MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqresr Structured version   Visualization version   GIF version

Theorem eqresr 11128
Description: Equality of real numbers in terms of intermediate signed reals. (Contributed by NM, 10-May-1996.) (New usage is discouraged.)
Hypothesis
Ref Expression
eqresr.1 𝐴 ∈ V
Assertion
Ref Expression
eqresr (⟨𝐴, 0R⟩ = ⟨𝐵, 0R⟩ ↔ 𝐴 = 𝐵)

Proof of Theorem eqresr
StepHypRef Expression
1 eqid 2732 . 2 0R = 0R
2 eqresr.1 . . 3 𝐴 ∈ V
3 0r 11071 . . . 4 0RR
43elexi 3493 . . 3 0R ∈ V
52, 4opth 5475 . 2 (⟨𝐴, 0R⟩ = ⟨𝐵, 0R⟩ ↔ (𝐴 = 𝐵 ∧ 0R = 0R))
61, 5mpbiran2 708 1 (⟨𝐴, 0R⟩ = ⟨𝐵, 0R⟩ ↔ 𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1541  wcel 2106  Vcvv 3474  cop 4633  Rcnr 10856  0Rc0r 10857
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-inf2 9632
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-oadd 8466  df-omul 8467  df-er 8699  df-ec 8701  df-qs 8705  df-ni 10863  df-pli 10864  df-mi 10865  df-lti 10866  df-plpq 10899  df-mpq 10900  df-ltpq 10901  df-enq 10902  df-nq 10903  df-erq 10904  df-plq 10905  df-mq 10906  df-1nq 10907  df-rq 10908  df-ltnq 10909  df-np 10972  df-1p 10973  df-enr 11046  df-nr 11047  df-0r 11051
This theorem is referenced by:  ltresr  11131  ax1ne0  11151  axrrecex  11154  axpre-lttri  11156
  Copyright terms: Public domain W3C validator