| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqresr | Structured version Visualization version GIF version | ||
| Description: Equality of real numbers in terms of intermediate signed reals. (Contributed by NM, 10-May-1996.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| eqresr.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| eqresr | ⊢ (〈𝐴, 0R〉 = 〈𝐵, 0R〉 ↔ 𝐴 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . 2 ⊢ 0R = 0R | |
| 2 | eqresr.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 3 | 0r 10966 | . . . 4 ⊢ 0R ∈ R | |
| 4 | 3 | elexi 3459 | . . 3 ⊢ 0R ∈ V |
| 5 | 2, 4 | opth 5411 | . 2 ⊢ (〈𝐴, 0R〉 = 〈𝐵, 0R〉 ↔ (𝐴 = 𝐵 ∧ 0R = 0R)) |
| 6 | 1, 5 | mpbiran2 710 | 1 ⊢ (〈𝐴, 0R〉 = 〈𝐵, 0R〉 ↔ 𝐴 = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1541 ∈ wcel 2111 Vcvv 3436 〈cop 4577 Rcnr 10751 0Rc0r 10752 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-inf2 9526 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-int 4893 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-oadd 8384 df-omul 8385 df-er 8617 df-ec 8619 df-qs 8623 df-ni 10758 df-pli 10759 df-mi 10760 df-lti 10761 df-plpq 10794 df-mpq 10795 df-ltpq 10796 df-enq 10797 df-nq 10798 df-erq 10799 df-plq 10800 df-mq 10801 df-1nq 10802 df-rq 10803 df-ltnq 10804 df-np 10867 df-1p 10868 df-enr 10941 df-nr 10942 df-0r 10946 |
| This theorem is referenced by: ltresr 11026 ax1ne0 11046 axrrecex 11049 axpre-lttri 11051 |
| Copyright terms: Public domain | W3C validator |