![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqresr | Structured version Visualization version GIF version |
Description: Equality of real numbers in terms of intermediate signed reals. (Contributed by NM, 10-May-1996.) (New usage is discouraged.) |
Ref | Expression |
---|---|
eqresr.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
eqresr | ⊢ (〈𝐴, 0R〉 = 〈𝐵, 0R〉 ↔ 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2733 | . 2 ⊢ 0R = 0R | |
2 | eqresr.1 | . . 3 ⊢ 𝐴 ∈ V | |
3 | 0r 11072 | . . . 4 ⊢ 0R ∈ R | |
4 | 3 | elexi 3494 | . . 3 ⊢ 0R ∈ V |
5 | 2, 4 | opth 5476 | . 2 ⊢ (〈𝐴, 0R〉 = 〈𝐵, 0R〉 ↔ (𝐴 = 𝐵 ∧ 0R = 0R)) |
6 | 1, 5 | mpbiran2 709 | 1 ⊢ (〈𝐴, 0R〉 = 〈𝐵, 0R〉 ↔ 𝐴 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1542 ∈ wcel 2107 Vcvv 3475 〈cop 4634 Rcnr 10857 0Rc0r 10858 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7722 ax-inf2 9633 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6298 df-ord 6365 df-on 6366 df-lim 6367 df-suc 6368 df-iota 6493 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-ov 7409 df-oprab 7410 df-mpo 7411 df-om 7853 df-1st 7972 df-2nd 7973 df-frecs 8263 df-wrecs 8294 df-recs 8368 df-rdg 8407 df-1o 8463 df-oadd 8467 df-omul 8468 df-er 8700 df-ec 8702 df-qs 8706 df-ni 10864 df-pli 10865 df-mi 10866 df-lti 10867 df-plpq 10900 df-mpq 10901 df-ltpq 10902 df-enq 10903 df-nq 10904 df-erq 10905 df-plq 10906 df-mq 10907 df-1nq 10908 df-rq 10909 df-ltnq 10910 df-np 10973 df-1p 10974 df-enr 11047 df-nr 11048 df-0r 11052 |
This theorem is referenced by: ltresr 11132 ax1ne0 11152 axrrecex 11155 axpre-lttri 11157 |
Copyright terms: Public domain | W3C validator |