Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mvrsfpw Structured version   Visualization version   GIF version

Theorem mvrsfpw 35025
Description: The set of variables in an expression is a finite subset of 𝑉. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mvrsval.v 𝑉 = (mVRβ€˜π‘‡)
mvrsval.e 𝐸 = (mExβ€˜π‘‡)
mvrsval.w π‘Š = (mVarsβ€˜π‘‡)
Assertion
Ref Expression
mvrsfpw (𝑋 ∈ 𝐸 β†’ (π‘Šβ€˜π‘‹) ∈ (𝒫 𝑉 ∩ Fin))

Proof of Theorem mvrsfpw
StepHypRef Expression
1 mvrsval.v . . 3 𝑉 = (mVRβ€˜π‘‡)
2 mvrsval.e . . 3 𝐸 = (mExβ€˜π‘‡)
3 mvrsval.w . . 3 π‘Š = (mVarsβ€˜π‘‡)
41, 2, 3mvrsval 35024 . 2 (𝑋 ∈ 𝐸 β†’ (π‘Šβ€˜π‘‹) = (ran (2nd β€˜π‘‹) ∩ 𝑉))
5 inss2 4224 . . . 4 (ran (2nd β€˜π‘‹) ∩ 𝑉) βŠ† 𝑉
65a1i 11 . . 3 (𝑋 ∈ 𝐸 β†’ (ran (2nd β€˜π‘‹) ∩ 𝑉) βŠ† 𝑉)
7 fzofi 13942 . . . . 5 (0..^(β™―β€˜(2nd β€˜π‘‹))) ∈ Fin
8 xp2nd 8004 . . . . . . . 8 (𝑋 ∈ ((mTCβ€˜π‘‡) Γ— Word ((mCNβ€˜π‘‡) βˆͺ 𝑉)) β†’ (2nd β€˜π‘‹) ∈ Word ((mCNβ€˜π‘‡) βˆͺ 𝑉))
9 eqid 2726 . . . . . . . . 9 (mTCβ€˜π‘‡) = (mTCβ€˜π‘‡)
10 eqid 2726 . . . . . . . . 9 (mCNβ€˜π‘‡) = (mCNβ€˜π‘‡)
119, 2, 10, 1mexval2 35022 . . . . . . . 8 𝐸 = ((mTCβ€˜π‘‡) Γ— Word ((mCNβ€˜π‘‡) βˆͺ 𝑉))
128, 11eleq2s 2845 . . . . . . 7 (𝑋 ∈ 𝐸 β†’ (2nd β€˜π‘‹) ∈ Word ((mCNβ€˜π‘‡) βˆͺ 𝑉))
13 wrdf 14473 . . . . . . 7 ((2nd β€˜π‘‹) ∈ Word ((mCNβ€˜π‘‡) βˆͺ 𝑉) β†’ (2nd β€˜π‘‹):(0..^(β™―β€˜(2nd β€˜π‘‹)))⟢((mCNβ€˜π‘‡) βˆͺ 𝑉))
14 ffn 6710 . . . . . . 7 ((2nd β€˜π‘‹):(0..^(β™―β€˜(2nd β€˜π‘‹)))⟢((mCNβ€˜π‘‡) βˆͺ 𝑉) β†’ (2nd β€˜π‘‹) Fn (0..^(β™―β€˜(2nd β€˜π‘‹))))
1512, 13, 143syl 18 . . . . . 6 (𝑋 ∈ 𝐸 β†’ (2nd β€˜π‘‹) Fn (0..^(β™―β€˜(2nd β€˜π‘‹))))
16 dffn4 6804 . . . . . 6 ((2nd β€˜π‘‹) Fn (0..^(β™―β€˜(2nd β€˜π‘‹))) ↔ (2nd β€˜π‘‹):(0..^(β™―β€˜(2nd β€˜π‘‹)))–ontoβ†’ran (2nd β€˜π‘‹))
1715, 16sylib 217 . . . . 5 (𝑋 ∈ 𝐸 β†’ (2nd β€˜π‘‹):(0..^(β™―β€˜(2nd β€˜π‘‹)))–ontoβ†’ran (2nd β€˜π‘‹))
18 fofi 9337 . . . . 5 (((0..^(β™―β€˜(2nd β€˜π‘‹))) ∈ Fin ∧ (2nd β€˜π‘‹):(0..^(β™―β€˜(2nd β€˜π‘‹)))–ontoβ†’ran (2nd β€˜π‘‹)) β†’ ran (2nd β€˜π‘‹) ∈ Fin)
197, 17, 18sylancr 586 . . . 4 (𝑋 ∈ 𝐸 β†’ ran (2nd β€˜π‘‹) ∈ Fin)
20 inss1 4223 . . . 4 (ran (2nd β€˜π‘‹) ∩ 𝑉) βŠ† ran (2nd β€˜π‘‹)
21 ssfi 9172 . . . 4 ((ran (2nd β€˜π‘‹) ∈ Fin ∧ (ran (2nd β€˜π‘‹) ∩ 𝑉) βŠ† ran (2nd β€˜π‘‹)) β†’ (ran (2nd β€˜π‘‹) ∩ 𝑉) ∈ Fin)
2219, 20, 21sylancl 585 . . 3 (𝑋 ∈ 𝐸 β†’ (ran (2nd β€˜π‘‹) ∩ 𝑉) ∈ Fin)
23 elfpw 9353 . . 3 ((ran (2nd β€˜π‘‹) ∩ 𝑉) ∈ (𝒫 𝑉 ∩ Fin) ↔ ((ran (2nd β€˜π‘‹) ∩ 𝑉) βŠ† 𝑉 ∧ (ran (2nd β€˜π‘‹) ∩ 𝑉) ∈ Fin))
246, 22, 23sylanbrc 582 . 2 (𝑋 ∈ 𝐸 β†’ (ran (2nd β€˜π‘‹) ∩ 𝑉) ∈ (𝒫 𝑉 ∩ Fin))
254, 24eqeltrd 2827 1 (𝑋 ∈ 𝐸 β†’ (π‘Šβ€˜π‘‹) ∈ (𝒫 𝑉 ∩ Fin))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1533   ∈ wcel 2098   βˆͺ cun 3941   ∩ cin 3942   βŠ† wss 3943  π’« cpw 4597   Γ— cxp 5667  ran crn 5670   Fn wfn 6531  βŸΆwf 6532  β€“ontoβ†’wfo 6534  β€˜cfv 6536  (class class class)co 7404  2nd c2nd 7970  Fincfn 8938  0cc0 11109  ..^cfzo 13630  β™―chash 14293  Word cword 14468  mCNcmcn 34979  mVRcmvar 34980  mTCcmtc 34983  mExcmex 34986  mVarscmvrs 34988
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7721  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-int 4944  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6293  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8264  df-wrecs 8295  df-recs 8369  df-rdg 8408  df-1o 8464  df-er 8702  df-map 8821  df-en 8939  df-dom 8940  df-sdom 8941  df-fin 8942  df-card 9933  df-pnf 11251  df-mnf 11252  df-xr 11253  df-ltxr 11254  df-le 11255  df-sub 11447  df-neg 11448  df-nn 12214  df-n0 12474  df-z 12560  df-uz 12824  df-fz 13488  df-fzo 13631  df-hash 14294  df-word 14469  df-mrex 35005  df-mex 35006  df-mvrs 35008
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator