![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mvrsfpw | Structured version Visualization version GIF version |
Description: The set of variables in an expression is a finite subset of 𝑉. (Contributed by Mario Carneiro, 18-Jul-2016.) |
Ref | Expression |
---|---|
mvrsval.v | ⊢ 𝑉 = (mVR‘𝑇) |
mvrsval.e | ⊢ 𝐸 = (mEx‘𝑇) |
mvrsval.w | ⊢ 𝑊 = (mVars‘𝑇) |
Ref | Expression |
---|---|
mvrsfpw | ⊢ (𝑋 ∈ 𝐸 → (𝑊‘𝑋) ∈ (𝒫 𝑉 ∩ Fin)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mvrsval.v | . . 3 ⊢ 𝑉 = (mVR‘𝑇) | |
2 | mvrsval.e | . . 3 ⊢ 𝐸 = (mEx‘𝑇) | |
3 | mvrsval.w | . . 3 ⊢ 𝑊 = (mVars‘𝑇) | |
4 | 1, 2, 3 | mvrsval 35473 | . 2 ⊢ (𝑋 ∈ 𝐸 → (𝑊‘𝑋) = (ran (2nd ‘𝑋) ∩ 𝑉)) |
5 | inss2 4259 | . . . 4 ⊢ (ran (2nd ‘𝑋) ∩ 𝑉) ⊆ 𝑉 | |
6 | 5 | a1i 11 | . . 3 ⊢ (𝑋 ∈ 𝐸 → (ran (2nd ‘𝑋) ∩ 𝑉) ⊆ 𝑉) |
7 | fzofi 14025 | . . . . 5 ⊢ (0..^(♯‘(2nd ‘𝑋))) ∈ Fin | |
8 | xp2nd 8063 | . . . . . . . 8 ⊢ (𝑋 ∈ ((mTC‘𝑇) × Word ((mCN‘𝑇) ∪ 𝑉)) → (2nd ‘𝑋) ∈ Word ((mCN‘𝑇) ∪ 𝑉)) | |
9 | eqid 2740 | . . . . . . . . 9 ⊢ (mTC‘𝑇) = (mTC‘𝑇) | |
10 | eqid 2740 | . . . . . . . . 9 ⊢ (mCN‘𝑇) = (mCN‘𝑇) | |
11 | 9, 2, 10, 1 | mexval2 35471 | . . . . . . . 8 ⊢ 𝐸 = ((mTC‘𝑇) × Word ((mCN‘𝑇) ∪ 𝑉)) |
12 | 8, 11 | eleq2s 2862 | . . . . . . 7 ⊢ (𝑋 ∈ 𝐸 → (2nd ‘𝑋) ∈ Word ((mCN‘𝑇) ∪ 𝑉)) |
13 | wrdf 14567 | . . . . . . 7 ⊢ ((2nd ‘𝑋) ∈ Word ((mCN‘𝑇) ∪ 𝑉) → (2nd ‘𝑋):(0..^(♯‘(2nd ‘𝑋)))⟶((mCN‘𝑇) ∪ 𝑉)) | |
14 | ffn 6747 | . . . . . . 7 ⊢ ((2nd ‘𝑋):(0..^(♯‘(2nd ‘𝑋)))⟶((mCN‘𝑇) ∪ 𝑉) → (2nd ‘𝑋) Fn (0..^(♯‘(2nd ‘𝑋)))) | |
15 | 12, 13, 14 | 3syl 18 | . . . . . 6 ⊢ (𝑋 ∈ 𝐸 → (2nd ‘𝑋) Fn (0..^(♯‘(2nd ‘𝑋)))) |
16 | dffn4 6840 | . . . . . 6 ⊢ ((2nd ‘𝑋) Fn (0..^(♯‘(2nd ‘𝑋))) ↔ (2nd ‘𝑋):(0..^(♯‘(2nd ‘𝑋)))–onto→ran (2nd ‘𝑋)) | |
17 | 15, 16 | sylib 218 | . . . . 5 ⊢ (𝑋 ∈ 𝐸 → (2nd ‘𝑋):(0..^(♯‘(2nd ‘𝑋)))–onto→ran (2nd ‘𝑋)) |
18 | fofi 9379 | . . . . 5 ⊢ (((0..^(♯‘(2nd ‘𝑋))) ∈ Fin ∧ (2nd ‘𝑋):(0..^(♯‘(2nd ‘𝑋)))–onto→ran (2nd ‘𝑋)) → ran (2nd ‘𝑋) ∈ Fin) | |
19 | 7, 17, 18 | sylancr 586 | . . . 4 ⊢ (𝑋 ∈ 𝐸 → ran (2nd ‘𝑋) ∈ Fin) |
20 | inss1 4258 | . . . 4 ⊢ (ran (2nd ‘𝑋) ∩ 𝑉) ⊆ ran (2nd ‘𝑋) | |
21 | ssfi 9240 | . . . 4 ⊢ ((ran (2nd ‘𝑋) ∈ Fin ∧ (ran (2nd ‘𝑋) ∩ 𝑉) ⊆ ran (2nd ‘𝑋)) → (ran (2nd ‘𝑋) ∩ 𝑉) ∈ Fin) | |
22 | 19, 20, 21 | sylancl 585 | . . 3 ⊢ (𝑋 ∈ 𝐸 → (ran (2nd ‘𝑋) ∩ 𝑉) ∈ Fin) |
23 | elfpw 9424 | . . 3 ⊢ ((ran (2nd ‘𝑋) ∩ 𝑉) ∈ (𝒫 𝑉 ∩ Fin) ↔ ((ran (2nd ‘𝑋) ∩ 𝑉) ⊆ 𝑉 ∧ (ran (2nd ‘𝑋) ∩ 𝑉) ∈ Fin)) | |
24 | 6, 22, 23 | sylanbrc 582 | . 2 ⊢ (𝑋 ∈ 𝐸 → (ran (2nd ‘𝑋) ∩ 𝑉) ∈ (𝒫 𝑉 ∩ Fin)) |
25 | 4, 24 | eqeltrd 2844 | 1 ⊢ (𝑋 ∈ 𝐸 → (𝑊‘𝑋) ∈ (𝒫 𝑉 ∩ Fin)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ∪ cun 3974 ∩ cin 3975 ⊆ wss 3976 𝒫 cpw 4622 × cxp 5698 ran crn 5701 Fn wfn 6568 ⟶wf 6569 –onto→wfo 6571 ‘cfv 6573 (class class class)co 7448 2nd c2nd 8029 Fincfn 9003 0cc0 11184 ..^cfzo 13711 ♯chash 14379 Word cword 14562 mCNcmcn 35428 mVRcmvar 35429 mTCcmtc 35432 mExcmex 35435 mVarscmvrs 35437 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-er 8763 df-map 8886 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-n0 12554 df-z 12640 df-uz 12904 df-fz 13568 df-fzo 13712 df-hash 14380 df-word 14563 df-mrex 35454 df-mex 35455 df-mvrs 35457 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |