Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mvrsfpw Structured version   Visualization version   GIF version

Theorem mvrsfpw 35493
Description: The set of variables in an expression is a finite subset of 𝑉. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mvrsval.v 𝑉 = (mVR‘𝑇)
mvrsval.e 𝐸 = (mEx‘𝑇)
mvrsval.w 𝑊 = (mVars‘𝑇)
Assertion
Ref Expression
mvrsfpw (𝑋𝐸 → (𝑊𝑋) ∈ (𝒫 𝑉 ∩ Fin))

Proof of Theorem mvrsfpw
StepHypRef Expression
1 mvrsval.v . . 3 𝑉 = (mVR‘𝑇)
2 mvrsval.e . . 3 𝐸 = (mEx‘𝑇)
3 mvrsval.w . . 3 𝑊 = (mVars‘𝑇)
41, 2, 3mvrsval 35492 . 2 (𝑋𝐸 → (𝑊𝑋) = (ran (2nd𝑋) ∩ 𝑉))
5 inss2 4201 . . . 4 (ran (2nd𝑋) ∩ 𝑉) ⊆ 𝑉
65a1i 11 . . 3 (𝑋𝐸 → (ran (2nd𝑋) ∩ 𝑉) ⊆ 𝑉)
7 fzofi 13939 . . . . 5 (0..^(♯‘(2nd𝑋))) ∈ Fin
8 xp2nd 8001 . . . . . . . 8 (𝑋 ∈ ((mTC‘𝑇) × Word ((mCN‘𝑇) ∪ 𝑉)) → (2nd𝑋) ∈ Word ((mCN‘𝑇) ∪ 𝑉))
9 eqid 2729 . . . . . . . . 9 (mTC‘𝑇) = (mTC‘𝑇)
10 eqid 2729 . . . . . . . . 9 (mCN‘𝑇) = (mCN‘𝑇)
119, 2, 10, 1mexval2 35490 . . . . . . . 8 𝐸 = ((mTC‘𝑇) × Word ((mCN‘𝑇) ∪ 𝑉))
128, 11eleq2s 2846 . . . . . . 7 (𝑋𝐸 → (2nd𝑋) ∈ Word ((mCN‘𝑇) ∪ 𝑉))
13 wrdf 14483 . . . . . . 7 ((2nd𝑋) ∈ Word ((mCN‘𝑇) ∪ 𝑉) → (2nd𝑋):(0..^(♯‘(2nd𝑋)))⟶((mCN‘𝑇) ∪ 𝑉))
14 ffn 6688 . . . . . . 7 ((2nd𝑋):(0..^(♯‘(2nd𝑋)))⟶((mCN‘𝑇) ∪ 𝑉) → (2nd𝑋) Fn (0..^(♯‘(2nd𝑋))))
1512, 13, 143syl 18 . . . . . 6 (𝑋𝐸 → (2nd𝑋) Fn (0..^(♯‘(2nd𝑋))))
16 dffn4 6778 . . . . . 6 ((2nd𝑋) Fn (0..^(♯‘(2nd𝑋))) ↔ (2nd𝑋):(0..^(♯‘(2nd𝑋)))–onto→ran (2nd𝑋))
1715, 16sylib 218 . . . . 5 (𝑋𝐸 → (2nd𝑋):(0..^(♯‘(2nd𝑋)))–onto→ran (2nd𝑋))
18 fofi 9262 . . . . 5 (((0..^(♯‘(2nd𝑋))) ∈ Fin ∧ (2nd𝑋):(0..^(♯‘(2nd𝑋)))–onto→ran (2nd𝑋)) → ran (2nd𝑋) ∈ Fin)
197, 17, 18sylancr 587 . . . 4 (𝑋𝐸 → ran (2nd𝑋) ∈ Fin)
20 inss1 4200 . . . 4 (ran (2nd𝑋) ∩ 𝑉) ⊆ ran (2nd𝑋)
21 ssfi 9137 . . . 4 ((ran (2nd𝑋) ∈ Fin ∧ (ran (2nd𝑋) ∩ 𝑉) ⊆ ran (2nd𝑋)) → (ran (2nd𝑋) ∩ 𝑉) ∈ Fin)
2219, 20, 21sylancl 586 . . 3 (𝑋𝐸 → (ran (2nd𝑋) ∩ 𝑉) ∈ Fin)
23 elfpw 9305 . . 3 ((ran (2nd𝑋) ∩ 𝑉) ∈ (𝒫 𝑉 ∩ Fin) ↔ ((ran (2nd𝑋) ∩ 𝑉) ⊆ 𝑉 ∧ (ran (2nd𝑋) ∩ 𝑉) ∈ Fin))
246, 22, 23sylanbrc 583 . 2 (𝑋𝐸 → (ran (2nd𝑋) ∩ 𝑉) ∈ (𝒫 𝑉 ∩ Fin))
254, 24eqeltrd 2828 1 (𝑋𝐸 → (𝑊𝑋) ∈ (𝒫 𝑉 ∩ Fin))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cun 3912  cin 3913  wss 3914  𝒫 cpw 4563   × cxp 5636  ran crn 5639   Fn wfn 6506  wf 6507  ontowfo 6509  cfv 6511  (class class class)co 7387  2nd c2nd 7967  Fincfn 8918  0cc0 11068  ..^cfzo 13615  chash 14295  Word cword 14478  mCNcmcn 35447  mVRcmvar 35448  mTCcmtc 35451  mExcmex 35454  mVarscmvrs 35456
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-n0 12443  df-z 12530  df-uz 12794  df-fz 13469  df-fzo 13616  df-hash 14296  df-word 14479  df-mrex 35473  df-mex 35474  df-mvrs 35476
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator