| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > msubff | Structured version Visualization version GIF version | ||
| Description: A substitution is a function from 𝐸 to 𝐸. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| Ref | Expression |
|---|---|
| msubff.v | ⊢ 𝑉 = (mVR‘𝑇) |
| msubff.r | ⊢ 𝑅 = (mREx‘𝑇) |
| msubff.s | ⊢ 𝑆 = (mSubst‘𝑇) |
| msubff.e | ⊢ 𝐸 = (mEx‘𝑇) |
| Ref | Expression |
|---|---|
| msubff | ⊢ (𝑇 ∈ 𝑊 → 𝑆:(𝑅 ↑pm 𝑉)⟶(𝐸 ↑m 𝐸)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xp1st 8020 | . . . . . . . . 9 ⊢ (𝑒 ∈ ((mTC‘𝑇) × 𝑅) → (1st ‘𝑒) ∈ (mTC‘𝑇)) | |
| 2 | eqid 2735 | . . . . . . . . . 10 ⊢ (mTC‘𝑇) = (mTC‘𝑇) | |
| 3 | msubff.e | . . . . . . . . . 10 ⊢ 𝐸 = (mEx‘𝑇) | |
| 4 | msubff.r | . . . . . . . . . 10 ⊢ 𝑅 = (mREx‘𝑇) | |
| 5 | 2, 3, 4 | mexval 35524 | . . . . . . . . 9 ⊢ 𝐸 = ((mTC‘𝑇) × 𝑅) |
| 6 | 1, 5 | eleq2s 2852 | . . . . . . . 8 ⊢ (𝑒 ∈ 𝐸 → (1st ‘𝑒) ∈ (mTC‘𝑇)) |
| 7 | 6 | adantl 481 | . . . . . . 7 ⊢ (((𝑇 ∈ 𝑊 ∧ 𝑓 ∈ (𝑅 ↑pm 𝑉)) ∧ 𝑒 ∈ 𝐸) → (1st ‘𝑒) ∈ (mTC‘𝑇)) |
| 8 | msubff.v | . . . . . . . . . . 11 ⊢ 𝑉 = (mVR‘𝑇) | |
| 9 | eqid 2735 | . . . . . . . . . . 11 ⊢ (mRSubst‘𝑇) = (mRSubst‘𝑇) | |
| 10 | 8, 4, 9 | mrsubff 35534 | . . . . . . . . . 10 ⊢ (𝑇 ∈ 𝑊 → (mRSubst‘𝑇):(𝑅 ↑pm 𝑉)⟶(𝑅 ↑m 𝑅)) |
| 11 | 10 | ffvelcdmda 7074 | . . . . . . . . 9 ⊢ ((𝑇 ∈ 𝑊 ∧ 𝑓 ∈ (𝑅 ↑pm 𝑉)) → ((mRSubst‘𝑇)‘𝑓) ∈ (𝑅 ↑m 𝑅)) |
| 12 | elmapi 8863 | . . . . . . . . 9 ⊢ (((mRSubst‘𝑇)‘𝑓) ∈ (𝑅 ↑m 𝑅) → ((mRSubst‘𝑇)‘𝑓):𝑅⟶𝑅) | |
| 13 | 11, 12 | syl 17 | . . . . . . . 8 ⊢ ((𝑇 ∈ 𝑊 ∧ 𝑓 ∈ (𝑅 ↑pm 𝑉)) → ((mRSubst‘𝑇)‘𝑓):𝑅⟶𝑅) |
| 14 | xp2nd 8021 | . . . . . . . . 9 ⊢ (𝑒 ∈ ((mTC‘𝑇) × 𝑅) → (2nd ‘𝑒) ∈ 𝑅) | |
| 15 | 14, 5 | eleq2s 2852 | . . . . . . . 8 ⊢ (𝑒 ∈ 𝐸 → (2nd ‘𝑒) ∈ 𝑅) |
| 16 | ffvelcdm 7071 | . . . . . . . 8 ⊢ ((((mRSubst‘𝑇)‘𝑓):𝑅⟶𝑅 ∧ (2nd ‘𝑒) ∈ 𝑅) → (((mRSubst‘𝑇)‘𝑓)‘(2nd ‘𝑒)) ∈ 𝑅) | |
| 17 | 13, 15, 16 | syl2an 596 | . . . . . . 7 ⊢ (((𝑇 ∈ 𝑊 ∧ 𝑓 ∈ (𝑅 ↑pm 𝑉)) ∧ 𝑒 ∈ 𝐸) → (((mRSubst‘𝑇)‘𝑓)‘(2nd ‘𝑒)) ∈ 𝑅) |
| 18 | opelxp 5690 | . . . . . . 7 ⊢ (〈(1st ‘𝑒), (((mRSubst‘𝑇)‘𝑓)‘(2nd ‘𝑒))〉 ∈ ((mTC‘𝑇) × 𝑅) ↔ ((1st ‘𝑒) ∈ (mTC‘𝑇) ∧ (((mRSubst‘𝑇)‘𝑓)‘(2nd ‘𝑒)) ∈ 𝑅)) | |
| 19 | 7, 17, 18 | sylanbrc 583 | . . . . . 6 ⊢ (((𝑇 ∈ 𝑊 ∧ 𝑓 ∈ (𝑅 ↑pm 𝑉)) ∧ 𝑒 ∈ 𝐸) → 〈(1st ‘𝑒), (((mRSubst‘𝑇)‘𝑓)‘(2nd ‘𝑒))〉 ∈ ((mTC‘𝑇) × 𝑅)) |
| 20 | 19, 5 | eleqtrrdi 2845 | . . . . 5 ⊢ (((𝑇 ∈ 𝑊 ∧ 𝑓 ∈ (𝑅 ↑pm 𝑉)) ∧ 𝑒 ∈ 𝐸) → 〈(1st ‘𝑒), (((mRSubst‘𝑇)‘𝑓)‘(2nd ‘𝑒))〉 ∈ 𝐸) |
| 21 | 20 | fmpttd 7105 | . . . 4 ⊢ ((𝑇 ∈ 𝑊 ∧ 𝑓 ∈ (𝑅 ↑pm 𝑉)) → (𝑒 ∈ 𝐸 ↦ 〈(1st ‘𝑒), (((mRSubst‘𝑇)‘𝑓)‘(2nd ‘𝑒))〉):𝐸⟶𝐸) |
| 22 | 3 | fvexi 6890 | . . . . 5 ⊢ 𝐸 ∈ V |
| 23 | 22, 22 | elmap 8885 | . . . 4 ⊢ ((𝑒 ∈ 𝐸 ↦ 〈(1st ‘𝑒), (((mRSubst‘𝑇)‘𝑓)‘(2nd ‘𝑒))〉) ∈ (𝐸 ↑m 𝐸) ↔ (𝑒 ∈ 𝐸 ↦ 〈(1st ‘𝑒), (((mRSubst‘𝑇)‘𝑓)‘(2nd ‘𝑒))〉):𝐸⟶𝐸) |
| 24 | 21, 23 | sylibr 234 | . . 3 ⊢ ((𝑇 ∈ 𝑊 ∧ 𝑓 ∈ (𝑅 ↑pm 𝑉)) → (𝑒 ∈ 𝐸 ↦ 〈(1st ‘𝑒), (((mRSubst‘𝑇)‘𝑓)‘(2nd ‘𝑒))〉) ∈ (𝐸 ↑m 𝐸)) |
| 25 | 24 | fmpttd 7105 | . 2 ⊢ (𝑇 ∈ 𝑊 → (𝑓 ∈ (𝑅 ↑pm 𝑉) ↦ (𝑒 ∈ 𝐸 ↦ 〈(1st ‘𝑒), (((mRSubst‘𝑇)‘𝑓)‘(2nd ‘𝑒))〉)):(𝑅 ↑pm 𝑉)⟶(𝐸 ↑m 𝐸)) |
| 26 | msubff.s | . . . 4 ⊢ 𝑆 = (mSubst‘𝑇) | |
| 27 | 8, 4, 26, 3, 9 | msubffval 35545 | . . 3 ⊢ (𝑇 ∈ 𝑊 → 𝑆 = (𝑓 ∈ (𝑅 ↑pm 𝑉) ↦ (𝑒 ∈ 𝐸 ↦ 〈(1st ‘𝑒), (((mRSubst‘𝑇)‘𝑓)‘(2nd ‘𝑒))〉))) |
| 28 | 27 | feq1d 6690 | . 2 ⊢ (𝑇 ∈ 𝑊 → (𝑆:(𝑅 ↑pm 𝑉)⟶(𝐸 ↑m 𝐸) ↔ (𝑓 ∈ (𝑅 ↑pm 𝑉) ↦ (𝑒 ∈ 𝐸 ↦ 〈(1st ‘𝑒), (((mRSubst‘𝑇)‘𝑓)‘(2nd ‘𝑒))〉)):(𝑅 ↑pm 𝑉)⟶(𝐸 ↑m 𝐸))) |
| 29 | 25, 28 | mpbird 257 | 1 ⊢ (𝑇 ∈ 𝑊 → 𝑆:(𝑅 ↑pm 𝑉)⟶(𝐸 ↑m 𝐸)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 〈cop 4607 ↦ cmpt 5201 × cxp 5652 ⟶wf 6527 ‘cfv 6531 (class class class)co 7405 1st c1st 7986 2nd c2nd 7987 ↑m cmap 8840 ↑pm cpm 8841 mVRcmvar 35483 mTCcmtc 35486 mRExcmrex 35488 mExcmex 35489 mRSubstcmrsub 35492 mSubstcmsub 35493 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8719 df-map 8842 df-pm 8843 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-card 9953 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-2 12303 df-n0 12502 df-z 12589 df-uz 12853 df-fz 13525 df-fzo 13672 df-seq 14020 df-hash 14349 df-word 14532 df-concat 14589 df-s1 14614 df-struct 17166 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17229 df-ress 17252 df-plusg 17284 df-0g 17455 df-gsum 17456 df-mgm 18618 df-sgrp 18697 df-mnd 18713 df-submnd 18762 df-frmd 18827 df-mrex 35508 df-mex 35509 df-mrsub 35512 df-msub 35513 |
| This theorem is referenced by: msubf 35554 msubff1 35578 mclsind 35592 |
| Copyright terms: Public domain | W3C validator |