (2nd β€˜π‘‹) ∩ 𝑉) ∈ Fin)
2219, 20, 21sylancl 586 . . 3 (𝑋 ∈ 𝐸 β†’ (ran (2nd β€˜π‘‹) ∩ 𝑉) ∈ Fin)
23 elfpw 9353 . . 3 ((ran (2nd β€˜π‘‹) ∩ 𝑉) ∈ (𝒫 𝑉 ∩ Fin) ↔ ((ran (2nd β€˜π‘‹) ∩ 𝑉) βŠ† 𝑉 ∧ (ran (2nd β€˜π‘‹) ∩ 𝑉) ∈ Fin))
246, 22, 23sylanbrc 583 . 2 (𝑋 ∈ 𝐸 β†’ (ran (2nd β€˜π‘‹) ∩ 𝑉) ∈ (𝒫 𝑉 ∩ Fin))
254, 24eqeltrd 2833 1 (𝑋 ∈ 𝐸 β†’ (π‘Šβ€˜π‘‹) ∈ (𝒫 𝑉 ∩ Fin))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1541   ∈ wcel 2106   βˆͺ cun 3946   ∩ cin 3947   βŠ† wss 3948  π’« cpw 4602   Γ— cxp 5674  ran crn 5677   Fn wfn 6538  βŸΆwf 6539  β€“ontoβ†’wfo 6541  β€˜cfv 6543  (class class class)co 7408  2nd c2nd 7973  Fincfn 8938  0cc0 11109  ..^cfzo 13626  β™―chash 14289  Word cword 14463  mCNcmcn 34446  mVRcmvar 34447  mTCcmtc 34450  mExcmex 34453  mVarscmvrs 34455
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-om 7855  df-1st 7974  df-2nd 7975  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-1o 8465  df-er 8702  df-map 8821  df-en 8939  df-dom 8940  df-sdom 8941  df-fin 8942  df-card 9933  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-nn 12212  df-n0 12472  df-z 12558  df-uz 12822  df-fz 13484  df-fzo 13627  df-hash 14290  df-word 14464  df-mrex 34472  df-mex 34473  df-mvrs 34475
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator