| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mvhfval | Structured version Visualization version GIF version | ||
| Description: Value of the function mapping variables to their corresponding variable expressions. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| Ref | Expression |
|---|---|
| mvhfval.v | ⊢ 𝑉 = (mVR‘𝑇) |
| mvhfval.y | ⊢ 𝑌 = (mType‘𝑇) |
| mvhfval.h | ⊢ 𝐻 = (mVH‘𝑇) |
| Ref | Expression |
|---|---|
| mvhfval | ⊢ 𝐻 = (𝑣 ∈ 𝑉 ↦ 〈(𝑌‘𝑣), 〈“𝑣”〉〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mvhfval.h | . 2 ⊢ 𝐻 = (mVH‘𝑇) | |
| 2 | fveq2 6831 | . . . . . 6 ⊢ (𝑡 = 𝑇 → (mVR‘𝑡) = (mVR‘𝑇)) | |
| 3 | mvhfval.v | . . . . . 6 ⊢ 𝑉 = (mVR‘𝑇) | |
| 4 | 2, 3 | eqtr4di 2786 | . . . . 5 ⊢ (𝑡 = 𝑇 → (mVR‘𝑡) = 𝑉) |
| 5 | fveq2 6831 | . . . . . . . 8 ⊢ (𝑡 = 𝑇 → (mType‘𝑡) = (mType‘𝑇)) | |
| 6 | mvhfval.y | . . . . . . . 8 ⊢ 𝑌 = (mType‘𝑇) | |
| 7 | 5, 6 | eqtr4di 2786 | . . . . . . 7 ⊢ (𝑡 = 𝑇 → (mType‘𝑡) = 𝑌) |
| 8 | 7 | fveq1d 6833 | . . . . . 6 ⊢ (𝑡 = 𝑇 → ((mType‘𝑡)‘𝑣) = (𝑌‘𝑣)) |
| 9 | 8 | opeq1d 4832 | . . . . 5 ⊢ (𝑡 = 𝑇 → 〈((mType‘𝑡)‘𝑣), 〈“𝑣”〉〉 = 〈(𝑌‘𝑣), 〈“𝑣”〉〉) |
| 10 | 4, 9 | mpteq12dv 5182 | . . . 4 ⊢ (𝑡 = 𝑇 → (𝑣 ∈ (mVR‘𝑡) ↦ 〈((mType‘𝑡)‘𝑣), 〈“𝑣”〉〉) = (𝑣 ∈ 𝑉 ↦ 〈(𝑌‘𝑣), 〈“𝑣”〉〉)) |
| 11 | df-mvh 35608 | . . . 4 ⊢ mVH = (𝑡 ∈ V ↦ (𝑣 ∈ (mVR‘𝑡) ↦ 〈((mType‘𝑡)‘𝑣), 〈“𝑣”〉〉)) | |
| 12 | 10, 11, 3 | mptfvmpt 7171 | . . 3 ⊢ (𝑇 ∈ V → (mVH‘𝑇) = (𝑣 ∈ 𝑉 ↦ 〈(𝑌‘𝑣), 〈“𝑣”〉〉)) |
| 13 | mpt0 6631 | . . . . 5 ⊢ (𝑣 ∈ ∅ ↦ 〈(𝑌‘𝑣), 〈“𝑣”〉〉) = ∅ | |
| 14 | 13 | eqcomi 2742 | . . . 4 ⊢ ∅ = (𝑣 ∈ ∅ ↦ 〈(𝑌‘𝑣), 〈“𝑣”〉〉) |
| 15 | fvprc 6823 | . . . 4 ⊢ (¬ 𝑇 ∈ V → (mVH‘𝑇) = ∅) | |
| 16 | fvprc 6823 | . . . . . 6 ⊢ (¬ 𝑇 ∈ V → (mVR‘𝑇) = ∅) | |
| 17 | 3, 16 | eqtrid 2780 | . . . . 5 ⊢ (¬ 𝑇 ∈ V → 𝑉 = ∅) |
| 18 | 17 | mpteq1d 5185 | . . . 4 ⊢ (¬ 𝑇 ∈ V → (𝑣 ∈ 𝑉 ↦ 〈(𝑌‘𝑣), 〈“𝑣”〉〉) = (𝑣 ∈ ∅ ↦ 〈(𝑌‘𝑣), 〈“𝑣”〉〉)) |
| 19 | 14, 15, 18 | 3eqtr4a 2794 | . . 3 ⊢ (¬ 𝑇 ∈ V → (mVH‘𝑇) = (𝑣 ∈ 𝑉 ↦ 〈(𝑌‘𝑣), 〈“𝑣”〉〉)) |
| 20 | 12, 19 | pm2.61i 182 | . 2 ⊢ (mVH‘𝑇) = (𝑣 ∈ 𝑉 ↦ 〈(𝑌‘𝑣), 〈“𝑣”〉〉) |
| 21 | 1, 20 | eqtri 2756 | 1 ⊢ 𝐻 = (𝑣 ∈ 𝑉 ↦ 〈(𝑌‘𝑣), 〈“𝑣”〉〉) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1541 ∈ wcel 2113 Vcvv 3437 ∅c0 4282 〈cop 4583 ↦ cmpt 5176 ‘cfv 6489 〈“cs1 14510 mVRcmvar 35577 mTypecmty 35578 mVHcmvh 35588 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-mvh 35608 |
| This theorem is referenced by: mvhval 35650 mvhf 35674 |
| Copyright terms: Public domain | W3C validator |