| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqresr | Structured version Visualization version GIF version | ||
| Description: Equality of real numbers in terms of intermediate signed reals. (Contributed by NM, 10-May-1996.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| eqresr.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| eqresr | ⊢ (〈𝐴, 0R〉 = 〈𝐵, 0R〉 ↔ 𝐴 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2733 | . 2 ⊢ 0R = 0R | |
| 2 | eqresr.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 3 | 0r 10982 | . . . 4 ⊢ 0R ∈ R | |
| 4 | 3 | elexi 3460 | . . 3 ⊢ 0R ∈ V |
| 5 | 2, 4 | opth 5421 | . 2 ⊢ (〈𝐴, 0R〉 = 〈𝐵, 0R〉 ↔ (𝐴 = 𝐵 ∧ 0R = 0R)) |
| 6 | 1, 5 | mpbiran2 710 | 1 ⊢ (〈𝐴, 0R〉 = 〈𝐵, 0R〉 ↔ 𝐴 = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1541 ∈ wcel 2113 Vcvv 3437 〈cop 4583 Rcnr 10767 0Rc0r 10768 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-inf2 9542 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-oadd 8398 df-omul 8399 df-er 8631 df-ec 8633 df-qs 8637 df-ni 10774 df-pli 10775 df-mi 10776 df-lti 10777 df-plpq 10810 df-mpq 10811 df-ltpq 10812 df-enq 10813 df-nq 10814 df-erq 10815 df-plq 10816 df-mq 10817 df-1nq 10818 df-rq 10819 df-ltnq 10820 df-np 10883 df-1p 10884 df-enr 10957 df-nr 10958 df-0r 10962 |
| This theorem is referenced by: ltresr 11042 ax1ne0 11062 axrrecex 11065 axpre-lttri 11067 |
| Copyright terms: Public domain | W3C validator |