MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulresr Structured version   Visualization version   GIF version

Theorem mulresr 11030
Description: Multiplication of real numbers in terms of intermediate signed reals. (Contributed by NM, 10-May-1996.) (New usage is discouraged.)
Assertion
Ref Expression
mulresr ((𝐴R𝐵R) → (⟨𝐴, 0R⟩ · ⟨𝐵, 0R⟩) = ⟨(𝐴 ·R 𝐵), 0R⟩)

Proof of Theorem mulresr
StepHypRef Expression
1 0r 10971 . . 3 0RR
2 mulcnsr 11027 . . . 4 (((𝐴R ∧ 0RR) ∧ (𝐵R ∧ 0RR)) → (⟨𝐴, 0R⟩ · ⟨𝐵, 0R⟩) = ⟨((𝐴 ·R 𝐵) +R (-1R ·R (0R ·R 0R))), ((0R ·R 𝐵) +R (𝐴 ·R 0R))⟩)
32an4s 660 . . 3 (((𝐴R𝐵R) ∧ (0RR ∧ 0RR)) → (⟨𝐴, 0R⟩ · ⟨𝐵, 0R⟩) = ⟨((𝐴 ·R 𝐵) +R (-1R ·R (0R ·R 0R))), ((0R ·R 𝐵) +R (𝐴 ·R 0R))⟩)
41, 1, 3mpanr12 705 . 2 ((𝐴R𝐵R) → (⟨𝐴, 0R⟩ · ⟨𝐵, 0R⟩) = ⟨((𝐴 ·R 𝐵) +R (-1R ·R (0R ·R 0R))), ((0R ·R 𝐵) +R (𝐴 ·R 0R))⟩)
5 00sr 10990 . . . . . . . 8 (0RR → (0R ·R 0R) = 0R)
61, 5ax-mp 5 . . . . . . 7 (0R ·R 0R) = 0R
76oveq2i 7357 . . . . . 6 (-1R ·R (0R ·R 0R)) = (-1R ·R 0R)
8 m1r 10973 . . . . . . 7 -1RR
9 00sr 10990 . . . . . . 7 (-1RR → (-1R ·R 0R) = 0R)
108, 9ax-mp 5 . . . . . 6 (-1R ·R 0R) = 0R
117, 10eqtri 2754 . . . . 5 (-1R ·R (0R ·R 0R)) = 0R
1211oveq2i 7357 . . . 4 ((𝐴 ·R 𝐵) +R (-1R ·R (0R ·R 0R))) = ((𝐴 ·R 𝐵) +R 0R)
13 mulclsr 10975 . . . . 5 ((𝐴R𝐵R) → (𝐴 ·R 𝐵) ∈ R)
14 0idsr 10988 . . . . 5 ((𝐴 ·R 𝐵) ∈ R → ((𝐴 ·R 𝐵) +R 0R) = (𝐴 ·R 𝐵))
1513, 14syl 17 . . . 4 ((𝐴R𝐵R) → ((𝐴 ·R 𝐵) +R 0R) = (𝐴 ·R 𝐵))
1612, 15eqtrid 2778 . . 3 ((𝐴R𝐵R) → ((𝐴 ·R 𝐵) +R (-1R ·R (0R ·R 0R))) = (𝐴 ·R 𝐵))
17 mulcomsr 10980 . . . . . 6 (0R ·R 𝐵) = (𝐵 ·R 0R)
18 00sr 10990 . . . . . 6 (𝐵R → (𝐵 ·R 0R) = 0R)
1917, 18eqtrid 2778 . . . . 5 (𝐵R → (0R ·R 𝐵) = 0R)
20 00sr 10990 . . . . 5 (𝐴R → (𝐴 ·R 0R) = 0R)
2119, 20oveqan12rd 7366 . . . 4 ((𝐴R𝐵R) → ((0R ·R 𝐵) +R (𝐴 ·R 0R)) = (0R +R 0R))
22 0idsr 10988 . . . . 5 (0RR → (0R +R 0R) = 0R)
231, 22ax-mp 5 . . . 4 (0R +R 0R) = 0R
2421, 23eqtrdi 2782 . . 3 ((𝐴R𝐵R) → ((0R ·R 𝐵) +R (𝐴 ·R 0R)) = 0R)
2516, 24opeq12d 4833 . 2 ((𝐴R𝐵R) → ⟨((𝐴 ·R 𝐵) +R (-1R ·R (0R ·R 0R))), ((0R ·R 𝐵) +R (𝐴 ·R 0R))⟩ = ⟨(𝐴 ·R 𝐵), 0R⟩)
264, 25eqtrd 2766 1 ((𝐴R𝐵R) → (⟨𝐴, 0R⟩ · ⟨𝐵, 0R⟩) = ⟨(𝐴 ·R 𝐵), 0R⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  cop 4582  (class class class)co 7346  Rcnr 10756  0Rc0r 10757  -1Rcm1r 10759   +R cplr 10760   ·R cmr 10761   · cmul 11011
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-inf2 9531
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-oadd 8389  df-omul 8390  df-er 8622  df-ec 8624  df-qs 8628  df-ni 10763  df-pli 10764  df-mi 10765  df-lti 10766  df-plpq 10799  df-mpq 10800  df-ltpq 10801  df-enq 10802  df-nq 10803  df-erq 10804  df-plq 10805  df-mq 10806  df-1nq 10807  df-rq 10808  df-ltnq 10809  df-np 10872  df-1p 10873  df-plp 10874  df-mp 10875  df-ltp 10876  df-enr 10946  df-nr 10947  df-plr 10948  df-mr 10949  df-0r 10951  df-m1r 10953  df-c 11012  df-mul 11018
This theorem is referenced by:  axmulrcl  11045  ax1rid  11052  axrrecex  11054  axpre-mulgt0  11059
  Copyright terms: Public domain W3C validator