Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  msubfval Structured version   Visualization version   GIF version

Theorem msubfval 35529
Description: A substitution applied to an expression. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
msubffval.v 𝑉 = (mVR‘𝑇)
msubffval.r 𝑅 = (mREx‘𝑇)
msubffval.s 𝑆 = (mSubst‘𝑇)
msubffval.e 𝐸 = (mEx‘𝑇)
msubffval.o 𝑂 = (mRSubst‘𝑇)
Assertion
Ref Expression
msubfval ((𝐹:𝐴𝑅𝐴𝑉) → (𝑆𝐹) = (𝑒𝐸 ↦ ⟨(1st𝑒), ((𝑂𝐹)‘(2nd𝑒))⟩))
Distinct variable groups:   𝑒,𝐸   𝑒,𝑂   𝑅,𝑒   𝑇,𝑒   𝑒,𝑉   𝐴,𝑒   𝑒,𝐹
Allowed substitution hint:   𝑆(𝑒)

Proof of Theorem msubfval
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 msubffval.v . . . . . 6 𝑉 = (mVR‘𝑇)
2 msubffval.r . . . . . 6 𝑅 = (mREx‘𝑇)
3 msubffval.s . . . . . 6 𝑆 = (mSubst‘𝑇)
4 msubffval.e . . . . . 6 𝐸 = (mEx‘𝑇)
5 msubffval.o . . . . . 6 𝑂 = (mRSubst‘𝑇)
61, 2, 3, 4, 5msubffval 35528 . . . . 5 (𝑇 ∈ V → 𝑆 = (𝑓 ∈ (𝑅pm 𝑉) ↦ (𝑒𝐸 ↦ ⟨(1st𝑒), ((𝑂𝑓)‘(2nd𝑒))⟩)))
76adantr 480 . . . 4 ((𝑇 ∈ V ∧ (𝐹:𝐴𝑅𝐴𝑉)) → 𝑆 = (𝑓 ∈ (𝑅pm 𝑉) ↦ (𝑒𝐸 ↦ ⟨(1st𝑒), ((𝑂𝑓)‘(2nd𝑒))⟩)))
8 simplr 769 . . . . . . . 8 ((((𝑇 ∈ V ∧ (𝐹:𝐴𝑅𝐴𝑉)) ∧ 𝑓 = 𝐹) ∧ 𝑒𝐸) → 𝑓 = 𝐹)
98fveq2d 6910 . . . . . . 7 ((((𝑇 ∈ V ∧ (𝐹:𝐴𝑅𝐴𝑉)) ∧ 𝑓 = 𝐹) ∧ 𝑒𝐸) → (𝑂𝑓) = (𝑂𝐹))
109fveq1d 6908 . . . . . 6 ((((𝑇 ∈ V ∧ (𝐹:𝐴𝑅𝐴𝑉)) ∧ 𝑓 = 𝐹) ∧ 𝑒𝐸) → ((𝑂𝑓)‘(2nd𝑒)) = ((𝑂𝐹)‘(2nd𝑒)))
1110opeq2d 4880 . . . . 5 ((((𝑇 ∈ V ∧ (𝐹:𝐴𝑅𝐴𝑉)) ∧ 𝑓 = 𝐹) ∧ 𝑒𝐸) → ⟨(1st𝑒), ((𝑂𝑓)‘(2nd𝑒))⟩ = ⟨(1st𝑒), ((𝑂𝐹)‘(2nd𝑒))⟩)
1211mpteq2dva 5242 . . . 4 (((𝑇 ∈ V ∧ (𝐹:𝐴𝑅𝐴𝑉)) ∧ 𝑓 = 𝐹) → (𝑒𝐸 ↦ ⟨(1st𝑒), ((𝑂𝑓)‘(2nd𝑒))⟩) = (𝑒𝐸 ↦ ⟨(1st𝑒), ((𝑂𝐹)‘(2nd𝑒))⟩))
132fvexi 6920 . . . . . . 7 𝑅 ∈ V
141fvexi 6920 . . . . . . 7 𝑉 ∈ V
1513, 14pm3.2i 470 . . . . . 6 (𝑅 ∈ V ∧ 𝑉 ∈ V)
1615a1i 11 . . . . 5 (𝑇 ∈ V → (𝑅 ∈ V ∧ 𝑉 ∈ V))
