| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > msubff | Structured version Visualization version GIF version | ||
| Description: A substitution is a function from 𝐸 to 𝐸. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| Ref | Expression |
|---|---|
| msubff.v | ⊢ 𝑉 = (mVR‘𝑇) |
| msubff.r | ⊢ 𝑅 = (mREx‘𝑇) |
| msubff.s | ⊢ 𝑆 = (mSubst‘𝑇) |
| msubff.e | ⊢ 𝐸 = (mEx‘𝑇) |
| Ref | Expression |
|---|---|
| msubff | ⊢ (𝑇 ∈ 𝑊 → 𝑆:(𝑅 ↑pm 𝑉)⟶(𝐸 ↑m 𝐸)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xp1st 7963 | . . . . . . . . 9 ⊢ (𝑒 ∈ ((mTC‘𝑇) × 𝑅) → (1st ‘𝑒) ∈ (mTC‘𝑇)) | |
| 2 | eqid 2729 | . . . . . . . . . 10 ⊢ (mTC‘𝑇) = (mTC‘𝑇) | |
| 3 | msubff.e | . . . . . . . . . 10 ⊢ 𝐸 = (mEx‘𝑇) | |
| 4 | msubff.r | . . . . . . . . . 10 ⊢ 𝑅 = (mREx‘𝑇) | |
| 5 | 2, 3, 4 | mexval 35494 | . . . . . . . . 9 ⊢ 𝐸 = ((mTC‘𝑇) × 𝑅) |
| 6 | 1, 5 | eleq2s 2846 | . . . . . . . 8 ⊢ (𝑒 ∈ 𝐸 → (1st ‘𝑒) ∈ (mTC‘𝑇)) |
| 7 | 6 | adantl 481 | . . . . . . 7 ⊢ (((𝑇 ∈ 𝑊 ∧ 𝑓 ∈ (𝑅 ↑pm 𝑉)) ∧ 𝑒 ∈ 𝐸) → (1st ‘𝑒) ∈ (mTC‘𝑇)) |
| 8 | msubff.v | . . . . . . . . . . 11 ⊢ 𝑉 = (mVR‘𝑇) | |
| 9 | eqid 2729 | . . . . . . . . . . 11 ⊢ (mRSubst‘𝑇) = (mRSubst‘𝑇) | |
| 10 | 8, 4, 9 | mrsubff 35504 | . . . . . . . . . 10 ⊢ (𝑇 ∈ 𝑊 → (mRSubst‘𝑇):(𝑅 ↑pm 𝑉)⟶(𝑅 ↑m 𝑅)) |
| 11 | 10 | ffvelcdmda 7022 | . . . . . . . . 9 ⊢ ((𝑇 ∈ 𝑊 ∧ 𝑓 ∈ (𝑅 ↑pm 𝑉)) → ((mRSubst‘𝑇)‘𝑓) ∈ (𝑅 ↑m 𝑅)) |
| 12 | elmapi 8783 | . . . . . . . . 9 ⊢ (((mRSubst‘𝑇)‘𝑓) ∈ (𝑅 ↑m 𝑅) → ((mRSubst‘𝑇)‘𝑓):𝑅⟶𝑅) | |
| 13 | 11, 12 | syl 17 | . . . . . . . 8 ⊢ ((𝑇 ∈ 𝑊 ∧ 𝑓 ∈ (𝑅 ↑pm 𝑉)) → ((mRSubst‘𝑇)‘𝑓):𝑅⟶𝑅) |
| 14 | xp2nd 7964 | . . . . . . . . 9 ⊢ (𝑒 ∈ ((mTC‘𝑇) × 𝑅) → (2nd ‘𝑒) ∈ 𝑅) | |
| 15 | 14, 5 | eleq2s 2846 | . . . . . . . 8 ⊢ (𝑒 ∈ 𝐸 → (2nd ‘𝑒) ∈ 𝑅) |
| 16 | ffvelcdm 7019 | . . . . . . . 8 ⊢ ((((mRSubst‘𝑇)‘𝑓):𝑅⟶𝑅 ∧ (2nd ‘𝑒) ∈ 𝑅) → (((mRSubst‘𝑇)‘𝑓)‘(2nd ‘𝑒)) ∈ 𝑅) | |
| 17 | 13, 15, 16 | syl2an 596 | . . . . . . 7 ⊢ (((𝑇 ∈ 𝑊 ∧ 𝑓 ∈ (𝑅 ↑pm 𝑉)) ∧ 𝑒 ∈ 𝐸) → (((mRSubst‘𝑇)‘𝑓)‘(2nd ‘𝑒)) ∈ 𝑅) |
| 18 | opelxp 5659 | . . . . . . 7 ⊢ (〈(1st ‘𝑒), (((mRSubst‘𝑇)‘𝑓)‘(2nd ‘𝑒))〉 ∈ ((mTC‘𝑇) × 𝑅) ↔ ((1st ‘𝑒) ∈ (mTC‘𝑇) ∧ (((mRSubst‘𝑇)‘𝑓)‘(2nd ‘𝑒)) ∈ 𝑅)) | |
| 19 | 7, 17, 18 | sylanbrc 583 | . . . . . 6 ⊢ (((𝑇 ∈ 𝑊 ∧ 𝑓 ∈ (𝑅 ↑pm 𝑉)) ∧ 𝑒 ∈ 𝐸) → 〈(1st ‘𝑒), (((mRSubst‘𝑇)‘𝑓)‘(2nd ‘𝑒))〉 ∈ ((mTC‘𝑇) × 𝑅)) |
| 20 | 19, 5 | eleqtrrdi 2839 | . . . . 5 ⊢ (((𝑇 ∈ 𝑊 ∧ 𝑓 ∈ (𝑅 ↑pm 𝑉)) ∧ 𝑒 ∈ 𝐸) → 〈(1st ‘𝑒), (((mRSubst‘𝑇)‘𝑓)‘(2nd ‘𝑒))〉 ∈ 𝐸) |
| 21 | 20 | fmpttd 7053 | . . . 4 ⊢ ((𝑇 ∈ 𝑊 ∧ 𝑓 ∈ (𝑅 ↑pm 𝑉)) → (𝑒 ∈ 𝐸 ↦ 〈(1st ‘𝑒), (((mRSubst‘𝑇)‘𝑓)‘(2nd ‘𝑒))〉):𝐸⟶𝐸) |
| 22 | 3 | fvexi 6840 | . . . . 5 ⊢ 𝐸 ∈ V |
| 23 | 22, 22 | elmap 8805 | . . . 4 ⊢ ((𝑒 ∈ 𝐸 ↦ 〈(1st ‘𝑒), (((mRSubst‘𝑇)‘𝑓)‘(2nd ‘𝑒))〉) ∈ (𝐸 ↑m 𝐸) ↔ (𝑒 ∈ 𝐸 ↦ 〈(1st ‘𝑒), (((mRSubst‘𝑇)‘𝑓)‘(2nd ‘𝑒))〉):𝐸⟶𝐸) |
| 24 | 21, 23 | sylibr 234 | . . 3 ⊢ ((𝑇 ∈ 𝑊 ∧ 𝑓 ∈ (𝑅 ↑pm 𝑉)) → (𝑒 ∈ 𝐸 ↦ 〈(1st ‘𝑒), (((mRSubst‘𝑇)‘𝑓)‘(2nd ‘𝑒))〉) ∈ (𝐸 ↑m 𝐸)) |
| 25 | 24 | fmpttd 7053 | . 2 ⊢ (𝑇 ∈ 𝑊 → (𝑓 ∈ (𝑅 ↑pm 𝑉) ↦ (𝑒 ∈ 𝐸 ↦ 〈(1st ‘𝑒), (((mRSubst‘𝑇)‘𝑓)‘(2nd ‘𝑒))〉)):(𝑅 ↑pm 𝑉)⟶(𝐸 ↑m 𝐸)) |
| 26 | msubff.s | . . . 4 ⊢ 𝑆 = (mSubst‘𝑇) | |
| 27 | 8, 4, 26, 3, 9 | msubffval 35515 | . . 3 ⊢ (𝑇 ∈ 𝑊 → 𝑆 = (𝑓 ∈ (𝑅 ↑pm 𝑉) ↦ (𝑒 ∈ 𝐸 ↦ 〈(1st ‘𝑒), (((mRSubst‘𝑇)‘𝑓)‘(2nd ‘𝑒))〉))) |
| 28 | 27 | feq1d 6638 | . 2 ⊢ (𝑇 ∈ 𝑊 → (𝑆:(𝑅 ↑pm 𝑉)⟶(𝐸 ↑m 𝐸) ↔ (𝑓 ∈ (𝑅 ↑pm 𝑉) ↦ (𝑒 ∈ 𝐸 ↦ 〈(1st ‘𝑒), (((mRSubst‘𝑇)‘𝑓)‘(2nd ‘𝑒))〉)):(𝑅 ↑pm 𝑉)⟶(𝐸 ↑m 𝐸))) |
| 29 | 25, 28 | mpbird 257 | 1 ⊢ (𝑇 ∈ 𝑊 → 𝑆:(𝑅 ↑pm 𝑉)⟶(𝐸 ↑m 𝐸)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 〈cop 4585 ↦ cmpt 5176 × cxp 5621 ⟶wf 6482 ‘cfv 6486 (class class class)co 7353 1st c1st 7929 2nd c2nd 7930 ↑m cmap 8760 ↑pm cpm 8761 mVRcmvar 35453 mTCcmtc 35456 mRExcmrex 35458 mExcmex 35459 mRSubstcmrsub 35462 mSubstcmsub 35463 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-er 8632 df-map 8762 df-pm 8763 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11368 df-neg 11369 df-nn 12148 df-2 12210 df-n0 12404 df-z 12491 df-uz 12755 df-fz 13430 df-fzo 13577 df-seq 13928 df-hash 14257 df-word 14440 df-concat 14497 df-s1 14522 df-struct 17077 df-sets 17094 df-slot 17112 df-ndx 17124 df-base 17140 df-ress 17161 df-plusg 17193 df-0g 17364 df-gsum 17365 df-mgm 18533 df-sgrp 18612 df-mnd 18628 df-submnd 18677 df-frmd 18742 df-mrex 35478 df-mex 35479 df-mrsub 35482 df-msub 35483 |
| This theorem is referenced by: msubf 35524 msubff1 35548 mclsind 35562 |
| Copyright terms: Public domain | W3C validator |