Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  msubff Structured version   Visualization version   GIF version

Theorem msubff 33367
Description: A substitution is a function from 𝐸 to 𝐸. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
msubff.v 𝑉 = (mVR‘𝑇)
msubff.r 𝑅 = (mREx‘𝑇)
msubff.s 𝑆 = (mSubst‘𝑇)
msubff.e 𝐸 = (mEx‘𝑇)
Assertion
Ref Expression
msubff (𝑇𝑊𝑆:(𝑅pm 𝑉)⟶(𝐸m 𝐸))

Proof of Theorem msubff
Dummy variables 𝑒 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xp1st 7833 . . . . . . . . 9 (𝑒 ∈ ((mTC‘𝑇) × 𝑅) → (1st𝑒) ∈ (mTC‘𝑇))
2 eqid 2739 . . . . . . . . . 10 (mTC‘𝑇) = (mTC‘𝑇)
3 msubff.e . . . . . . . . . 10 𝐸 = (mEx‘𝑇)
4 msubff.r . . . . . . . . . 10 𝑅 = (mREx‘𝑇)
52, 3, 4mexval 33339 . . . . . . . . 9 𝐸 = ((mTC‘𝑇) × 𝑅)
61, 5eleq2s 2858 . . . . . . . 8 (𝑒𝐸 → (1st𝑒) ∈ (mTC‘𝑇))
76adantl 485 . . . . . . 7 (((𝑇𝑊𝑓 ∈ (𝑅pm 𝑉)) ∧ 𝑒𝐸) → (1st𝑒) ∈ (mTC‘𝑇))
8 msubff.v . . . . . . . . . . 11 𝑉 = (mVR‘𝑇)
9 eqid 2739 . . . . . . . . . . 11 (mRSubst‘𝑇) = (mRSubst‘𝑇)
108, 4, 9mrsubff 33349 . . . . . . . . . 10 (𝑇𝑊 → (mRSubst‘𝑇):(𝑅pm 𝑉)⟶(𝑅m 𝑅))
1110ffvelrnda 6940 . . . . . . . . 9 ((𝑇𝑊𝑓 ∈ (𝑅pm 𝑉)) → ((mRSubst‘𝑇)‘𝑓) ∈ (𝑅m 𝑅))
12 elmapi 8572 . . . . . . . . 9 (((mRSubst‘𝑇)‘𝑓) ∈ (𝑅m 𝑅) → ((mRSubst‘𝑇)‘𝑓):𝑅𝑅)
1311, 12syl 17 . . . . . . . 8 ((𝑇𝑊𝑓 ∈ (𝑅pm 𝑉)) → ((mRSubst‘𝑇)‘𝑓):𝑅𝑅)
14 xp2nd 7834 . . . . . . . . 9 (𝑒 ∈ ((mTC‘𝑇) × 𝑅) → (2nd𝑒) ∈ 𝑅)
1514, 5eleq2s 2858 . . . . . . . 8 (𝑒𝐸 → (2nd𝑒) ∈ 𝑅)
16 ffvelrn 6938 . . . . . . . 8 ((((mRSubst‘𝑇)‘𝑓):𝑅𝑅 ∧ (2nd𝑒) ∈ 𝑅) → (((mRSubst‘𝑇)‘𝑓)‘(2nd𝑒)) ∈ 𝑅)
1713, 15, 16syl2an 599 . . . . . . 7 (((𝑇𝑊𝑓 ∈ (𝑅pm 𝑉)) ∧ 𝑒𝐸) → (((mRSubst‘𝑇)‘𝑓)‘(2nd𝑒)) ∈ 𝑅)
18 opelxp 5615 . . . . . . 7 (⟨(1st𝑒), (((mRSubst‘𝑇)‘𝑓)‘(2nd𝑒))⟩ ∈ ((mTC‘𝑇) × 𝑅) ↔ ((1st𝑒) ∈ (mTC‘𝑇) ∧ (((mRSubst‘𝑇)‘𝑓)‘(2nd𝑒)) ∈ 𝑅))
197, 17, 18sylanbrc 586 . . . . . 6 (((𝑇𝑊𝑓 ∈ (𝑅pm 𝑉)) ∧ 𝑒𝐸) → ⟨(1st𝑒), (((mRSubst‘𝑇)‘𝑓)‘(2nd𝑒))⟩ ∈ ((mTC‘𝑇) × 𝑅))
2019, 5eleqtrrdi 2851 . . . . 5 (((𝑇𝑊𝑓 ∈ (𝑅pm 𝑉)) ∧ 𝑒𝐸) → ⟨(1st𝑒), (((mRSubst‘𝑇)‘𝑓)‘(2nd𝑒))⟩ ∈ 𝐸)
2120fmpttd 6968 . . . 4 ((𝑇𝑊𝑓 ∈ (𝑅pm 𝑉)) → (𝑒𝐸 ↦ ⟨(1st𝑒), (((mRSubst‘𝑇)‘𝑓)‘(2nd𝑒))⟩):𝐸𝐸)
223fvexi 6767 . . . . 5 𝐸 ∈ V
2322, 22elmap 8594 . . . 4 ((𝑒𝐸 ↦ ⟨(1st𝑒), (((mRSubst‘𝑇)‘𝑓)‘(2nd𝑒))⟩) ∈ (𝐸m 𝐸) ↔ (𝑒𝐸 ↦ ⟨(1st𝑒), (((mRSubst‘𝑇)‘𝑓)‘(2nd𝑒))⟩):𝐸𝐸)
2421, 23sylibr 237 . . 3 ((𝑇𝑊𝑓 ∈ (𝑅pm 𝑉)) → (𝑒𝐸 ↦ ⟨(1st𝑒), (((mRSubst‘𝑇)‘𝑓)‘(2nd𝑒))⟩) ∈ (𝐸m 𝐸))
2524fmpttd 6968 . 2 (𝑇𝑊 → (𝑓 ∈ (𝑅pm 𝑉) ↦ (𝑒𝐸 ↦ ⟨(1st𝑒), (((mRSubst‘𝑇)‘𝑓)‘(2nd𝑒))⟩)):(𝑅pm 𝑉)⟶(𝐸m 𝐸))
26 msubff.s . . . 4 𝑆 = (mSubst‘𝑇)
278, 4, 26, 3, 9msubffval 33360 . . 3 (𝑇𝑊𝑆 = (𝑓 ∈ (𝑅pm 𝑉) ↦ (𝑒𝐸 ↦ ⟨(1st𝑒), (((mRSubst‘𝑇)‘𝑓)‘(2nd𝑒))⟩)))
