![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > msubff | Structured version Visualization version GIF version |
Description: A substitution is a function from 𝐸 to 𝐸. (Contributed by Mario Carneiro, 18-Jul-2016.) |
Ref | Expression |
---|---|
msubff.v | ⊢ 𝑉 = (mVR‘𝑇) |
msubff.r | ⊢ 𝑅 = (mREx‘𝑇) |
msubff.s | ⊢ 𝑆 = (mSubst‘𝑇) |
msubff.e | ⊢ 𝐸 = (mEx‘𝑇) |
Ref | Expression |
---|---|
msubff | ⊢ (𝑇 ∈ 𝑊 → 𝑆:(𝑅 ↑pm 𝑉)⟶(𝐸 ↑m 𝐸)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xp1st 7953 | . . . . . . . . 9 ⊢ (𝑒 ∈ ((mTC‘𝑇) × 𝑅) → (1st ‘𝑒) ∈ (mTC‘𝑇)) | |
2 | eqid 2736 | . . . . . . . . . 10 ⊢ (mTC‘𝑇) = (mTC‘𝑇) | |
3 | msubff.e | . . . . . . . . . 10 ⊢ 𝐸 = (mEx‘𝑇) | |
4 | msubff.r | . . . . . . . . . 10 ⊢ 𝑅 = (mREx‘𝑇) | |
5 | 2, 3, 4 | mexval 34096 | . . . . . . . . 9 ⊢ 𝐸 = ((mTC‘𝑇) × 𝑅) |
6 | 1, 5 | eleq2s 2856 | . . . . . . . 8 ⊢ (𝑒 ∈ 𝐸 → (1st ‘𝑒) ∈ (mTC‘𝑇)) |
7 | 6 | adantl 482 | . . . . . . 7 ⊢ (((𝑇 ∈ 𝑊 ∧ 𝑓 ∈ (𝑅 ↑pm 𝑉)) ∧ 𝑒 ∈ 𝐸) → (1st ‘𝑒) ∈ (mTC‘𝑇)) |
8 | msubff.v | . . . . . . . . . . 11 ⊢ 𝑉 = (mVR‘𝑇) | |
9 | eqid 2736 | . . . . . . . . . . 11 ⊢ (mRSubst‘𝑇) = (mRSubst‘𝑇) | |
10 | 8, 4, 9 | mrsubff 34106 | . . . . . . . . . 10 ⊢ (𝑇 ∈ 𝑊 → (mRSubst‘𝑇):(𝑅 ↑pm 𝑉)⟶(𝑅 ↑m 𝑅)) |
11 | 10 | ffvelcdmda 7035 | . . . . . . . . 9 ⊢ ((𝑇 ∈ 𝑊 ∧ 𝑓 ∈ (𝑅 ↑pm 𝑉)) → ((mRSubst‘𝑇)‘𝑓) ∈ (𝑅 ↑m 𝑅)) |
12 | elmapi 8787 | . . . . . . . . 9 ⊢ (((mRSubst‘𝑇)‘𝑓) ∈ (𝑅 ↑m 𝑅) → ((mRSubst‘𝑇)‘𝑓):𝑅⟶𝑅) | |
13 | 11, 12 | syl 17 | . . . . . . . 8 ⊢ ((𝑇 ∈ 𝑊 ∧ 𝑓 ∈ (𝑅 ↑pm 𝑉)) → ((mRSubst‘𝑇)‘𝑓):𝑅⟶𝑅) |
14 | xp2nd 7954 | . . . . . . . . 9 ⊢ (𝑒 ∈ ((mTC‘𝑇) × 𝑅) → (2nd ‘𝑒) ∈ 𝑅) | |
15 | 14, 5 | eleq2s 2856 | . . . . . . . 8 ⊢ (𝑒 ∈ 𝐸 → (2nd ‘𝑒) ∈ 𝑅) |
16 | ffvelcdm 7032 | . . . . . . . 8 ⊢ ((((mRSubst‘𝑇)‘𝑓):𝑅⟶𝑅 ∧ (2nd ‘𝑒) ∈ 𝑅) → (((mRSubst‘𝑇)‘𝑓)‘(2nd ‘𝑒)) ∈ 𝑅) | |
17 | 13, 15, 16 | syl2an 596 | . . . . . . 7 ⊢ (((𝑇 ∈ 𝑊 ∧ 𝑓 ∈ (𝑅 ↑pm 𝑉)) ∧ 𝑒 ∈ 𝐸) → (((mRSubst‘𝑇)‘𝑓)‘(2nd ‘𝑒)) ∈ 𝑅) |
18 | opelxp 5669 | . . . . . . 7 ⊢ (〈(1st ‘𝑒), (((mRSubst‘𝑇)‘𝑓)‘(2nd ‘𝑒))〉 ∈ ((mTC‘𝑇) × 𝑅) ↔ ((1st ‘𝑒) ∈ (mTC‘𝑇) ∧ (((mRSubst‘𝑇)‘𝑓)‘(2nd ‘𝑒)) ∈ 𝑅)) | |
19 | 7, 17, 18 | sylanbrc 583 | . . . . . 6 ⊢ (((𝑇 ∈ 𝑊 ∧ 𝑓 ∈ (𝑅 ↑pm 𝑉)) ∧ 𝑒 ∈ 𝐸) → 〈(1st ‘𝑒), (((mRSubst‘𝑇)‘𝑓)‘(2nd ‘𝑒))〉 ∈ ((mTC‘𝑇) × 𝑅)) |
20 | 19, 5 | eleqtrrdi 2849 | . . . . 5 ⊢ (((𝑇 ∈ 𝑊 ∧ 𝑓 ∈ (𝑅 ↑pm 𝑉)) ∧ 𝑒 ∈ 𝐸) → 〈(1st ‘𝑒), (((mRSubst‘𝑇)‘𝑓)‘(2nd ‘𝑒))〉 ∈ 𝐸) |
21 | 20 | fmpttd 7063 | . . . 4 ⊢ ((𝑇 ∈ 𝑊 ∧ 𝑓 ∈ (𝑅 ↑pm 𝑉)) → (𝑒 ∈ 𝐸 ↦ 〈(1st ‘𝑒), (((mRSubst‘𝑇)‘𝑓)‘(2nd ‘𝑒))〉):𝐸⟶𝐸) |
22 | 3 | fvexi 6856 | . . . . 5 ⊢ 𝐸 ∈ V |
23 | 22, 22 | elmap 8809 | . . . 4 ⊢ ((𝑒 ∈ 𝐸 ↦ 〈(1st ‘𝑒), (((mRSubst‘𝑇)‘𝑓)‘(2nd ‘𝑒))〉) ∈ (𝐸 ↑m 𝐸) ↔ (𝑒 ∈ 𝐸 ↦ 〈(1st ‘𝑒), (((mRSubst‘𝑇)‘𝑓)‘(2nd ‘𝑒))〉):𝐸⟶𝐸) |
24 | 21, 23 | sylibr 233 | . . 3 ⊢ ((𝑇 ∈ 𝑊 ∧ 𝑓 ∈ (𝑅 ↑pm 𝑉)) → (𝑒 ∈ 𝐸 ↦ 〈(1st ‘𝑒), (((mRSubst‘𝑇)‘𝑓)‘(2nd ‘𝑒))〉) ∈ (𝐸 ↑m 𝐸)) |
25 | 24 | fmpttd 7063 | . 2 ⊢ (𝑇 ∈ 𝑊 → (𝑓 ∈ (𝑅 ↑pm 𝑉) ↦ (𝑒 ∈ 𝐸 ↦ 〈(1st ‘𝑒), (((mRSubst‘𝑇)‘𝑓)‘(2nd ‘𝑒))〉)):(𝑅 ↑pm 𝑉)⟶(𝐸 ↑m 𝐸)) |
26 | msubff.s | . . . 4 ⊢ 𝑆 = (mSubst‘𝑇) | |
27 | 8, 4, 26, 3, 9 | msubffval 34117 | . . 3 ⊢ (𝑇 ∈ 𝑊 → 𝑆 = (𝑓 ∈ (𝑅 ↑pm 𝑉) ↦ (𝑒 ∈ 𝐸 ↦ 〈(1st ‘𝑒), (((mRSubst‘𝑇)‘𝑓)‘(2nd ‘𝑒))〉))) |
28 | 27 | feq1d 6653 | . 2 ⊢ (𝑇 ∈ 𝑊 → (𝑆:(𝑅 ↑pm 𝑉)⟶(𝐸 ↑m 𝐸) ↔ (𝑓 ∈ (𝑅 ↑pm 𝑉) ↦ (𝑒 ∈ 𝐸 ↦ 〈(1st ‘𝑒), (((mRSubst‘𝑇)‘𝑓)‘(2nd ‘𝑒))〉)):(𝑅 ↑pm 𝑉)⟶(𝐸 ↑m 𝐸))) |
29 | 25, 28 | mpbird 256 | 1 ⊢ (𝑇 ∈ 𝑊 → 𝑆:(𝑅 ↑pm 𝑉)⟶(𝐸 ↑m 𝐸)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 〈cop 4592 ↦ cmpt 5188 × cxp 5631 ⟶wf 6492 ‘cfv 6496 (class class class)co 7357 1st c1st 7919 2nd c2nd 7920 ↑m cmap 8765 ↑pm cpm 8766 mVRcmvar 34055 mTCcmtc 34058 mRExcmrex 34060 mExcmex 34061 mRSubstcmrsub 34064 mSubstcmsub 34065 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-rep 