| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mulresr | Structured version Visualization version GIF version | ||
| Description: Multiplication of real numbers in terms of intermediate signed reals. (Contributed by NM, 10-May-1996.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| mulresr | ⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R) → (〈𝐴, 0R〉 · 〈𝐵, 0R〉) = 〈(𝐴 ·R 𝐵), 0R〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0r 10971 | . . 3 ⊢ 0R ∈ R | |
| 2 | mulcnsr 11027 | . . . 4 ⊢ (((𝐴 ∈ R ∧ 0R ∈ R) ∧ (𝐵 ∈ R ∧ 0R ∈ R)) → (〈𝐴, 0R〉 · 〈𝐵, 0R〉) = 〈((𝐴 ·R 𝐵) +R (-1R ·R (0R ·R 0R))), ((0R ·R 𝐵) +R (𝐴 ·R 0R))〉) | |
| 3 | 2 | an4s 660 | . . 3 ⊢ (((𝐴 ∈ R ∧ 𝐵 ∈ R) ∧ (0R ∈ R ∧ 0R ∈ R)) → (〈𝐴, 0R〉 · 〈𝐵, 0R〉) = 〈((𝐴 ·R 𝐵) +R (-1R ·R (0R ·R 0R))), ((0R ·R 𝐵) +R (𝐴 ·R 0R))〉) |
| 4 | 1, 1, 3 | mpanr12 705 | . 2 ⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R) → (〈𝐴, 0R〉 · 〈𝐵, 0R〉) = 〈((𝐴 ·R 𝐵) +R (-1R ·R (0R ·R 0R))), ((0R ·R 𝐵) +R (𝐴 ·R 0R))〉) |
| 5 | 00sr 10990 | . . . . . . . 8 ⊢ (0R ∈ R → (0R ·R 0R) = 0R) | |
| 6 | 1, 5 | ax-mp 5 | . . . . . . 7 ⊢ (0R ·R 0R) = 0R |
| 7 | 6 | oveq2i 7357 | . . . . . 6 ⊢ (-1R ·R (0R ·R 0R)) = (-1R ·R 0R) |
| 8 | m1r 10973 | . . . . . . 7 ⊢ -1R ∈ R | |
| 9 | 00sr 10990 | . . . . . . 7 ⊢ (-1R ∈ R → (-1R ·R 0R) = 0R) | |
| 10 | 8, 9 | ax-mp 5 | . . . . . 6 ⊢ (-1R ·R 0R) = 0R |
| 11 | 7, 10 | eqtri 2754 | . . . . 5 ⊢ (-1R ·R (0R ·R 0R)) = 0R |
| 12 | 11 | oveq2i 7357 | . . . 4 ⊢ ((𝐴 ·R 𝐵) +R (-1R ·R (0R ·R 0R))) = ((𝐴 ·R 𝐵) +R 0R) |
| 13 | mulclsr 10975 | . . . . 5 ⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R) → (𝐴 ·R 𝐵) ∈ R) | |
| 14 | 0idsr 10988 | . . . . 5 ⊢ ((𝐴 ·R 𝐵) ∈ R → ((𝐴 ·R 𝐵) +R 0R) = (𝐴 ·R 𝐵)) | |
| 15 | 13, 14 | syl 17 | . . . 4 ⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R) → ((𝐴 ·R 𝐵) +R 0R) = (𝐴 ·R 𝐵)) |
| 16 | 12, 15 | eqtrid 2778 | . . 3 ⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R) → ((𝐴 ·R 𝐵) +R (-1R ·R (0R ·R 0R))) = (𝐴 ·R 𝐵)) |
| 17 | mulcomsr 10980 | . . . . . 6 ⊢ (0R ·R 𝐵) = (𝐵 ·R 0R) | |
| 18 | 00sr 10990 | . . . . . 6 ⊢ (𝐵 ∈ R → (𝐵 ·R 0R) = 0R) | |
| 19 | 17, 18 | eqtrid 2778 | . . . . 5 ⊢ (𝐵 ∈ R → (0R ·R 𝐵) = 0R) |
| 20 | 00sr 10990 | . . . . 5 ⊢ (𝐴 ∈ R → (𝐴 ·R 0R) = 0R) | |
| 21 | 19, 20 | oveqan12rd 7366 | . . . 4 ⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R) → ((0R ·R 𝐵) +R (𝐴 ·R 0R)) = (0R +R 0R)) |
| 22 | 0idsr 10988 | . . . . 5 ⊢ (0R ∈ R → (0R +R 0R) = 0R) | |
| 23 | 1, 22 | ax-mp 5 | . . . 4 ⊢ (0R +R 0R) = 0R |
| 24 | 21, 23 | eqtrdi 2782 | . . 3 ⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R) → ((0R ·R 𝐵) +R (𝐴 ·R 0R)) = 0R) |
| 25 | 16, 24 | opeq12d 4833 | . 2 ⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R) → 〈((𝐴 ·R 𝐵) +R (-1R ·R (0R ·R 0R))), ((0R ·R 𝐵) +R (𝐴 ·R 0R))〉 = 〈(𝐴 ·R 𝐵), 0R〉) |
| 26 | 4, 25 | eqtrd 2766 | 1 ⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R) → (〈𝐴, 0R〉 · 〈𝐵, 0R〉) = 〈(𝐴 ·R 𝐵), 0R〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 〈cop 4582 (class class class)co 7346 Rcnr 10756 0Rc0r 10757 -1Rcm1r 10759 +R cplr 10760 ·R cmr 10761 · cmul 11011 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-inf2 9531 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-oadd 8389 df-omul 8390 df-er 8622 df-ec 8624 df-qs 8628 df-ni 10763 df-pli 10764 df-mi 10765 df-lti 10766 df-plpq 10799 df-mpq 10800 df-ltpq 10801 df-enq 10802 df-nq 10803 df-erq 10804 df-plq 10805 df-mq 10806 df-1nq 10807 df-rq 10808 df-ltnq 10809 df-np 10872 df-1p 10873 df-plp 10874 df-mp 10875 df-ltp 10876 df-enr 10946 df-nr 10947 df-plr 10948 df-mr 10949 df-0r 10951 df-m1r 10953 df-c 11012 df-mul 11018 |
| This theorem is referenced by: axmulrcl 11045 ax1rid 11052 axrrecex 11054 axpre-mulgt0 11059 |
| Copyright terms: Public domain | W3C validator |