Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mvhfval Structured version   Visualization version   GIF version

Theorem mvhfval 33058
Description: Value of the function mapping variables to their corresponding variable expressions. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mvhfval.v 𝑉 = (mVR‘𝑇)
mvhfval.y 𝑌 = (mType‘𝑇)
mvhfval.h 𝐻 = (mVH‘𝑇)
Assertion
Ref Expression
mvhfval 𝐻 = (𝑣𝑉 ↦ ⟨(𝑌𝑣), ⟨“𝑣”⟩⟩)
Distinct variable groups:   𝑣,𝑇   𝑣,𝑉   𝑣,𝑌
Allowed substitution hint:   𝐻(𝑣)

Proof of Theorem mvhfval
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 mvhfval.h . 2 𝐻 = (mVH‘𝑇)
2 fveq2 6668 . . . . . 6 (𝑡 = 𝑇 → (mVR‘𝑡) = (mVR‘𝑇))
3 mvhfval.v . . . . . 6 𝑉 = (mVR‘𝑇)
42, 3eqtr4di 2791 . . . . 5 (𝑡 = 𝑇 → (mVR‘𝑡) = 𝑉)
5 fveq2 6668 . . . . . . . 8 (𝑡 = 𝑇 → (mType‘𝑡) = (mType‘𝑇))
6 mvhfval.y . . . . . . . 8 𝑌 = (mType‘𝑇)
75, 6eqtr4di 2791 . . . . . . 7 (𝑡 = 𝑇 → (mType‘𝑡) = 𝑌)
87fveq1d 6670 . . . . . 6 (𝑡 = 𝑇 → ((mType‘𝑡)‘𝑣) = (𝑌𝑣))
98opeq1d 4764 . . . . 5 (𝑡 = 𝑇 → ⟨((mType‘𝑡)‘𝑣), ⟨“𝑣”⟩⟩ = ⟨(𝑌𝑣), ⟨“𝑣”⟩⟩)
104, 9mpteq12dv 5112 . . . 4 (𝑡 = 𝑇 → (𝑣 ∈ (mVR‘𝑡) ↦ ⟨((mType‘𝑡)‘𝑣), ⟨“𝑣”⟩⟩) = (𝑣𝑉 ↦ ⟨(𝑌𝑣), ⟨“𝑣”⟩⟩))
11 df-mvh 33017 . . . 4 mVH = (𝑡 ∈ V ↦ (𝑣 ∈ (mVR‘𝑡) ↦ ⟨((mType‘𝑡)‘𝑣), ⟨“𝑣”⟩⟩))
1210, 11, 3mptfvmpt 6995 . . 3 (𝑇 ∈ V → (mVH‘𝑇) = (𝑣𝑉 ↦ ⟨(𝑌𝑣), ⟨“𝑣”⟩⟩))
13 mpt0 6473 . . . . 5 (𝑣 ∈ ∅ ↦ ⟨(𝑌𝑣), ⟨“𝑣”⟩⟩) = ∅
1413eqcomi 2747 . . . 4 ∅ = (𝑣 ∈ ∅ ↦ ⟨(𝑌𝑣), ⟨“𝑣”⟩⟩)
15 fvprc 6660 . . . 4 𝑇 ∈ V → (mVH‘𝑇) = ∅)
16 fvprc 6660 . . . . . 6 𝑇 ∈ V → (mVR‘𝑇) = ∅)
173, 16syl5eq 2785 . . . . 5 𝑇 ∈ V → 𝑉 = ∅)
1817mpteq1d 5116 . . . 4 𝑇 ∈ V → (𝑣𝑉 ↦ ⟨(𝑌𝑣), ⟨“𝑣”⟩⟩) = (𝑣 ∈ ∅ ↦ ⟨(𝑌𝑣), ⟨“𝑣”⟩⟩))
1914, 15, 183eqtr4a 2799 . . 3 𝑇 ∈ V → (mVH‘𝑇) = (𝑣𝑉 ↦ ⟨(𝑌𝑣), ⟨“𝑣”⟩⟩))
2012, 19pm2.61i 185 . 2 (mVH‘𝑇) = (𝑣𝑉 ↦ ⟨(𝑌𝑣), ⟨“𝑣”⟩⟩)
211, 20eqtri 2761 1 𝐻 = (𝑣𝑉 ↦ ⟨(𝑌𝑣), ⟨“𝑣”⟩⟩)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1542  wcel 2113  Vcvv 3397  c0 4209  cop 4519  cmpt 5107  cfv 6333  ⟨“cs1 14031  mVRcmvar 32986  mTypecmty 32987  mVHcmvh 32997
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2161  ax-12 2178  ax-ext 2710  ax-rep 5151  ax-sep 5164  ax-nul 5171  ax-pr 5293
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2074  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-ral 3058  df-rex 3059  df-reu 3060  df-rab 3062  df-v 3399  df-sbc 3680  df-csb 3789  df-dif 3844  df-un 3846  df-in 3848  df-ss 3858  df-nul 4210  df-if 4412  df-sn 4514  df-pr 4516  df-op 4520  df-uni 4794  df-iun 4880  df-br 5028  df-opab 5090  df-mpt 5108  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6291  df-fun 6335  df-fn 6336  df-f 6337  df-f1 6338  df-fo 6339  df-f1o 6340  df-fv 6341  df-mvh 33017
This theorem is referenced by:  mvhval  33059  mvhf  33083
  Copyright terms: Public domain W3C validator