![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mvhfval | Structured version Visualization version GIF version |
Description: Value of the function mapping variables to their corresponding variable expressions. (Contributed by Mario Carneiro, 18-Jul-2016.) |
Ref | Expression |
---|---|
mvhfval.v | ⊢ 𝑉 = (mVR‘𝑇) |
mvhfval.y | ⊢ 𝑌 = (mType‘𝑇) |
mvhfval.h | ⊢ 𝐻 = (mVH‘𝑇) |
Ref | Expression |
---|---|
mvhfval | ⊢ 𝐻 = (𝑣 ∈ 𝑉 ↦ 〈(𝑌‘𝑣), 〈“𝑣”〉〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mvhfval.h | . 2 ⊢ 𝐻 = (mVH‘𝑇) | |
2 | fveq2 6889 | . . . . . 6 ⊢ (𝑡 = 𝑇 → (mVR‘𝑡) = (mVR‘𝑇)) | |
3 | mvhfval.v | . . . . . 6 ⊢ 𝑉 = (mVR‘𝑇) | |
4 | 2, 3 | eqtr4di 2791 | . . . . 5 ⊢ (𝑡 = 𝑇 → (mVR‘𝑡) = 𝑉) |
5 | fveq2 6889 | . . . . . . . 8 ⊢ (𝑡 = 𝑇 → (mType‘𝑡) = (mType‘𝑇)) | |
6 | mvhfval.y | . . . . . . . 8 ⊢ 𝑌 = (mType‘𝑇) | |
7 | 5, 6 | eqtr4di 2791 | . . . . . . 7 ⊢ (𝑡 = 𝑇 → (mType‘𝑡) = 𝑌) |
8 | 7 | fveq1d 6891 | . . . . . 6 ⊢ (𝑡 = 𝑇 → ((mType‘𝑡)‘𝑣) = (𝑌‘𝑣)) |
9 | 8 | opeq1d 4879 | . . . . 5 ⊢ (𝑡 = 𝑇 → 〈((mType‘𝑡)‘𝑣), 〈“𝑣”〉〉 = 〈(𝑌‘𝑣), 〈“𝑣”〉〉) |
10 | 4, 9 | mpteq12dv 5239 | . . . 4 ⊢ (𝑡 = 𝑇 → (𝑣 ∈ (mVR‘𝑡) ↦ 〈((mType‘𝑡)‘𝑣), 〈“𝑣”〉〉) = (𝑣 ∈ 𝑉 ↦ 〈(𝑌‘𝑣), 〈“𝑣”〉〉)) |
11 | df-mvh 34472 | . . . 4 ⊢ mVH = (𝑡 ∈ V ↦ (𝑣 ∈ (mVR‘𝑡) ↦ 〈((mType‘𝑡)‘𝑣), 〈“𝑣”〉〉)) | |
12 | 10, 11, 3 | mptfvmpt 7227 | . . 3 ⊢ (𝑇 ∈ V → (mVH‘𝑇) = (𝑣 ∈ 𝑉 ↦ 〈(𝑌‘𝑣), 〈“𝑣”〉〉)) |
13 | mpt0 6690 | . . . . 5 ⊢ (𝑣 ∈ ∅ ↦ 〈(𝑌‘𝑣), 〈“𝑣”〉〉) = ∅ | |
14 | 13 | eqcomi 2742 | . . . 4 ⊢ ∅ = (𝑣 ∈ ∅ ↦ 〈(𝑌‘𝑣), 〈“𝑣”〉〉) |
15 | fvprc 6881 | . . . 4 ⊢ (¬ 𝑇 ∈ V → (mVH‘𝑇) = ∅) | |
16 | fvprc 6881 | . . . . . 6 ⊢ (¬ 𝑇 ∈ V → (mVR‘𝑇) = ∅) | |
17 | 3, 16 | eqtrid 2785 | . . . . 5 ⊢ (¬ 𝑇 ∈ V → 𝑉 = ∅) |
18 | 17 | mpteq1d 5243 | . . . 4 ⊢ (¬ 𝑇 ∈ V → (𝑣 ∈ 𝑉 ↦ 〈(𝑌‘𝑣), 〈“𝑣”〉〉) = (𝑣 ∈ ∅ ↦ 〈(𝑌‘𝑣), 〈“𝑣”〉〉)) |
19 | 14, 15, 18 | 3eqtr4a 2799 | . . 3 ⊢ (¬ 𝑇 ∈ V → (mVH‘𝑇) = (𝑣 ∈ 𝑉 ↦ 〈(𝑌‘𝑣), 〈“𝑣”〉〉)) |
20 | 12, 19 | pm2.61i 182 | . 2 ⊢ (mVH‘𝑇) = (𝑣 ∈ 𝑉 ↦ 〈(𝑌‘𝑣), 〈“𝑣”〉〉) |
21 | 1, 20 | eqtri 2761 | 1 ⊢ 𝐻 = (𝑣 ∈ 𝑉 ↦ 〈(𝑌‘𝑣), 〈“𝑣”〉〉) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1542 ∈ wcel 2107 Vcvv 3475 ∅c0 4322 〈cop 4634 ↦ cmpt 5231 ‘cfv 6541 〈“cs1 14542 mVRcmvar 34441 mTypecmty 34442 mVHcmvh 34452 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6493 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-mvh 34472 |
This theorem is referenced by: mvhval 34514 mvhf 34538 |
Copyright terms: Public domain | W3C validator |