![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mvrsfpw | Structured version Visualization version GIF version |
Description: The set of variables in an expression is a finite subset of π. (Contributed by Mario Carneiro, 18-Jul-2016.) |
Ref | Expression |
---|---|
mvrsval.v | β’ π = (mVRβπ) |
mvrsval.e | β’ πΈ = (mExβπ) |
mvrsval.w | β’ π = (mVarsβπ) |
Ref | Expression |
---|---|
mvrsfpw | β’ (π β πΈ β (πβπ) β (π« π β© Fin)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mvrsval.v | . . 3 β’ π = (mVRβπ) | |
2 | mvrsval.e | . . 3 β’ πΈ = (mExβπ) | |
3 | mvrsval.w | . . 3 β’ π = (mVarsβπ) | |
4 | 1, 2, 3 | mvrsval 35120 | . 2 β’ (π β πΈ β (πβπ) = (ran (2nd βπ) β© π)) |
5 | inss2 4230 | . . . 4 β’ (ran (2nd βπ) β© π) β π | |
6 | 5 | a1i 11 | . . 3 β’ (π β πΈ β (ran (2nd βπ) β© π) β π) |
7 | fzofi 13977 | . . . . 5 β’ (0..^(β―β(2nd βπ))) β Fin | |
8 | xp2nd 8030 | . . . . . . . 8 β’ (π β ((mTCβπ) Γ Word ((mCNβπ) βͺ π)) β (2nd βπ) β Word ((mCNβπ) βͺ π)) | |
9 | eqid 2727 | . . . . . . . . 9 β’ (mTCβπ) = (mTCβπ) | |
10 | eqid 2727 | . . . . . . . . 9 β’ (mCNβπ) = (mCNβπ) | |
11 | 9, 2, 10, 1 | mexval2 35118 | . . . . . . . 8 β’ πΈ = ((mTCβπ) Γ Word ((mCNβπ) βͺ π)) |
12 | 8, 11 | eleq2s 2846 | . . . . . . 7 β’ (π β πΈ β (2nd βπ) β Word ((mCNβπ) βͺ π)) |
13 | wrdf 14507 | . . . . . . 7 β’ ((2nd βπ) β Word ((mCNβπ) βͺ π) β (2nd βπ):(0..^(β―β(2nd βπ)))βΆ((mCNβπ) βͺ π)) | |
14 | ffn 6725 | . . . . . . 7 β’ ((2nd βπ):(0..^(β―β(2nd βπ)))βΆ((mCNβπ) βͺ π) β (2nd βπ) Fn (0..^(β―β(2nd βπ)))) | |
15 | 12, 13, 14 | 3syl 18 | . . . . . 6 β’ (π β πΈ β (2nd βπ) Fn (0..^(β―β(2nd βπ)))) |
16 | dffn4 6820 | . . . . . 6 β’ ((2nd βπ) Fn (0..^(β―β(2nd βπ))) β (2nd βπ):(0..^(β―β(2nd βπ)))βontoβran (2nd βπ)) | |
17 | 15, 16 | sylib 217 | . . . . 5 β’ (π β πΈ β (2nd βπ):(0..^(β―β(2nd βπ)))βontoβran (2nd βπ)) |
18 | fofi 9368 | . . . . 5 β’ (((0..^(β―β(2nd βπ))) β Fin β§ (2nd βπ):(0..^(β―β(2nd βπ)))βontoβran (2nd βπ)) β ran (2nd βπ) β Fin) | |
19 | 7, 17, 18 | sylancr 585 | . . . 4 β’ (π β πΈ β ran (2nd βπ) β Fin) |
20 | inss1 4229 | . . . 4 β’ (ran (2nd βπ) β© π) β ran (2nd βπ) | |
21 | ssfi 9202 | . . . 4 β’ ((ran (2nd βπ) β Fin β§ (ran (2nd βπ) β© π) β ran (2nd βπ)) β (ran (2nd βπ) β© π) β Fin) | |
22 | 19, 20, 21 | sylancl 584 | . . 3 β’ (π β πΈ β (ran (2nd βπ) β© π) β Fin) |
23 | elfpw 9384 | . . 3 β’ ((ran (2nd βπ) β© π) β (π« π β© Fin) β ((ran (2nd βπ) β© π) β π β§ (ran (2nd βπ) β© π) β Fin)) | |
24 | 6, 22, 23 | sylanbrc 581 | . 2 β’ (π β πΈ β (ran (2nd βπ) β© π) β (π« π β© Fin)) |
25 | 4, 24 | eqeltrd 2828 | 1 β’ (π β πΈ β (πβπ) β (π« π β© Fin)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1533 β wcel 2098 βͺ cun 3945 β© cin 3946 β wss 3947 π« cpw 4604 Γ cxp 5678 ran crn 5681 Fn wfn 6546 βΆwf 6547 βontoβwfo 6549 βcfv 6551 (class class class)co 7424 2nd c2nd 7996 Fincfn 8968 0cc0 11144 ..^cfzo 13665 β―chash 14327 Word cword 14502 mCNcmcn 35075 mVRcmvar 35076 mTCcmtc 35079 mExcmex 35082 mVarscmvrs 35084 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2698 ax-rep 5287 ax-sep 5301 ax-nul 5308 ax-pow 5367 ax-pr 5431 ax-un 7744 ax-cnex 11200 ax-resscn 11201 ax-1cn 11202 ax-icn 11203 ax-addcl 11204 ax-addrcl 11205 ax-mulcl 11206 ax-mulrcl 11207 ax-mulcom 11208 ax-addass 11209 ax-mulass 11210 ax-distr 11211 ax-i2m1 11212 ax-1ne0 11213 ax-1rid 11214 ax-rnegex 11215 ax-rrecex 11216 ax-cnre 11217 ax-pre-lttri 11218 ax-pre-lttrn 11219 ax-pre-ltadd 11220 ax-pre-mulgt0 11221 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-reu 3373 df-rab 3429 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4325 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4911 df-int 4952 df-iun 5000 df-br 5151 df-opab 5213 df-mpt 5234 df-tr 5268 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5635 df-we 5637 df-xp 5686 df-rel 5687 df-cnv 5688 df-co 5689 df-dm 5690 df-rn 5691 df-res 5692 df-ima 5693 df-pred 6308 df-ord 6375 df-on 6376 df-lim 6377 df-suc 6378 df-iota 6503 df-fun 6553 df-fn 6554 df-f 6555 df-f1 6556 df-fo 6557 df-f1o 6558 df-fv 6559 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-om 7875 df-1st 7997 df-2nd 7998 df-frecs 8291 df-wrecs 8322 df-recs 8396 df-rdg 8435 df-1o 8491 df-er 8729 df-map 8851 df-en 8969 df-dom 8970 df-sdom 8971 df-fin 8972 df-card 9968 df-pnf 11286 df-mnf 11287 df-xr 11288 df-ltxr 11289 df-le 11290 df-sub 11482 df-neg 11483 df-nn 12249 df-n0 12509 df-z 12595 df-uz 12859 df-fz 13523 df-fzo 13666 df-hash 14328 df-word 14503 df-mrex 35101 df-mex 35102 df-mvrs 35104 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |