Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mvrsfpw Structured version   Visualization version   GIF version

Theorem mvrsfpw 35528
Description: The set of variables in an expression is a finite subset of 𝑉. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mvrsval.v 𝑉 = (mVR‘𝑇)
mvrsval.e 𝐸 = (mEx‘𝑇)
mvrsval.w 𝑊 = (mVars‘𝑇)
Assertion
Ref Expression
mvrsfpw (𝑋𝐸 → (𝑊𝑋) ∈ (𝒫 𝑉 ∩ Fin))

Proof of Theorem mvrsfpw
StepHypRef Expression
1 mvrsval.v . . 3 𝑉 = (mVR‘𝑇)
2 mvrsval.e . . 3 𝐸 = (mEx‘𝑇)
3 mvrsval.w . . 3 𝑊 = (mVars‘𝑇)
41, 2, 3mvrsval 35527 . 2 (𝑋𝐸 → (𝑊𝑋) = (ran (2nd𝑋) ∩ 𝑉))
5 inss2 4213 . . . 4 (ran (2nd𝑋) ∩ 𝑉) ⊆ 𝑉
65a1i 11 . . 3 (𝑋𝐸 → (ran (2nd𝑋) ∩ 𝑉) ⊆ 𝑉)
7 fzofi 13992 . . . . 5 (0..^(♯‘(2nd𝑋))) ∈ Fin
8 xp2nd 8021 . . . . . . . 8 (𝑋 ∈ ((mTC‘𝑇) × Word ((mCN‘𝑇) ∪ 𝑉)) → (2nd𝑋) ∈ Word ((mCN‘𝑇) ∪ 𝑉))
9 eqid 2735 . . . . . . . . 9 (mTC‘𝑇) = (mTC‘𝑇)
10 eqid 2735 . . . . . . . . 9 (mCN‘𝑇) = (mCN‘𝑇)
119, 2, 10, 1mexval2 35525 . . . . . . . 8 𝐸 = ((mTC‘𝑇) × Word ((mCN‘𝑇) ∪ 𝑉))
128, 11eleq2s 2852 . . . . . . 7 (𝑋𝐸 → (2nd𝑋) ∈ Word ((mCN‘𝑇) ∪ 𝑉))
13 wrdf 14536 . . . . . . 7 ((2nd𝑋) ∈ Word ((mCN‘𝑇) ∪ 𝑉) → (2nd𝑋):(0..^(♯‘(2nd𝑋)))⟶((mCN‘𝑇) ∪ 𝑉))
14 ffn 6706 . . . . . . 7 ((2nd𝑋):(0..^(♯‘(2nd𝑋)))⟶((mCN‘𝑇) ∪ 𝑉) → (2nd𝑋) Fn (0..^(♯‘(2nd𝑋))))
1512, 13, 143syl 18 . . . . . 6 (𝑋𝐸 → (2nd𝑋) Fn (0..^(♯‘(2nd𝑋))))
16 dffn4 6796 . . . . . 6 ((2nd𝑋) Fn (0..^(♯‘(2nd𝑋))) ↔ (2nd𝑋):(0..^(♯‘(2nd𝑋)))–onto→ran (2nd𝑋))
1715, 16sylib 218 . . . . 5 (𝑋𝐸 → (2nd𝑋):(0..^(♯‘(2nd𝑋)))–onto→ran (2nd𝑋))
18 fofi 9323 . . . . 5 (((0..^(♯‘(2nd𝑋))) ∈ Fin ∧ (2nd𝑋):(0..^(♯‘(2nd𝑋)))–onto→ran (2nd𝑋)) → ran (2nd𝑋) ∈ Fin)
197, 17, 18sylancr 587 . . . 4 (𝑋𝐸 → ran (2nd𝑋) ∈ Fin)
20 inss1 4212 . . . 4 (ran (2nd𝑋) ∩ 𝑉) ⊆ ran (2nd𝑋)
21 ssfi 9187 . . . 4 ((ran (2nd𝑋) ∈ Fin ∧ (ran (2nd𝑋) ∩ 𝑉) ⊆ ran (2nd𝑋)) → (ran (2nd𝑋) ∩ 𝑉) ∈ Fin)
2219, 20, 21sylancl 586 . . 3 (𝑋𝐸 → (ran (2nd𝑋) ∩ 𝑉) ∈ Fin)
23 elfpw 9366 . . 3 ((ran (2nd𝑋) ∩ 𝑉) ∈ (𝒫 𝑉 ∩ Fin) ↔ ((ran (2nd𝑋) ∩ 𝑉) ⊆ 𝑉 ∧ (ran (2nd𝑋) ∩ 𝑉) ∈ Fin))
246, 22, 23sylanbrc 583 . 2 (𝑋𝐸 → (ran (2nd𝑋) ∩ 𝑉) ∈ (𝒫 𝑉 ∩ Fin))
254, 24eqeltrd 2834 1 (𝑋𝐸 → (𝑊𝑋) ∈ (𝒫 𝑉 ∩ Fin))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  cun 3924  cin 3925  wss 3926  𝒫 cpw 4575   × cxp 5652  ran crn 5655   Fn wfn 6526  wf 6527  ontowfo 6529  cfv 6531  (class class class)co 7405  2nd c2nd 7987  Fincfn 8959  0cc0 11129  ..^cfzo 13671  chash 14348  Word cword 14531  mCNcmcn 35482  mVRcmvar 35483  mTCcmtc 35486  mExcmex 35489  mVarscmvrs 35491
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8719  df-map 8842  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-n0 12502  df-z 12589  df-uz 12853  df-fz 13525  df-fzo 13672  df-hash 14349  df-word 14532  df-mrex 35508  df-mex 35509  df-mvrs 35511
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator