Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mvhfval Structured version   Visualization version   GIF version

Theorem mvhfval 35649
Description: Value of the function mapping variables to their corresponding variable expressions. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mvhfval.v 𝑉 = (mVR‘𝑇)
mvhfval.y 𝑌 = (mType‘𝑇)
mvhfval.h 𝐻 = (mVH‘𝑇)
Assertion
Ref Expression
mvhfval 𝐻 = (𝑣𝑉 ↦ ⟨(𝑌𝑣), ⟨“𝑣”⟩⟩)
Distinct variable groups:   𝑣,𝑇   𝑣,𝑉   𝑣,𝑌
Allowed substitution hint:   𝐻(𝑣)

Proof of Theorem mvhfval
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 mvhfval.h . 2 𝐻 = (mVH‘𝑇)
2 fveq2 6831 . . . . . 6 (𝑡 = 𝑇 → (mVR‘𝑡) = (mVR‘𝑇))
3 mvhfval.v . . . . . 6 𝑉 = (mVR‘𝑇)
42, 3eqtr4di 2786 . . . . 5 (𝑡 = 𝑇 → (mVR‘𝑡) = 𝑉)
5 fveq2 6831 . . . . . . . 8 (𝑡 = 𝑇 → (mType‘𝑡) = (mType‘𝑇))
6 mvhfval.y . . . . . . . 8 𝑌 = (mType‘𝑇)
75, 6eqtr4di 2786 . . . . . . 7 (𝑡 = 𝑇 → (mType‘𝑡) = 𝑌)
87fveq1d 6833 . . . . . 6 (𝑡 = 𝑇 → ((mType‘𝑡)‘𝑣) = (𝑌𝑣))
98opeq1d 4832 . . . . 5 (𝑡 = 𝑇 → ⟨((mType‘𝑡)‘𝑣), ⟨“𝑣”⟩⟩ = ⟨(𝑌𝑣), ⟨“𝑣”⟩⟩)
104, 9mpteq12dv 5182 . . . 4 (𝑡 = 𝑇 → (𝑣 ∈ (mVR‘𝑡) ↦ ⟨((mType‘𝑡)‘𝑣), ⟨“𝑣”⟩⟩) = (𝑣𝑉 ↦ ⟨(𝑌𝑣), ⟨“𝑣”⟩⟩))
11 df-mvh 35608 . . . 4 mVH = (𝑡 ∈ V ↦ (𝑣 ∈ (mVR‘𝑡) ↦ ⟨((mType‘𝑡)‘𝑣), ⟨“𝑣”⟩⟩))
1210, 11, 3mptfvmpt 7171 . . 3 (𝑇 ∈ V → (mVH‘𝑇) = (𝑣𝑉 ↦ ⟨(𝑌𝑣), ⟨“𝑣”⟩⟩))
13 mpt0 6631 . . . . 5 (𝑣 ∈ ∅ ↦ ⟨(𝑌𝑣), ⟨“𝑣”⟩⟩) = ∅
1413eqcomi 2742 . . . 4 ∅ = (𝑣 ∈ ∅ ↦ ⟨(𝑌𝑣), ⟨“𝑣”⟩⟩)
15 fvprc 6823 . . . 4 𝑇 ∈ V → (mVH‘𝑇) = ∅)
16 fvprc 6823 . . . . . 6 𝑇 ∈ V → (mVR‘𝑇) = ∅)
173, 16eqtrid 2780 . . . . 5 𝑇 ∈ V → 𝑉 = ∅)
1817mpteq1d 5185 . . . 4 𝑇 ∈ V → (𝑣𝑉 ↦ ⟨(𝑌𝑣), ⟨“𝑣”⟩⟩) = (𝑣 ∈ ∅ ↦ ⟨(𝑌𝑣), ⟨“𝑣”⟩⟩))
1914, 15, 183eqtr4a 2794 . . 3 𝑇 ∈ V → (mVH‘𝑇) = (𝑣𝑉 ↦ ⟨(𝑌𝑣), ⟨“𝑣”⟩⟩))
2012, 19pm2.61i 182 . 2 (mVH‘𝑇) = (𝑣𝑉 ↦ ⟨(𝑌𝑣), ⟨“𝑣”⟩⟩)
211, 20eqtri 2756 1 𝐻 = (𝑣𝑉 ↦ ⟨(𝑌𝑣), ⟨“𝑣”⟩⟩)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1541  wcel 2113  Vcvv 3437  c0 4282  cop 4583  cmpt 5176  cfv 6489  ⟨“cs1 14510  mVRcmvar 35577  mTypecmty 35578  mVHcmvh 35588
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-mvh 35608
This theorem is referenced by:  mvhval  35650  mvhf  35674
  Copyright terms: Public domain W3C validator