Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  msubfval Structured version   Visualization version   GIF version

Theorem msubfval 32884
Description: A substitution applied to an expression. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
msubffval.v 𝑉 = (mVR‘𝑇)
msubffval.r 𝑅 = (mREx‘𝑇)
msubffval.s 𝑆 = (mSubst‘𝑇)
msubffval.e 𝐸 = (mEx‘𝑇)
msubffval.o 𝑂 = (mRSubst‘𝑇)
Assertion
Ref Expression
msubfval ((𝐹:𝐴𝑅𝐴𝑉) → (𝑆𝐹) = (𝑒𝐸 ↦ ⟨(1st𝑒), ((𝑂𝐹)‘(2nd𝑒))⟩))
Distinct variable groups:   𝑒,𝐸   𝑒,𝑂   𝑅,𝑒   𝑇,𝑒   𝑒,𝑉   𝐴,𝑒   𝑒,𝐹
Allowed substitution hint:   𝑆(𝑒)

Proof of Theorem msubfval
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 msubffval.v . . . . . 6 𝑉 = (mVR‘𝑇)
2 msubffval.r . . . . . 6 𝑅 = (mREx‘𝑇)
3 msubffval.s . . . . . 6 𝑆 = (mSubst‘𝑇)
4 msubffval.e . . . . . 6 𝐸 = (mEx‘𝑇)
5 msubffval.o . . . . . 6 𝑂 = (mRSubst‘𝑇)
61, 2, 3, 4, 5msubffval 32883 . . . . 5 (𝑇 ∈ V → 𝑆 = (𝑓 ∈ (𝑅pm 𝑉) ↦ (𝑒𝐸 ↦ ⟨(1st𝑒), ((𝑂𝑓)‘(2nd𝑒))⟩)))
76adantr 484 . . . 4 ((𝑇 ∈ V ∧ (𝐹:𝐴𝑅𝐴𝑉)) → 𝑆 = (𝑓 ∈ (𝑅pm 𝑉) ↦ (𝑒𝐸 ↦ ⟨(1st𝑒), ((𝑂𝑓)‘(2nd𝑒))⟩)))
8 simplr 768 . . . . . . . 8 ((((𝑇 ∈ V ∧ (𝐹:𝐴𝑅𝐴𝑉)) ∧ 𝑓 = 𝐹) ∧ 𝑒𝐸) → 𝑓 = 𝐹)
98fveq2d 6649 . . . . . . 7 ((((𝑇 ∈ V ∧ (𝐹:𝐴𝑅𝐴𝑉)) ∧ 𝑓 = 𝐹) ∧ 𝑒𝐸) → (𝑂𝑓) = (𝑂𝐹))
109fveq1d 6647 . . . . . 6 ((((𝑇 ∈ V ∧ (𝐹:𝐴𝑅𝐴𝑉)) ∧ 𝑓 = 𝐹) ∧ 𝑒𝐸) → ((𝑂𝑓)‘(2nd𝑒)) = ((𝑂𝐹)‘(2nd𝑒)))
1110opeq2d 4772 . . . . 5 ((((𝑇 ∈ V ∧ (𝐹:𝐴𝑅𝐴𝑉)) ∧ 𝑓 = 𝐹) ∧ 𝑒𝐸) → ⟨(1st𝑒), ((𝑂𝑓)‘(2nd𝑒))⟩ = ⟨(1st𝑒), ((𝑂𝐹)‘(2nd𝑒))⟩)
1211mpteq2dva 5125 . . . 4 (((𝑇 ∈ V ∧ (𝐹:𝐴𝑅𝐴𝑉)) ∧ 𝑓 = 𝐹) → (𝑒𝐸 ↦ ⟨(1st𝑒), ((𝑂𝑓)‘(2nd𝑒))⟩) = (𝑒𝐸 ↦ ⟨(1st𝑒), ((𝑂𝐹)‘(2nd𝑒))⟩))
132fvexi 6659 . . . . . . 7 𝑅 ∈ V
141fvexi 6659 . . . . . . 7 𝑉 ∈ V
1513, 14pm3.2i 474 . . . . . 6 (𝑅 ∈ V ∧ 𝑉 ∈ V)
1615a1i 11 . . . . 5 (𝑇 ∈ V → (𝑅 ∈ V ∧ 𝑉 ∈ V))
17 elpm2r 8407 . . . . 5 (((𝑅 ∈ V ∧ 𝑉 ∈ V) ∧ (𝐹:𝐴𝑅𝐴𝑉)) → 𝐹 ∈ (𝑅pm 𝑉))
1816, 17sylan 583 . . . 4 ((𝑇 ∈ V ∧ (𝐹:𝐴𝑅𝐴𝑉)) → 𝐹 ∈ (𝑅pm 𝑉))
194fvexi 6659 . . . . . 6 𝐸 ∈ V
2019mptex 6963 . . . . 5 (𝑒𝐸 ↦ ⟨(1st𝑒), ((𝑂𝐹)‘(2nd𝑒))⟩) ∈ V
2120a1i 11 . . . 4 ((𝑇 ∈ V ∧ (𝐹:𝐴𝑅𝐴𝑉)) → (𝑒𝐸 ↦ ⟨(1st𝑒), ((𝑂𝐹)‘(2nd𝑒))⟩) ∈ V)
227, 12, 18, 21fvmptd 6752 . . 3 ((𝑇 ∈ V ∧ (𝐹:𝐴𝑅𝐴𝑉)) → (𝑆𝐹) = (𝑒𝐸 ↦ ⟨(1st𝑒), ((𝑂𝐹)‘(2nd𝑒))⟩))
2322ex 416 . 2 (𝑇 ∈ V → ((𝐹:𝐴𝑅𝐴𝑉) → (𝑆𝐹) = (𝑒𝐸 ↦ ⟨(1st𝑒), ((𝑂𝐹)‘(2nd𝑒))⟩)))
24 0fv 6684 . . . . 5 (∅‘𝐹) = ∅
25 mpt0 6462 . . . . 5 (𝑒 ∈ ∅ ↦ ⟨(1st𝑒), ((𝑂𝐹)‘(2nd𝑒))⟩) = ∅
2624, 25eqtr4i 2824 . . . 4 (∅‘𝐹) = (𝑒 ∈ ∅ ↦ ⟨(1st𝑒), ((𝑂𝐹)‘(2nd𝑒))⟩)
27 fvprc 6638 . . . . . 6 𝑇 ∈ V → (mSubst‘𝑇) = ∅)
283, 27syl5eq 2845 . . . . 5 𝑇 ∈ V → 𝑆 = ∅)
2928fveq1d 6647 . . . 4 𝑇 ∈ V → (𝑆𝐹) = (∅‘𝐹))
30 fvprc 6638 . . . . . 6 𝑇 ∈ V → (mEx‘𝑇) = ∅)
314, 30syl5eq 2845 . . . . 5 𝑇 ∈ V → 𝐸 = ∅)
3231mpteq1d 5119 . . . 4 𝑇 ∈ V → (𝑒𝐸 ↦ ⟨(1st𝑒), ((𝑂𝐹)‘(2nd𝑒))⟩) = (𝑒 ∈ ∅ ↦ ⟨(1st𝑒), ((𝑂𝐹)‘(2nd𝑒))⟩))
3326, 29, 323eqtr4a 2859 . . 3 𝑇 ∈ V → (𝑆𝐹) = (𝑒𝐸 ↦ ⟨(1st𝑒), ((𝑂𝐹)‘(2nd𝑒))⟩))
3433a1d 25 . 2 𝑇 ∈ V → ((𝐹:𝐴𝑅𝐴𝑉) → (𝑆𝐹) = (𝑒𝐸 ↦ ⟨(1st𝑒), ((𝑂𝐹)‘(2nd𝑒))⟩)))
3523, 34pm2.61i 185 1 ((𝐹:𝐴𝑅𝐴𝑉) → (𝑆𝐹) = (𝑒𝐸 ↦ ⟨(1st𝑒), ((𝑂𝐹)‘(2nd𝑒))⟩))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399   = wceq 1538  wcel 2111  Vcvv 3441  wss 3881  c0 4243  cop 4531  cmpt 5110  wf 6320  cfv 6324  (class class class)co 7135  1st c1st 7669  2nd c2nd 7670  pm cpm 8390  mVRcmvar 32821  mRExcmrex 32826  mExcmex 32827  mRSubstcmrsub 32830  mSubstcmsub 32831
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-pm 8392  df-msub 32851
This theorem is referenced by:  msubval  32885  msubrn  32889
  Copyright terms: Public domain W3C validator