17 elpm2r 8885 . . . . 5 (((𝑅 ∈ V ∧ 𝑉 ∈ V) ∧ (𝐹:𝐴𝑅𝐴𝑉)) → 𝐹 ∈ (𝑅pm 𝑉))
1816, 17sylan 580 . . . 4 ((𝑇 ∈ V ∧ (𝐹:𝐴𝑅𝐴𝑉)) → 𝐹 ∈ (𝑅pm 𝑉))
194fvexi 6920 . . . . . 6 𝐸 ∈ V
2019mptex 7243 . . . . 5 (𝑒𝐸 ↦ ⟨(1st𝑒), ((𝑂𝐹)‘(2nd𝑒))⟩) ∈ V
2120a1i 11 . . . 4 ((𝑇 ∈ V ∧ (𝐹:𝐴𝑅𝐴𝑉)) → (𝑒𝐸 ↦ ⟨(1st𝑒), ((𝑂𝐹)‘(2nd𝑒))⟩) ∈ V)
227, 12, 18, 21fvmptd 7023 . . 3 ((𝑇 ∈ V ∧ (𝐹:𝐴𝑅𝐴𝑉)) → (𝑆𝐹) = (𝑒𝐸 ↦ ⟨(1st𝑒), ((𝑂𝐹)‘(2nd𝑒))⟩))
2322ex 412 . 2 (𝑇 ∈ V → ((𝐹:𝐴𝑅𝐴𝑉) → (𝑆𝐹) = (𝑒𝐸 ↦ ⟨(1st𝑒), ((𝑂𝐹)‘(2nd𝑒))⟩)))
24 0fv 6950 . . . . 5 (∅‘𝐹) = ∅
25 mpt0 6710 . . . . 5 (𝑒 ∈ ∅ ↦ ⟨(1st𝑒), ((𝑂𝐹)‘(2nd𝑒))⟩) = ∅
2624, 25eqtr4i 2768 . . . 4 (∅‘𝐹) = (𝑒 ∈ ∅ ↦ ⟨(1st𝑒), ((𝑂𝐹)‘(2nd𝑒))⟩)
27 fvprc 6898 . . . . . 6 𝑇 ∈ V → (mSubst‘𝑇) = ∅)
283, 27eqtrid 2789 . . . . 5 𝑇 ∈ V → 𝑆 = ∅)
2928fveq1d 6908 . . . 4 𝑇 ∈ V → (𝑆𝐹) = (∅‘𝐹))
30 fvprc 6898 . . . . . 6 𝑇 ∈ V → (mEx‘𝑇) = ∅)
314, 30eqtrid 2789 . . . . 5 𝑇 ∈ V → 𝐸 = ∅)
3231mpteq1d 5237 . . . 4 𝑇 ∈ V → (𝑒𝐸 ↦ ⟨(1st𝑒), ((𝑂𝐹)‘(2nd𝑒))⟩) = (𝑒 ∈ ∅ ↦ ⟨(1st𝑒), ((𝑂𝐹)‘(2nd𝑒))⟩))
3326, 29, 323eqtr4a 2803 . . 3 𝑇 ∈ V → (𝑆𝐹) = (𝑒𝐸 ↦ ⟨(1st𝑒), ((𝑂𝐹)‘(2nd𝑒))⟩))
3433a1d 25 . 2 𝑇 ∈ V → ((𝐹:𝐴𝑅𝐴𝑉) → (𝑆𝐹) = (𝑒𝐸 ↦ ⟨(1st𝑒), ((𝑂𝐹)‘(2nd𝑒))⟩)))
3523, 34pm2.61i 182 1 ((𝐹:𝐴𝑅𝐴𝑉) → (𝑆𝐹) = (𝑒𝐸 ↦ ⟨(1st𝑒), ((𝑂𝐹)‘(2nd𝑒))⟩))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2108  Vcvv 3480  wss 3951  c0 4333  cop 4632  cmpt 5225  wf 6557  cfv 6561  (class class class)co 7431  1st c1st 8012  2nd c2nd 8013  pm cpm 8867  mVRcmvar 35466  mRExcmrex 35471  mExcmex 35472  mRSubstcmrsub 35475  mSubstcmsub 35476
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-pm 8869  df-msub 35496
This theorem is referenced by:  msubval  35530  msubrn  35534
  Copyright terms: Public domain W3C validator