Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mvrsfpw Structured version   Visualization version   GIF version

Theorem mvrsfpw 35121
Description: The set of variables in an expression is a finite subset of 𝑉. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mvrsval.v 𝑉 = (mVRβ€˜π‘‡)
mvrsval.e 𝐸 = (mExβ€˜π‘‡)
mvrsval.w π‘Š = (mVarsβ€˜π‘‡)
Assertion
Ref Expression
mvrsfpw (𝑋 ∈ 𝐸 β†’ (π‘Šβ€˜π‘‹) ∈ (𝒫 𝑉 ∩ Fin))

Proof of Theorem mvrsfpw
StepHypRef Expression
1 mvrsval.v . . 3 𝑉 = (mVRβ€˜π‘‡)
2 mvrsval.e . . 3 𝐸 = (mExβ€˜π‘‡)
3 mvrsval.w . . 3 π‘Š = (mVarsβ€˜π‘‡)
41, 2, 3mvrsval 35120 . 2 (𝑋 ∈ 𝐸 β†’ (π‘Šβ€˜π‘‹) = (ran (2nd β€˜π‘‹) ∩ 𝑉))
5 inss2 4230 . . . 4 (ran (2nd β€˜π‘‹) ∩ 𝑉) βŠ† 𝑉
65a1i 11 . . 3 (𝑋 ∈ 𝐸 β†’ (ran (2nd β€˜π‘‹) ∩ 𝑉) βŠ† 𝑉)
7 fzofi 13977 . . . . 5 (0..^(β™―β€˜(2nd β€˜π‘‹))) ∈ Fin
8 xp2nd 8030 . . . . . . . 8 (𝑋 ∈ ((mTCβ€˜π‘‡) Γ— Word ((mCNβ€˜π‘‡) βˆͺ 𝑉)) β†’ (2nd β€˜π‘‹) ∈ Word ((mCNβ€˜π‘‡) βˆͺ 𝑉))
9 eqid 2727 . . . . . . . . 9 (mTCβ€˜π‘‡) = (mTCβ€˜π‘‡)
10 eqid 2727 . . . . . . . . 9 (mCNβ€˜π‘‡) = (mCNβ€˜π‘‡)
119, 2, 10, 1mexval2 35118 . . . . . . . 8 𝐸 = ((mTCβ€˜π‘‡) Γ— Word ((mCNβ€˜π‘‡) βˆͺ 𝑉))
128, 11eleq2s 2846 . . . . . . 7 (𝑋 ∈ 𝐸 β†’ (2nd β€˜π‘‹) ∈ Word ((mCNβ€˜π‘‡) βˆͺ 𝑉))
13 wrdf 14507 . . . . . . 7 ((2nd β€˜π‘‹) ∈ Word ((mCNβ€˜π‘‡) βˆͺ 𝑉) β†’ (2nd β€˜π‘‹):(0..^(β™―β€˜(2nd β€˜π‘‹)))⟢((mCNβ€˜π‘‡) βˆͺ 𝑉))
14 ffn 6725 . . . . . . 7 ((2nd β€˜π‘‹):(0..^(β™―β€˜(2nd β€˜π‘‹)))⟢((mCNβ€˜π‘‡) βˆͺ 𝑉) β†’ (2nd β€˜π‘‹) Fn (0..^(β™―β€˜(2nd β€˜π‘‹))))
1512, 13, 143syl 18 . . . . . 6 (𝑋 ∈ 𝐸 β†’ (2nd β€˜π‘‹) Fn (0..^(β™―β€˜(2nd β€˜π‘‹))))
16 dffn4 6820 . . . . . 6 ((2nd β€˜π‘‹) Fn (0..^(β™―β€˜(2nd β€˜π‘‹))) ↔ (2nd β€˜π‘‹):(0..^(β™―β€˜(2nd β€˜π‘‹)))–ontoβ†’ran (2nd β€˜π‘‹))
1715, 16sylib 217 . . . . 5 (𝑋 ∈ 𝐸 β†’ (2nd β€˜π‘‹):(0..^(β™―β€˜(2nd β€˜π‘‹)))–ontoβ†’ran (2nd β€˜π‘‹))
18 fofi 9368 . . . . 5 (((0..^(β™―β€˜(2nd β€˜π‘‹))) ∈ Fin ∧ (2nd β€˜π‘‹):(0..^(β™―β€˜(2nd β€˜π‘‹)))–ontoβ†’ran (2nd β€˜π‘‹)) β†’ ran (2nd β€˜π‘‹) ∈ Fin)
197, 17, 18sylancr 585 . . . 4 (𝑋 ∈ 𝐸 β†’ ran (2nd β€˜π‘‹) ∈ Fin)
20 inss1 4229 . . . 4 (ran (2nd β€˜π‘‹) ∩ 𝑉) βŠ† ran (2nd β€˜π‘‹)
21 ssfi 9202 . . . 4 ((ran (2nd β€˜π‘‹) ∈ Fin ∧ (ran (2nd β€˜π‘‹) ∩ 𝑉) βŠ† ran (2nd β€˜π‘‹)) β†’ (ran (2nd β€˜π‘‹) ∩ 𝑉) ∈ Fin)
2219, 20, 21sylancl 584 . . 3 (𝑋 ∈ 𝐸 β†’ (ran (2nd β€˜π‘‹) ∩ 𝑉) ∈ Fin)
23 elfpw 9384 . . 3 ((ran (2nd β€˜π‘‹) ∩ 𝑉) ∈ (𝒫 𝑉 ∩ Fin) ↔ ((ran (2nd β€˜π‘‹) ∩ 𝑉) βŠ† 𝑉 ∧ (ran (2nd β€˜π‘‹) ∩ 𝑉) ∈ Fin))
246, 22, 23sylanbrc 581 . 2 (𝑋 ∈ 𝐸 β†’ (ran (2nd β€˜π‘‹) ∩ 𝑉) ∈ (𝒫 𝑉 ∩ Fin))
254, 24eqeltrd 2828 1 (𝑋 ∈ 𝐸 β†’ (π‘Šβ€˜π‘‹) ∈ (𝒫 𝑉 ∩ Fin))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1533   ∈ wcel 2098   βˆͺ cun 3945   ∩ cin 3946   βŠ† wss 3947  π’« cpw 4604   Γ— cxp 5678  ran crn 5681   Fn wfn 6546  βŸΆwf 6547  β€“ontoβ†’wfo 6549  β€˜cfv 6551  (class class class)co 7424  2nd c2nd 7996  Fincfn 8968  0cc0 11144  ..^cfzo 13665  β™―chash 14327  Word cword 14502  mCNcmcn 35075  mVRcmvar 35076  mTCcmtc 35079  mExcmex 35082  mVarscmvrs 35084
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2698  ax-rep 5287  ax-sep 5301  ax-nul 5308  ax-pow 5367  ax-pr 5431  ax-un 7744  ax-cnex 11200  ax-resscn 11201  ax-1cn 11202  ax-icn 11203  ax-addcl 11204  ax-addrcl 11205  ax-mulcl 11206  ax-mulrcl 11207  ax-mulcom 11208  ax-addass 11209  ax-mulass 11210  ax-distr 11211  ax-i2m1 11212  ax-1ne0 11213  ax-1rid 11214  ax-rnegex 11215  ax-rrecex 11216  ax-cnre 11217  ax-pre-lttri 11218  ax-pre-lttrn 11219  ax-pre-ltadd 11220  ax-pre-mulgt0 11221
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-reu 3373  df-rab 3429  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4325  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4911  df-int 4952  df-iun 5000  df-br 5151  df-opab 5213  df-mpt 5234  df-tr 5268  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5635  df-we 5637  df-xp 5686  df-rel 5687  df-cnv 5688  df-co 5689  df-dm 5690  df-rn 5691  df-res 5692  df-ima 5693  df-pred 6308  df-ord 6375  df-on 6376  df-lim 6377  df-suc 6378  df-iota 6503  df-fun 6553  df-fn 6554  df-f 6555  df-f1 6556  df-fo 6557  df-f1o 6558  df-fv 6559  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7875  df-1st 7997  df-2nd 7998  df-frecs 8291  df-wrecs 8322  df-recs 8396  df-rdg 8435  df-1o 8491  df-er 8729  df-map 8851  df-en 8969  df-dom 8970  df-sdom 8971  df-fin 8972  df-card 9968  df-pnf 11286  df-mnf 11287  df-xr 11288  df-ltxr 11289  df-le 11290  df-sub 11482  df-neg 11483  df-nn 12249  df-n0 12509  df-z 12595  df-uz 12859  df-fz 13523  df-fzo 13666  df-hash 14328  df-word 14503  df-mrex 35101  df-mex 35102  df-mvrs 35104
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator