Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mvrsfpw Structured version   Visualization version   GIF version

Theorem mvrsfpw 35550
Description: The set of variables in an expression is a finite subset of 𝑉. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mvrsval.v 𝑉 = (mVR‘𝑇)
mvrsval.e 𝐸 = (mEx‘𝑇)
mvrsval.w 𝑊 = (mVars‘𝑇)
Assertion
Ref Expression
mvrsfpw (𝑋𝐸 → (𝑊𝑋) ∈ (𝒫 𝑉 ∩ Fin))

Proof of Theorem mvrsfpw
StepHypRef Expression
1 mvrsval.v . . 3 𝑉 = (mVR‘𝑇)
2 mvrsval.e . . 3 𝐸 = (mEx‘𝑇)
3 mvrsval.w . . 3 𝑊 = (mVars‘𝑇)
41, 2, 3mvrsval 35549 . 2 (𝑋𝐸 → (𝑊𝑋) = (ran (2nd𝑋) ∩ 𝑉))
5 inss2 4185 . . . 4 (ran (2nd𝑋) ∩ 𝑉) ⊆ 𝑉
65a1i 11 . . 3 (𝑋𝐸 → (ran (2nd𝑋) ∩ 𝑉) ⊆ 𝑉)
7 fzofi 13881 . . . . 5 (0..^(♯‘(2nd𝑋))) ∈ Fin
8 xp2nd 7954 . . . . . . . 8 (𝑋 ∈ ((mTC‘𝑇) × Word ((mCN‘𝑇) ∪ 𝑉)) → (2nd𝑋) ∈ Word ((mCN‘𝑇) ∪ 𝑉))
9 eqid 2731 . . . . . . . . 9 (mTC‘𝑇) = (mTC‘𝑇)
10 eqid 2731 . . . . . . . . 9 (mCN‘𝑇) = (mCN‘𝑇)
119, 2, 10, 1mexval2 35547 . . . . . . . 8 𝐸 = ((mTC‘𝑇) × Word ((mCN‘𝑇) ∪ 𝑉))
128, 11eleq2s 2849 . . . . . . 7 (𝑋𝐸 → (2nd𝑋) ∈ Word ((mCN‘𝑇) ∪ 𝑉))
13 wrdf 14425 . . . . . . 7 ((2nd𝑋) ∈ Word ((mCN‘𝑇) ∪ 𝑉) → (2nd𝑋):(0..^(♯‘(2nd𝑋)))⟶((mCN‘𝑇) ∪ 𝑉))
14 ffn 6651 . . . . . . 7 ((2nd𝑋):(0..^(♯‘(2nd𝑋)))⟶((mCN‘𝑇) ∪ 𝑉) → (2nd𝑋) Fn (0..^(♯‘(2nd𝑋))))
1512, 13, 143syl 18 . . . . . 6 (𝑋𝐸 → (2nd𝑋) Fn (0..^(♯‘(2nd𝑋))))
16 dffn4 6741 . . . . . 6 ((2nd𝑋) Fn (0..^(♯‘(2nd𝑋))) ↔ (2nd𝑋):(0..^(♯‘(2nd𝑋)))–onto→ran (2nd𝑋))
1715, 16sylib 218 . . . . 5 (𝑋𝐸 → (2nd𝑋):(0..^(♯‘(2nd𝑋)))–onto→ran (2nd𝑋))
18 fofi 9197 . . . . 5 (((0..^(♯‘(2nd𝑋))) ∈ Fin ∧ (2nd𝑋):(0..^(♯‘(2nd𝑋)))–onto→ran (2nd𝑋)) → ran (2nd𝑋) ∈ Fin)
197, 17, 18sylancr 587 . . . 4 (𝑋𝐸 → ran (2nd𝑋) ∈ Fin)
20 inss1 4184 . . . 4 (ran (2nd𝑋) ∩ 𝑉) ⊆ ran (2nd𝑋)
21 ssfi 9082 . . . 4 ((ran (2nd𝑋) ∈ Fin ∧ (ran (2nd𝑋) ∩ 𝑉) ⊆ ran (2nd𝑋)) → (ran (2nd𝑋) ∩ 𝑉) ∈ Fin)
2219, 20, 21sylancl 586 . . 3 (𝑋𝐸 → (ran (2nd𝑋) ∩ 𝑉) ∈ Fin)
23 elfpw 9238 . . 3 ((ran (2nd𝑋) ∩ 𝑉) ∈ (𝒫 𝑉 ∩ Fin) ↔ ((ran (2nd𝑋) ∩ 𝑉) ⊆ 𝑉 ∧ (ran (2nd𝑋) ∩ 𝑉) ∈ Fin))
246, 22, 23sylanbrc 583 . 2 (𝑋𝐸 → (ran (2nd𝑋) ∩ 𝑉) ∈ (𝒫 𝑉 ∩ Fin))
254, 24eqeltrd 2831 1 (𝑋𝐸 → (𝑊𝑋) ∈ (𝒫 𝑉 ∩ Fin))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  cun 3895  cin 3896  wss 3897  𝒫 cpw 4547   × cxp 5612  ran crn 5615   Fn wfn 6476  wf 6477  ontowfo 6479  cfv 6481  (class class class)co 7346  2nd c2nd 7920  Fincfn 8869  0cc0 11006  ..^cfzo 13554  chash 14237  Word cword 14420  mCNcmcn 35504  mVRcmvar 35505  mTCcmtc 35508  mExcmex 35511  mVarscmvrs 35513
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-n0 12382  df-z 12469  df-uz 12733  df-fz 13408  df-fzo 13555  df-hash 14238  df-word 14421  df-mrex 35530  df-mex 35531  df-mvrs 35533
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator