MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqresr Structured version   Visualization version   GIF version

Theorem eqresr 10357
Description: Equality of real numbers in terms of intermediate signed reals. (Contributed by NM, 10-May-1996.) (New usage is discouraged.)
Hypothesis
Ref Expression
eqresr.1 𝐴 ∈ V
Assertion
Ref Expression
eqresr (⟨𝐴, 0R⟩ = ⟨𝐵, 0R⟩ ↔ 𝐴 = 𝐵)

Proof of Theorem eqresr
StepHypRef Expression
1 eqid 2779 . 2 0R = 0R
2 eqresr.1 . . 3 𝐴 ∈ V
3 0r 10300 . . . 4 0RR
43elexi 3435 . . 3 0R ∈ V
52, 4opth 5225 . 2 (⟨𝐴, 0R⟩ = ⟨𝐵, 0R⟩ ↔ (𝐴 = 𝐵 ∧ 0R = 0R))
61, 5mpbiran2 697 1 (⟨𝐴, 0R⟩ = ⟨𝐵, 0R⟩ ↔ 𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wb 198   = wceq 1507  wcel 2050  Vcvv 3416  cop 4447  Rcnr 10085  0Rc0r 10086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2751  ax-sep 5060  ax-nul 5067  ax-pow 5119  ax-pr 5186  ax-un 7279  ax-inf2 8898
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2760  df-cleq 2772  df-clel 2847  df-nfc 2919  df-ne 2969  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3418  df-sbc 3683  df-csb 3788  df-dif 3833  df-un 3835  df-in 3837  df-ss 3844  df-pss 3846  df-nul 4180  df-if 4351  df-pw 4424  df-sn 4442  df-pr 4444  df-tp 4446  df-op 4448  df-uni 4713  df-int 4750  df-iun 4794  df-br 4930  df-opab 4992  df-mpt 5009  df-tr 5031  df-id 5312  df-eprel 5317  df-po 5326  df-so 5327  df-fr 5366  df-we 5368  df-xp 5413  df-rel 5414  df-cnv 5415  df-co 5416  df-dm 5417  df-rn 5418  df-res 5419  df-ima 5420  df-pred 5986  df-ord 6032  df-on 6033  df-lim 6034  df-suc 6035  df-iota 6152  df-fun 6190  df-fn 6191  df-f 6192  df-f1 6193  df-fo 6194  df-f1o 6195  df-fv 6196  df-ov 6979  df-oprab 6980  df-mpo 6981  df-om 7397  df-1st 7501  df-2nd 7502  df-wrecs 7750  df-recs 7812  df-rdg 7850  df-1o 7905  df-oadd 7909  df-omul 7910  df-er 8089  df-ec 8091  df-qs 8095  df-ni 10092  df-pli 10093  df-mi 10094  df-lti 10095  df-plpq 10128  df-mpq 10129  df-ltpq 10130  df-enq 10131  df-nq 10132  df-erq 10133  df-plq 10134  df-mq 10135  df-1nq 10136  df-rq 10137  df-ltnq 10138  df-np 10201  df-1p 10202  df-enr 10275  df-nr 10276  df-0r 10280
This theorem is referenced by:  ltresr  10360  ax1ne0  10380  axrrecex  10383  axpre-lttri  10385
  Copyright terms: Public domain W3C validator