Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  msubff Structured version   Visualization version   GIF version

Theorem msubff 35552
Description: A substitution is a function from 𝐸 to 𝐸. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
msubff.v 𝑉 = (mVR‘𝑇)
msubff.r 𝑅 = (mREx‘𝑇)
msubff.s 𝑆 = (mSubst‘𝑇)
msubff.e 𝐸 = (mEx‘𝑇)
Assertion
Ref Expression
msubff (𝑇𝑊𝑆:(𝑅pm 𝑉)⟶(𝐸m 𝐸))

Proof of Theorem msubff
Dummy variables 𝑒 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xp1st 8020 . . . . . . . . 9 (𝑒 ∈ ((mTC‘𝑇) × 𝑅) → (1st𝑒) ∈ (mTC‘𝑇))
2 eqid 2735 . . . . . . . . . 10 (mTC‘𝑇) = (mTC‘𝑇)
3 msubff.e . . . . . . . . . 10 𝐸 = (mEx‘𝑇)
4 msubff.r . . . . . . . . . 10 𝑅 = (mREx‘𝑇)
52, 3, 4mexval 35524 . . . . . . . . 9 𝐸 = ((mTC‘𝑇) × 𝑅)
61, 5eleq2s 2852 . . . . . . . 8 (𝑒𝐸 → (1st𝑒) ∈ (mTC‘𝑇))
76adantl 481 . . . . . . 7 (((𝑇𝑊𝑓 ∈ (𝑅pm 𝑉)) ∧ 𝑒𝐸) → (1st𝑒) ∈ (mTC‘𝑇))
8 msubff.v . . . . . . . . . . 11 𝑉 = (mVR‘𝑇)
9 eqid 2735 . . . . . . . . . . 11 (mRSubst‘𝑇) = (mRSubst‘𝑇)
108, 4, 9mrsubff 35534 . . . . . . . . . 10 (𝑇𝑊 → (mRSubst‘𝑇):(𝑅pm 𝑉)⟶(𝑅m 𝑅))
1110ffvelcdmda 7074 . . . . . . . . 9 ((𝑇𝑊𝑓 ∈ (𝑅pm 𝑉)) → ((mRSubst‘𝑇)‘𝑓) ∈ (𝑅m 𝑅))
12 elmapi 8863 . . . . . . . . 9 (((mRSubst‘𝑇)‘𝑓) ∈ (𝑅m 𝑅) → ((mRSubst‘𝑇)‘𝑓):𝑅𝑅)
1311, 12syl 17 . . . . . . . 8 ((𝑇𝑊𝑓 ∈ (𝑅pm 𝑉)) → ((mRSubst‘𝑇)‘𝑓):𝑅𝑅)
14 xp2nd 8021 . . . . . . . . 9 (𝑒 ∈ ((mTC‘𝑇) × 𝑅) → (2nd𝑒) ∈ 𝑅)
1514, 5eleq2s 2852 . . . . . . . 8 (𝑒𝐸 → (2nd𝑒) ∈ 𝑅)
16 ffvelcdm 7071 . . . . . . . 8 ((((mRSubst‘𝑇)‘𝑓):𝑅𝑅 ∧ (2nd𝑒) ∈ 𝑅) → (((mRSubst‘𝑇)‘𝑓)‘(2nd𝑒)) ∈ 𝑅)
1713, 15, 16syl2an 596 . . . . . . 7 (((𝑇𝑊𝑓 ∈ (𝑅pm 𝑉)) ∧ 𝑒𝐸) → (((mRSubst‘𝑇)‘𝑓)‘(2nd𝑒)) ∈ 𝑅)
18 opelxp 5690 . . . . . . 7 (⟨(1st𝑒), (((mRSubst‘𝑇)‘𝑓)‘(2nd𝑒))⟩ ∈ ((mTC‘𝑇) × 𝑅) ↔ ((1st𝑒) ∈ (mTC‘𝑇) ∧ (((mRSubst‘𝑇)‘𝑓)‘(2nd𝑒)) ∈ 𝑅))
197, 17, 18sylanbrc 583 . . . . . 6 (((𝑇𝑊𝑓 ∈ (𝑅pm 𝑉)) ∧ 𝑒𝐸) → ⟨(1st𝑒), (((mRSubst‘𝑇)‘𝑓)‘(2nd𝑒))⟩ ∈ ((mTC‘𝑇) × 𝑅))
