![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mulresr | Structured version Visualization version GIF version |
Description: Multiplication of real numbers in terms of intermediate signed reals. (Contributed by NM, 10-May-1996.) (New usage is discouraged.) |
Ref | Expression |
---|---|
mulresr | ⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R) → (⟨𝐴, 0R⟩ · ⟨𝐵, 0R⟩) = ⟨(𝐴 ·R 𝐵), 0R⟩) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0r 11071 | . . 3 ⊢ 0R ∈ R | |
2 | mulcnsr 11127 | . . . 4 ⊢ (((𝐴 ∈ R ∧ 0R ∈ R) ∧ (𝐵 ∈ R ∧ 0R ∈ R)) → (⟨𝐴, 0R⟩ · ⟨𝐵, 0R⟩) = ⟨((𝐴 ·R 𝐵) +R (-1R ·R (0R ·R 0R))), ((0R ·R 𝐵) +R (𝐴 ·R 0R))⟩) | |
3 | 2 | an4s 658 | . . 3 ⊢ (((𝐴 ∈ R ∧ 𝐵 ∈ R) ∧ (0R ∈ R ∧ 0R ∈ R)) → (⟨𝐴, 0R⟩ · ⟨𝐵, 0R⟩) = ⟨((𝐴 ·R 𝐵) +R (-1R ·R (0R ·R 0R))), ((0R ·R 𝐵) +R (𝐴 ·R 0R))⟩) |
4 | 1, 1, 3 | mpanr12 703 | . 2 ⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R) → (⟨𝐴, 0R⟩ · ⟨𝐵, 0R⟩) = ⟨((𝐴 ·R 𝐵) +R (-1R ·R (0R ·R 0R))), ((0R ·R 𝐵) +R (𝐴 ·R 0R))⟩) |
5 | 00sr 11090 | . . . . . . . 8 ⊢ (0R ∈ R → (0R ·R 0R) = 0R) | |
6 | 1, 5 | ax-mp 5 | . . . . . . 7 ⊢ (0R ·R 0R) = 0R |
7 | 6 | oveq2i 7416 | . . . . . 6 ⊢ (-1R ·R (0R ·R 0R)) = (-1R ·R 0R) |
8 | m1r 11073 | . . . . . . 7 ⊢ -1R ∈ R | |
9 | 00sr 11090 | . . . . . . 7 ⊢ (-1R ∈ R → (-1R ·R 0R) = 0R) | |
10 | 8, 9 | ax-mp 5 | . . . . . 6 ⊢ (-1R ·R 0R) = 0R |
11 | 7, 10 | eqtri 2760 | . . . . 5 ⊢ (-1R ·R (0R ·R 0R)) = 0R |
12 | 11 | oveq2i 7416 | . . . 4 ⊢ ((𝐴 ·R 𝐵) +R (-1R ·R (0R ·R 0R))) = ((𝐴 ·R 𝐵) +R 0R) |
13 | mulclsr 11075 | . . . . 5 ⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R) → (𝐴 ·R 𝐵) ∈ R) | |
14 | 0idsr 11088 | . . . . 5 ⊢ ((𝐴 ·R 𝐵) ∈ R → ((𝐴 ·R 𝐵) +R 0R) = (𝐴 ·R 𝐵)) | |
15 | 13, 14 | syl 17 | . . . 4 ⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R) → ((𝐴 ·R 𝐵) +R 0R) = (𝐴 ·R 𝐵)) |
16 | 12, 15 | eqtrid 2784 | . . 3 ⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R) → ((𝐴 ·R 𝐵) +R (-1R ·R (0R ·R 0R))) = (𝐴 ·R 𝐵)) |
17 | mulcomsr 11080 | . . . . . 6 ⊢ (0R ·R 𝐵) = (𝐵 ·R 0R) | |
18 | 00sr 11090 | . . . . . 6 ⊢ (𝐵 ∈ R → (𝐵 ·R 0R) = 0R) | |
19 | 17, 18 | eqtrid 2784 | . . . . 5 ⊢ (𝐵 ∈ R → (0R ·R 𝐵) = 0R) |
20 | 00sr 11090 | . . . . 5 ⊢ (𝐴 ∈ R → (𝐴 ·R 0R) = 0R) | |
21 | 19, 20 | oveqan12rd 7425 | . . . 4 ⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R) → ((0R ·R 𝐵) +R (𝐴 ·R 0R)) = (0R +R 0R)) |
22 | 0idsr 11088 | . . . . 5 ⊢ (0R ∈ R → (0R +R 0R) = 0R) | |
23 | 1, 22 | ax-mp 5 | . . . 4 ⊢ (0R +R 0R) = 0R |
24 | 21, 23 | eqtrdi 2788 | . . 3 ⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R) → ((0R ·R 𝐵) +R (𝐴 ·R 0R)) = 0R) |
25 | 16, 24 | opeq12d 4880 | . 2 ⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R) → ⟨((𝐴 ·R 𝐵) +R (-1R ·R (0R ·R 0R))), ((0R ·R 𝐵) +R (𝐴 ·R 0R))⟩ = ⟨(𝐴 ·R 𝐵), 0R⟩) |
26 | 4, 25 | eqtrd 2772 | 1 ⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R) → (⟨𝐴, 0R⟩ · ⟨𝐵, 0R⟩) = ⟨(𝐴 ·R 𝐵), 0R⟩) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ⟨cop 4633 (class class class)co 7405 Rcnr 10856 0Rc0r 10857 -1Rcm1r 10859 +R cplr 10860 ·R cmr 10861 · cmul 11111 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-inf2 9632 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-oadd 8466 df-omul 8467 df-er 8699 df-ec 8701 df-qs 8705 df-ni 10863 df-pli 10864 df-mi 10865 df-lti 10866 df-plpq 10899 df-mpq 10900 df-ltpq 10901 df-enq 10902 df-nq 10903 df-erq 10904 df-plq 10905 df-mq 10906 df-1nq 10907 df-rq 10908 df-ltnq 10909 df-np 10972 df-1p 10973 df-plp 10974 df-mp 10975 df-ltp 10976 df-enr 11046 df-nr 11047 df-plr 11048 df-mr 11049 df-0r 11051 df-m1r 11053 df-c 11112 df-mul 11118 |
This theorem is referenced by: axmulrcl 11145 ax1rid 11152 axrrecex 11154 axpre-mulgt0 11159 |
Copyright terms: Public domain | W3C validator |