MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulresr Structured version   Visualization version   GIF version

Theorem mulresr 11130
Description: Multiplication of real numbers in terms of intermediate signed reals. (Contributed by NM, 10-May-1996.) (New usage is discouraged.)
Assertion
Ref Expression
mulresr ((𝐴R𝐵R) → (⟨𝐴, 0R⟩ · ⟨𝐵, 0R⟩) = ⟨(𝐴 ·R 𝐵), 0R⟩)

Proof of Theorem mulresr
StepHypRef Expression
1 0r 11071 . . 3 0RR
2 mulcnsr 11127 . . . 4 (((𝐴R ∧ 0RR) ∧ (𝐵R ∧ 0RR)) → (⟨𝐴, 0R⟩ · ⟨𝐵, 0R⟩) = ⟨((𝐴 ·R 𝐵) +R (-1R ·R (0R ·R 0R))), ((0R ·R 𝐵) +R (𝐴 ·R 0R))⟩)
32an4s 658 . . 3 (((𝐴R𝐵R) ∧ (0RR ∧ 0RR)) → (⟨𝐴, 0R⟩ · ⟨𝐵, 0R⟩) = ⟨((𝐴 ·R 𝐵) +R (-1R ·R (0R ·R 0R))), ((0R ·R 𝐵) +R (𝐴 ·R 0R))⟩)
41, 1, 3mpanr12 703 . 2 ((𝐴R𝐵R) → (⟨𝐴, 0R⟩ · ⟨𝐵, 0R⟩) = ⟨((𝐴 ·R 𝐵) +R (-1R ·R (0R ·R 0R))), ((0R ·R 𝐵) +R (𝐴 ·R 0R))⟩)
5 00sr 11090 . . . . . . . 8 (0RR → (0R ·R 0R) = 0R)
61, 5ax-mp 5 . . . . . . 7 (0R ·R 0R) = 0R
76oveq2i 7416 . . . . . 6 (-1R ·R (0R ·R 0R)) = (-1R ·R 0R)
8 m1r 11073 . . . . . . 7 -1RR
9 00sr 11090 . . . . . . 7 (-1RR → (-1R ·R 0R) = 0R)
108, 9ax-mp 5 . . . . . 6 (-1R ·R 0R) = 0R
117, 10eqtri 2760 . . . . 5 (-1R ·R (0R ·R 0R)) = 0R
1211oveq2i 7416 . . . 4 ((𝐴 ·R 𝐵) +R (-1R ·R (0R ·R 0R))) = ((𝐴 ·R 𝐵) +R 0R)
13 mulclsr 11075 . . . . 5 ((𝐴R𝐵R) → (𝐴 ·R 𝐵) ∈ R)
14 0idsr 11088 . . . . 5 ((𝐴 ·R 𝐵) ∈ R → ((𝐴 ·R 𝐵) +R 0R) = (𝐴 ·R 𝐵))
1513, 14syl 17 . . . 4 ((𝐴R𝐵R) → ((𝐴 ·R 𝐵) +R 0R) = (𝐴 ·R 𝐵))
1612, 15eqtrid 2784 . . 3 ((𝐴R𝐵R) → ((𝐴 ·R 𝐵) +R (-1R ·R (0R ·R 0R))) = (𝐴 ·R 𝐵))
17 mulcomsr 11080 . . . . . 6 (0R ·R 𝐵) = (𝐵 ·R 0R)
18 00sr 11090 . . . . . 6 (𝐵R → (𝐵 ·R 0R) = 0R)
1917, 18eqtrid 2784 . . . . 5 (𝐵R → (0R ·R 𝐵) = 0R)
20 00sr 11090 . . . . 5 (𝐴R → (𝐴 ·R 0R) = 0R)
2119, 20oveqan12rd 7425 . . . 4 ((𝐴R𝐵R) → ((0R ·R 𝐵) +R (𝐴 ·R 0R)) = (0R +R 0R))
22 0idsr 11088 . . . . 5 (0RR → (0R +R 0R) = 0R)
231, 22ax-mp 5 . . . 4 (0R +R 0R) = 0R
2421, 23eqtrdi 2788 . . 3 ((𝐴R𝐵R) → ((0R ·R 𝐵) +R (𝐴 ·R 0R)) = 0R)
2516, 24opeq12d 4880 . 2 ((𝐴R𝐵R) → ⟨((𝐴 ·R 𝐵) +R (-1R ·R (0R ·R 0R))), ((0R ·R 𝐵) +R (𝐴 ·R 0R))⟩ = ⟨(𝐴 ·R 𝐵), 0R⟩)
264, 25eqtrd 2772 1 ((𝐴R𝐵R) → (⟨𝐴, 0R⟩ · ⟨𝐵, 0R⟩) = ⟨(𝐴 ·R 𝐵), 0R⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  cop 4633  (class class class)co 7405  Rcnr 10856  0Rc0r 10857  -1Rcm1r 10859   +R cplr 10860   ·R cmr 10861   · cmul 11111
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-inf2 9632
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-oadd 8466  df-omul 8467  df-er 8699  df-ec 8701  df-qs 8705  df-ni 10863  df-pli 10864  df-mi 10865  df-lti 10866  df-plpq 10899  df-mpq 10900  df-ltpq 10901  df-enq 10902  df-nq 10903  df-erq 10904  df-plq 10905  df-mq 10906  df-1nq 10907  df-rq 10908  df-ltnq 10909  df-np 10972  df-1p 10973  df-plp 10974  df-mp 10975  df-ltp 10976  df-enr 11046  df-nr 11047  df-plr 11048  df-mr 11049  df-0r 11051  df-m1r 11053  df-c 11112  df-mul 11118
This theorem is referenced by:  axmulrcl  11145  ax1rid  11152  axrrecex  11154  axpre-mulgt0  11159
  Copyright terms: Public domain W3C validator