2827feq1d 6566 . 2 (𝑇𝑊 → (𝑆:(𝑅pm 𝑉)⟶(𝐸m 𝐸) ↔ (𝑓 ∈ (𝑅pm 𝑉) ↦ (𝑒𝐸 ↦ ⟨(1st𝑒), (((mRSubst‘𝑇)‘𝑓)‘(2nd𝑒))⟩)):(𝑅pm 𝑉)⟶(𝐸m 𝐸)))
2925, 28mpbird 260 1 (𝑇𝑊𝑆:(𝑅pm 𝑉)⟶(𝐸m 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2112  cop 4564  cmpt 5152   × cxp 5577  wf 6411  cfv 6415  (class class class)co 7252  1st c1st 7799  2nd c2nd 7800  m cmap 8550  pm cpm 8551  mVRcmvar 33298  mTCcmtc 33301  mRExcmrex 33303  mExcmex 33304  mRSubstcmrsub 33307  mSubstcmsub 33308
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2710  ax-rep 5203  ax-sep 5216  ax-nul 5223  ax-pow 5282  ax-pr 5346  ax-un 7563  ax-cnex 10833  ax-resscn 10834  ax-1cn 10835  ax-icn 10836  ax-addcl 10837  ax-addrcl 10838  ax-mulcl 10839  ax-mulrcl 10840  ax-mulcom 10841  ax-addass 10842  ax-mulass 10843  ax-distr 10844  ax-i2m1 10845  ax-1ne0 10846  ax-1rid 10847  ax-rnegex 10848  ax-rrecex 10849  ax-cnre 10850  ax-pre-lttri 10851  ax-pre-lttrn 10852  ax-pre-ltadd 10853  ax-pre-mulgt0 10854
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2818  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3071  df-rmo 3072  df-rab 3073  df-v 3425  df-sbc 3713  df-csb 3830  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4255  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5153  df-tr 5186  df-id 5479  df-eprel 5485  df-po 5493  df-so 5494  df-fr 5534  df-we 5536  df-xp 5585  df-rel 5586  df-cnv 5587  df-co 5588  df-dm 5589  df-rn 5590  df-res 5591  df-ima 5592  df-pred 6189  df-ord 6251  df-on 6252  df-lim 6253  df-suc 6254  df-iota 6373  df-fun 6417  df-fn 6418  df-f 6419  df-f1 6420  df-fo 6421  df-f1o 6422  df-fv 6423  df-riota 7209  df-ov 7255  df-oprab 7256  df-mpo 7257  df-om 7685  df-1st 7801  df-2nd 7802  df-wrecs 8089  df-recs 8150  df-rdg 8188  df-1o 8244  df-er 8433  df-map 8552  df-pm 8553  df-en 8669  df-dom 8670  df-sdom 8671  df-fin 8672  df-card 9603  df-pnf 10917  df-mnf 10918  df-xr 10919  df-ltxr 10920  df-le 10921  df-sub 11112  df-neg 11113  df-nn 11879  df-2 11941  df-n0 12139  df-z 12225  df-uz 12487  df-fz 13144  df-fzo 13287  df-seq 13625  df-hash 13948  df-word 14121  df-concat 14177  df-s1 14204  df-struct 16751  df-sets 16768  df-slot 16786  df-ndx 16798  df-base 16816  df-ress 16843  df-plusg 16876  df-0g 17044  df-gsum 17045  df-mgm 18216  df-sgrp 18265  df-mnd 18276  df-submnd 18321  df-frmd 18378  df-mrex 33323  df-mex 33324  df-mrsub 33327  df-msub 33328
This theorem is referenced by:  msubf  33369  msubff1  33393  mclsind  33407
  Copyright terms: Public domain W3C validator