Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  msubff Structured version   Visualization version   GIF version

Theorem msubff 35173
Description: A substitution is a function from 𝐸 to 𝐸. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
msubff.v 𝑉 = (mVR‘𝑇)
msubff.r 𝑅 = (mREx‘𝑇)
msubff.s 𝑆 = (mSubst‘𝑇)
msubff.e 𝐸 = (mEx‘𝑇)
Assertion
Ref Expression
msubff (𝑇𝑊𝑆:(𝑅pm 𝑉)⟶(𝐸m 𝐸))

Proof of Theorem msubff
Dummy variables 𝑒 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xp1st 8031 . . . . . . . . 9 (𝑒 ∈ ((mTC‘𝑇) × 𝑅) → (1st𝑒) ∈ (mTC‘𝑇))
2 eqid 2728 . . . . . . . . . 10 (mTC‘𝑇) = (mTC‘𝑇)
3 msubff.e . . . . . . . . . 10 𝐸 = (mEx‘𝑇)
4 msubff.r . . . . . . . . . 10 𝑅 = (mREx‘𝑇)
52, 3, 4mexval 35145 . . . . . . . . 9 𝐸 = ((mTC‘𝑇) × 𝑅)
61, 5eleq2s 2847 . . . . . . . 8 (𝑒𝐸 → (1st𝑒) ∈ (mTC‘𝑇))
76adantl 480 . . . . . . 7 (((𝑇𝑊𝑓 ∈ (𝑅pm 𝑉)) ∧ 𝑒𝐸) → (1st𝑒) ∈ (mTC‘𝑇))
8 msubff.v . . . . . . . . . . 11 𝑉 = (mVR‘𝑇)
9 eqid 2728 . . . . . . . . . . 11 (mRSubst‘𝑇) = (mRSubst‘𝑇)
108, 4, 9mrsubff 35155 . . . . . . . . . 10 (𝑇𝑊 → (mRSubst‘𝑇):(𝑅pm 𝑉)⟶(𝑅m 𝑅))
1110ffvelcdmda 7099 . . . . . . . . 9 ((𝑇𝑊𝑓 ∈ (𝑅pm 𝑉)) → ((mRSubst‘𝑇)‘𝑓) ∈ (𝑅m 𝑅))
12 elmapi 8874 . . . . . . . . 9 (((mRSubst‘𝑇)‘𝑓) ∈ (𝑅m 𝑅) → ((mRSubst‘𝑇)‘𝑓):𝑅𝑅)
1311, 12syl 17 . . . . . . . 8 ((𝑇𝑊𝑓 ∈ (𝑅pm 𝑉)) → ((mRSubst‘𝑇)‘𝑓):𝑅𝑅)
14 xp2nd 8032 . . . . . . . . 9 (𝑒 ∈ ((mTC‘𝑇) × 𝑅) → (2nd𝑒) ∈ 𝑅)
1514, 5eleq2s 2847 . . . . . . . 8 (𝑒𝐸 → (2nd𝑒) ∈ 𝑅)
16 ffvelcdm 7096 . . . . . . . 8 ((((mRSubst‘𝑇)‘𝑓):𝑅𝑅 ∧ (2nd𝑒) ∈ 𝑅) → (((mRSubst‘𝑇)‘𝑓)‘(2nd𝑒)) ∈ 𝑅)
1713, 15, 16syl2an 594 . . . . . . 7 (((𝑇𝑊𝑓 ∈ (𝑅pm 𝑉)) ∧ 𝑒𝐸) → (((mRSubst‘𝑇)‘𝑓)‘(2nd𝑒)) ∈ 𝑅)
18 opelxp 5718 . . . . . . 7 (⟨(1st𝑒), (((mRSubst‘𝑇)‘𝑓)‘(2nd𝑒))⟩ ∈ ((mTC‘𝑇) × 𝑅) ↔ ((1st𝑒) ∈ (mTC‘𝑇) ∧ (((mRSubst‘𝑇)‘𝑓)‘(2nd𝑒)) ∈ 𝑅))
197, 17, 18sylanbrc 581 . . . . . 6 (((𝑇𝑊𝑓 ∈ (𝑅pm 𝑉)) ∧ 𝑒𝐸) → ⟨(1st𝑒), (((mRSubst‘𝑇)‘𝑓)‘(2nd𝑒))⟩ ∈ ((mTC‘𝑇) × 𝑅))
2019, 5eleqtrrdi 2840 . . . . 5 (((𝑇𝑊𝑓 ∈ (𝑅pm 𝑉)) ∧ 𝑒𝐸) → ⟨(1st𝑒), (((mRSubst‘𝑇)‘𝑓)‘(2nd𝑒))⟩ ∈ 𝐸)
2120fmpttd 7130 . . . 4 ((𝑇𝑊𝑓 ∈ (𝑅pm 𝑉)) → (𝑒𝐸 ↦ ⟨(1st𝑒), (((mRSubst‘𝑇)‘𝑓)‘(2nd𝑒))⟩):𝐸𝐸)
223fvexi 6916 . . . . 5 𝐸 ∈ V
2322, 22elmap 8896 . . . 4 ((𝑒𝐸 ↦ ⟨(1st𝑒), (((mRSubst‘𝑇)‘𝑓)‘(2nd𝑒))⟩) ∈ (𝐸m 𝐸) ↔ (𝑒𝐸 ↦ ⟨(1st𝑒), (((mRSubst‘𝑇)‘𝑓)‘(2nd𝑒))⟩):𝐸𝐸)
2421, 23sylibr 233 . . 3 ((𝑇𝑊𝑓 ∈ (𝑅pm 𝑉)) → (𝑒𝐸 ↦ ⟨(1st𝑒), (((mRSubst‘𝑇)‘𝑓)‘(2nd𝑒))⟩) ∈ (𝐸m 𝐸))
2524fmpttd 7130 . 2 (𝑇𝑊 → (𝑓 ∈ (𝑅pm 𝑉) ↦ (𝑒𝐸 ↦ ⟨(1st𝑒), (((mRSubst‘𝑇)‘𝑓)‘(2nd𝑒))⟩)):(𝑅pm 𝑉)⟶(𝐸m 𝐸))
26 msubff.s . . . 4 𝑆 = (mSubst‘𝑇)
278, 4, 26, 3, 9msubffval 35166 . . 3 (𝑇𝑊𝑆 = (𝑓 ∈ (𝑅pm 𝑉) ↦ (𝑒𝐸 ↦ ⟨(1st𝑒), (((mRSubst‘𝑇)‘𝑓)‘(2nd𝑒))⟩)))
2827feq1d 6712 . 2 (𝑇𝑊 → (𝑆:(𝑅pm 𝑉)⟶(𝐸m 𝐸) ↔ (𝑓 ∈ (𝑅pm 𝑉) ↦ (𝑒𝐸 ↦ ⟨(1st𝑒), (((mRSubst‘𝑇)‘𝑓)‘(2nd𝑒))⟩)):(𝑅pm 𝑉)⟶(𝐸m 𝐸)))
2925, 28mpbird 256 1 (𝑇𝑊𝑆:(𝑅pm 𝑉)⟶(𝐸m 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  cop 4638  cmpt 5235   × cxp 5680  wf 6549  cfv 6553  (class class class)co 7426  1st c1st 7997  2nd c2nd 7998  m cmap 8851  pm cpm 8852  mVRcmvar 35104  mTCcmtc 35107  mRExcmrex 35109  mExcmex 35110  mRSubstcmrsub 35113  mSubstcmsub 35114
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11202  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222  ax-pre-mulgt0 11223
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-int 4954  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6310  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-om 7877  df-1st 7999  df-2nd 8000  df-frecs 8293  df-wrecs 8324  df-recs 8398  df-rdg 8437  df-1o 8493  df-er 8731  df-map 8853  df-pm 8854  df-en 8971  df-dom 8972  df-sdom 8973  df-fin 8974  df-card 9970  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-sub 11484  df-neg 11485  df-nn 12251  df-2 12313  df-n0 12511  df-z 12597  df-uz 12861  df-fz 13525  df-fzo 13668  df-seq 14007  df-hash 14330  df-word 14505  df-concat 14561  df-s1 14586  df-struct 17123  df-sets 17140  df-slot 17158  df-ndx 17170  df-base 17188  df-ress 17217  df-plusg 17253  df-0g 17430  df-gsum 17431  df-mgm 18607  df-sgrp 18686  df-mnd 18702  df-submnd 18748  df-frmd 18808  df-mrex 35129  df-mex 35130  df-mrsub 35133  df-msub 35134
This theorem is referenced by:  msubf  35175  msubff1  35199  mclsind  35213
  Copyright terms: Public domain W3C validator