MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulresr Structured version   Visualization version   GIF version

Theorem mulresr 11156
Description: Multiplication of real numbers in terms of intermediate signed reals. (Contributed by NM, 10-May-1996.) (New usage is discouraged.)
Assertion
Ref Expression
mulresr ((𝐴R𝐵R) → (⟨𝐴, 0R⟩ · ⟨𝐵, 0R⟩) = ⟨(𝐴 ·R 𝐵), 0R⟩)

Proof of Theorem mulresr
StepHypRef Expression
1 0r 11097 . . 3 0RR
2 mulcnsr 11153 . . . 4 (((𝐴R ∧ 0RR) ∧ (𝐵R ∧ 0RR)) → (⟨𝐴, 0R⟩ · ⟨𝐵, 0R⟩) = ⟨((𝐴 ·R 𝐵) +R (-1R ·R (0R ·R 0R))), ((0R ·R 𝐵) +R (𝐴 ·R 0R))⟩)
32an4s 659 . . 3 (((𝐴R𝐵R) ∧ (0RR ∧ 0RR)) → (⟨𝐴, 0R⟩ · ⟨𝐵, 0R⟩) = ⟨((𝐴 ·R 𝐵) +R (-1R ·R (0R ·R 0R))), ((0R ·R 𝐵) +R (𝐴 ·R 0R))⟩)
41, 1, 3mpanr12 704 . 2 ((𝐴R𝐵R) → (⟨𝐴, 0R⟩ · ⟨𝐵, 0R⟩) = ⟨((𝐴 ·R 𝐵) +R (-1R ·R (0R ·R 0R))), ((0R ·R 𝐵) +R (𝐴 ·R 0R))⟩)
5 00sr 11116 . . . . . . . 8 (0RR → (0R ·R 0R) = 0R)
61, 5ax-mp 5 . . . . . . 7 (0R ·R 0R) = 0R
76oveq2i 7425 . . . . . 6 (-1R ·R (0R ·R 0R)) = (-1R ·R 0R)
8 m1r 11099 . . . . . . 7 -1RR
9 00sr 11116 . . . . . . 7 (-1RR → (-1R ·R 0R) = 0R)
108, 9ax-mp 5 . . . . . 6 (-1R ·R 0R) = 0R
117, 10eqtri 2756 . . . . 5 (-1R ·R (0R ·R 0R)) = 0R
1211oveq2i 7425 . . . 4 ((𝐴 ·R 𝐵) +R (-1R ·R (0R ·R 0R))) = ((𝐴 ·R 𝐵) +R 0R)
13 mulclsr 11101 . . . . 5 ((𝐴R𝐵R) → (𝐴 ·R 𝐵) ∈ R)
14 0idsr 11114 . . . . 5 ((𝐴 ·R 𝐵) ∈ R → ((𝐴 ·R 𝐵) +R 0R) = (𝐴 ·R 𝐵))
1513, 14syl 17 . . . 4 ((𝐴R𝐵R) → ((𝐴 ·R 𝐵) +R 0R) = (𝐴 ·R 𝐵))
1612, 15eqtrid 2780 . . 3 ((𝐴R𝐵R) → ((𝐴 ·R 𝐵) +R (-1R ·R (0R ·R 0R))) = (𝐴 ·R 𝐵))
17 mulcomsr 11106 . . . . . 6 (0R ·R 𝐵) = (𝐵 ·R 0R)
18 00sr 11116 . . . . . 6 (𝐵R → (𝐵 ·R 0R) = 0R)
1917, 18eqtrid 2780 . . . . 5 (𝐵R → (0R ·R 𝐵) = 0R)
20 00sr 11116 . . . . 5 (𝐴R → (𝐴 ·R 0R) = 0R)
2119, 20oveqan12rd 7434 . . . 4 ((𝐴R𝐵R) → ((0R ·R 𝐵) +R (𝐴 ·R 0R)) = (0R +R 0R))
22 0idsr 11114 . . . . 5 (0RR → (0R +R 0R) = 0R)
231, 22ax-mp 5 . . . 4 (0R +R 0R) = 0R
2421, 23eqtrdi 2784 . . 3 ((𝐴R𝐵R) → ((0R ·R 𝐵) +R (𝐴 ·R 0R)) = 0R)
2516, 24opeq12d 4877 . 2 ((𝐴R𝐵R) → ⟨((𝐴 ·R 𝐵) +R (-1R ·R (0R ·R 0R))), ((0R ·R 𝐵) +R (𝐴 ·R 0R))⟩ = ⟨(𝐴 ·R 𝐵), 0R⟩)
264, 25eqtrd 2768 1 ((𝐴R𝐵R) → (⟨𝐴, 0R⟩ · ⟨𝐵, 0R⟩) = ⟨(𝐴 ·R 𝐵), 0R⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1534  wcel 2099  cop 4630  (class class class)co 7414  Rcnr 10882  0Rc0r 10883  -1Rcm1r 10885   +R cplr 10886   ·R cmr 10887   · cmul 11137
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-inf2 9658
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7865  df-1st 7987  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-oadd 8484  df-omul 8485  df-er 8718  df-ec 8720  df-qs 8724  df-ni 10889  df-pli 10890  df-mi 10891  df-lti 10892  df-plpq 10925  df-mpq 10926  df-ltpq 10927  df-enq 10928  df-nq 10929  df-erq 10930  df-plq 10931  df-mq 10932  df-1nq 10933  df-rq 10934  df-ltnq 10935  df-np 10998  df-1p 10999  df-plp 11000  df-mp 11001  df-ltp 11002  df-enr 11072  df-nr 11073  df-plr 11074  df-mr 11075  df-0r 11077  df-m1r 11079  df-c 11138  df-mul 11144
This theorem is referenced by:  axmulrcl  11171  ax1rid  11178  axrrecex  11180  axpre-mulgt0  11185
  Copyright terms: Public domain W3C validator