Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mvhfval Structured version   Visualization version   GIF version

Theorem mvhfval 35501
Description: Value of the function mapping variables to their corresponding variable expressions. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mvhfval.v 𝑉 = (mVR‘𝑇)
mvhfval.y 𝑌 = (mType‘𝑇)
mvhfval.h 𝐻 = (mVH‘𝑇)
Assertion
Ref Expression
mvhfval 𝐻 = (𝑣𝑉 ↦ ⟨(𝑌𝑣), ⟨“𝑣”⟩⟩)
Distinct variable groups:   𝑣,𝑇   𝑣,𝑉   𝑣,𝑌
Allowed substitution hint:   𝐻(𝑣)

Proof of Theorem mvhfval
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 mvhfval.h . 2 𝐻 = (mVH‘𝑇)
2 fveq2 6920 . . . . . 6 (𝑡 = 𝑇 → (mVR‘𝑡) = (mVR‘𝑇))
3 mvhfval.v . . . . . 6 𝑉 = (mVR‘𝑇)
42, 3eqtr4di 2798 . . . . 5 (𝑡 = 𝑇 → (mVR‘𝑡) = 𝑉)
5 fveq2 6920 . . . . . . . 8 (𝑡 = 𝑇 → (mType‘𝑡) = (mType‘𝑇))
6 mvhfval.y . . . . . . . 8 𝑌 = (mType‘𝑇)
75, 6eqtr4di 2798 . . . . . . 7 (𝑡 = 𝑇 → (mType‘𝑡) = 𝑌)
87fveq1d 6922 . . . . . 6 (𝑡 = 𝑇 → ((mType‘𝑡)‘𝑣) = (𝑌𝑣))
98opeq1d 4903 . . . . 5 (𝑡 = 𝑇 → ⟨((mType‘𝑡)‘𝑣), ⟨“𝑣”⟩⟩ = ⟨(𝑌𝑣), ⟨“𝑣”⟩⟩)
104, 9mpteq12dv 5257 . . . 4 (𝑡 = 𝑇 → (𝑣 ∈ (mVR‘𝑡) ↦ ⟨((mType‘𝑡)‘𝑣), ⟨“𝑣”⟩⟩) = (𝑣𝑉 ↦ ⟨(𝑌𝑣), ⟨“𝑣”⟩⟩))
11 df-mvh 35460 . . . 4 mVH = (𝑡 ∈ V ↦ (𝑣 ∈ (mVR‘𝑡) ↦ ⟨((mType‘𝑡)‘𝑣), ⟨“𝑣”⟩⟩))
1210, 11, 3mptfvmpt 7265 . . 3 (𝑇 ∈ V → (mVH‘𝑇) = (𝑣𝑉 ↦ ⟨(𝑌𝑣), ⟨“𝑣”⟩⟩))
13 mpt0 6722 . . . . 5 (𝑣 ∈ ∅ ↦ ⟨(𝑌𝑣), ⟨“𝑣”⟩⟩) = ∅
1413eqcomi 2749 . . . 4 ∅ = (𝑣 ∈ ∅ ↦ ⟨(𝑌𝑣), ⟨“𝑣”⟩⟩)
15 fvprc 6912 . . . 4 𝑇 ∈ V → (mVH‘𝑇) = ∅)
16 fvprc 6912 . . . . . 6 𝑇 ∈ V → (mVR‘𝑇) = ∅)
173, 16eqtrid 2792 . . . . 5 𝑇 ∈ V → 𝑉 = ∅)
1817mpteq1d 5261 . . . 4 𝑇 ∈ V → (𝑣𝑉 ↦ ⟨(𝑌𝑣), ⟨“𝑣”⟩⟩) = (𝑣 ∈ ∅ ↦ ⟨(𝑌𝑣), ⟨“𝑣”⟩⟩))
1914, 15, 183eqtr4a 2806 . . 3 𝑇 ∈ V → (mVH‘𝑇) = (𝑣𝑉 ↦ ⟨(𝑌𝑣), ⟨“𝑣”⟩⟩))
2012, 19pm2.61i 182 . 2 (mVH‘𝑇) = (𝑣𝑉 ↦ ⟨(𝑌𝑣), ⟨“𝑣”⟩⟩)
211, 20eqtri 2768 1 𝐻 = (𝑣𝑉 ↦ ⟨(𝑌𝑣), ⟨“𝑣”⟩⟩)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1537  wcel 2108  Vcvv 3488  c0 4352  cop 4654  cmpt 5249  cfv 6573  ⟨“cs1 14643  mVRcmvar 35429  mTypecmty 35430  mVHcmvh 35440
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-mvh 35460
This theorem is referenced by:  mvhval  35502  mvhf  35526
  Copyright terms: Public domain W3C validator