5242 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7672 ax-cnex 11107 ax-resscn 11108 ax-1cn 11109 ax-icn 11110 ax-addcl 11111 ax-addrcl 11112 ax-mulcl 11113 ax-mulrcl 11114 ax-mulcom 11115 ax-addass 11116 ax-mulass 11117 ax-distr 11118 ax-i2m1 11119 ax-1ne0 11120 ax-1rid 11121 ax-rnegex 11122 ax-rrecex 11123 ax-cnre 11124 ax-pre-lttri 11125 ax-pre-lttrn 11126 ax-pre-ltadd 11127 ax-pre-mulgt0 11128 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3065 df-rex 3074 df-rmo 3353 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-pss 3929 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-op 4593 df-uni 4866 df-int 4908 df-iun 4956 df-br 5106 df-opab 5168 df-mpt 5189 df-tr 5223 df-id 5531 df-eprel 5537 df-po 5545 df-so 5546 df-fr 5588 df-we 5590 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-pred 6253 df-ord 6320 df-on 6321 df-lim 6322 df-suc 6323 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-riota 7313 df-ov 7360 df-oprab 7361 df-mpo 7362 df-om 7803 df-1st 7921 df-2nd 7922 df-frecs 8212 df-wrecs 8243 df-recs 8317 df-rdg 8356 df-1o 8412 df-er 8648 df-map 8767 df-pm 8768 df-en 8884 df-dom 8885 df-sdom 8886 df-fin 8887 df-card 9875 df-pnf 11191 df-mnf 11192 df-xr 11193 df-ltxr 11194 df-le 11195 df-sub 11387 df-neg 11388 df-nn 12154 df-2 12216 df-n0 12414 df-z 12500 df-uz 12764 df-fz 13425 df-fzo 13568 df-seq 13907 df-hash 14231 df-word 14403 df-concat 14459 df-s1 14484 df-struct 17019 df-sets 17036 df-slot 17054 df-ndx 17066 df-base 17084 df-ress 17113 df-plusg 17146 df-0g 17323 df-gsum 17324 df-mgm 18497 df-sgrp 18546 df-mnd 18557 df-submnd 18602 df-frmd 18659 df-mrex 34080 df-mex 34081 df-mrsub 34084 df-msub 34085 |
This theorem is referenced by: msubf 34126 msubff1 34150 mclsind 34164 |
Copyright terms: Public domain | W3C validator |