2019, 5eleqtrrdi 2845 . . . . 5 (((𝑇𝑊𝑓 ∈ (𝑅pm 𝑉)) ∧ 𝑒𝐸) → ⟨(1st𝑒), (((mRSubst‘𝑇)‘𝑓)‘(2nd𝑒))⟩ ∈ 𝐸)
2120fmpttd 7105 . . . 4 ((𝑇𝑊𝑓 ∈ (𝑅pm 𝑉)) → (𝑒𝐸 ↦ ⟨(1st𝑒), (((mRSubst‘𝑇)‘𝑓)‘(2nd𝑒))⟩):𝐸𝐸)
223fvexi 6890 . . . . 5 𝐸 ∈ V
2322, 22elmap 8885 . . . 4 ((𝑒𝐸 ↦ ⟨(1st𝑒), (((mRSubst‘𝑇)‘𝑓)‘(2nd𝑒))⟩) ∈ (𝐸m 𝐸) ↔ (𝑒𝐸 ↦ ⟨(1st𝑒), (((mRSubst‘𝑇)‘𝑓)‘(2nd𝑒))⟩):𝐸𝐸)
2421, 23sylibr 234 . . 3 ((𝑇𝑊𝑓 ∈ (𝑅pm 𝑉)) → (𝑒𝐸 ↦ ⟨(1st𝑒), (((mRSubst‘𝑇)‘𝑓)‘(2nd𝑒))⟩) ∈ (𝐸m 𝐸))
2524fmpttd 7105 . 2 (𝑇𝑊 → (𝑓 ∈ (𝑅pm 𝑉) ↦ (𝑒𝐸 ↦ ⟨(1st𝑒), (((mRSubst‘𝑇)‘𝑓)‘(2nd𝑒))⟩)):(𝑅pm 𝑉)⟶(𝐸m 𝐸))
26 msubff.s . . . 4 𝑆 = (mSubst‘𝑇)
278, 4, 26, 3, 9msubffval 35545 . . 3 (𝑇𝑊𝑆 = (𝑓 ∈ (𝑅pm 𝑉) ↦ (𝑒𝐸 ↦ ⟨(1st𝑒), (((mRSubst‘𝑇)‘𝑓)‘(2nd𝑒))⟩)))
2827feq1d 6690 . 2 (𝑇𝑊 → (𝑆:(𝑅pm 𝑉)⟶(𝐸m 𝐸) ↔ (𝑓 ∈ (𝑅pm 𝑉) ↦ (𝑒𝐸 ↦ ⟨(1st𝑒), (((mRSubst‘𝑇)‘𝑓)‘(2nd𝑒))⟩)):(𝑅pm 𝑉)⟶(𝐸m 𝐸)))
2925, 28mpbird 257 1 (𝑇𝑊𝑆:(𝑅pm 𝑉)⟶(𝐸m 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  cop 4607  cmpt 5201   × cxp 5652  wf 6527  cfv 6531  (class class class)co 7405  1st c1st 7986  2nd c2nd 7987  m cmap 8840  pm cpm 8841  mVRcmvar 35483  mTCcmtc 35486  mRExcmrex 35488  mExcmex 35489  mRSubstcmrsub 35492  mSubstcmsub 35493
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8719  df-map 8842  df-pm 8843  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-n0 12502  df-z 12589  df-uz 12853  df-fz 13525  df-fzo 13672  df-seq 14020  df-hash 14349  df-word 14532  df-concat 14589  df-s1 14614  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-0g 17455  df-gsum 17456  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-submnd 18762  df-frmd 18827  df-mrex 35508  df-mex 35509  df-mrsub 35512  df-msub 35513
This theorem is referenced by:  msubf  35554  msubff1  35578  mclsind  35592
  Copyright terms: Public domain W3C validator