| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > eighmorth | Structured version Visualization version GIF version | ||
| Description: Eigenvectors of a Hermitian operator with distinct eigenvalues are orthogonal. Equation 1.31 of [Hughes] p. 49. (Contributed by NM, 23-Mar-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| eighmorth | ⊢ (((𝑇 ∈ HrmOp ∧ 𝐴 ∈ (eigvec‘𝑇)) ∧ (𝐵 ∈ (eigvec‘𝑇) ∧ ((eigval‘𝑇)‘𝐴) ≠ ((eigval‘𝑇)‘𝐵))) → (𝐴 ·ih 𝐵) = 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hmopf 31818 | . . . . . . 7 ⊢ (𝑇 ∈ HrmOp → 𝑇: ℋ⟶ ℋ) | |
| 2 | eleigveccl 31903 | . . . . . . 7 ⊢ ((𝑇: ℋ⟶ ℋ ∧ 𝐴 ∈ (eigvec‘𝑇)) → 𝐴 ∈ ℋ) | |
| 3 | 1, 2 | sylan 580 | . . . . . 6 ⊢ ((𝑇 ∈ HrmOp ∧ 𝐴 ∈ (eigvec‘𝑇)) → 𝐴 ∈ ℋ) |
| 4 | 3 | adantr 480 | . . . . 5 ⊢ (((𝑇 ∈ HrmOp ∧ 𝐴 ∈ (eigvec‘𝑇)) ∧ 𝐵 ∈ (eigvec‘𝑇)) → 𝐴 ∈ ℋ) |
| 5 | eleigveccl 31903 | . . . . . . 7 ⊢ ((𝑇: ℋ⟶ ℋ ∧ 𝐵 ∈ (eigvec‘𝑇)) → 𝐵 ∈ ℋ) | |
| 6 | 1, 5 | sylan 580 | . . . . . 6 ⊢ ((𝑇 ∈ HrmOp ∧ 𝐵 ∈ (eigvec‘𝑇)) → 𝐵 ∈ ℋ) |
| 7 | 6 | adantlr 715 | . . . . 5 ⊢ (((𝑇 ∈ HrmOp ∧ 𝐴 ∈ (eigvec‘𝑇)) ∧ 𝐵 ∈ (eigvec‘𝑇)) → 𝐵 ∈ ℋ) |
| 8 | 4, 7 | jca 511 | . . . 4 ⊢ (((𝑇 ∈ HrmOp ∧ 𝐴 ∈ (eigvec‘𝑇)) ∧ 𝐵 ∈ (eigvec‘𝑇)) → (𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ)) |
| 9 | eighmre 31907 | . . . . . . 7 ⊢ ((𝑇 ∈ HrmOp ∧ 𝐴 ∈ (eigvec‘𝑇)) → ((eigval‘𝑇)‘𝐴) ∈ ℝ) | |
| 10 | 9 | recnd 11143 | . . . . . 6 ⊢ ((𝑇 ∈ HrmOp ∧ 𝐴 ∈ (eigvec‘𝑇)) → ((eigval‘𝑇)‘𝐴) ∈ ℂ) |
| 11 | 10 | adantr 480 | . . . . 5 ⊢ (((𝑇 ∈ HrmOp ∧ 𝐴 ∈ (eigvec‘𝑇)) ∧ 𝐵 ∈ (eigvec‘𝑇)) → ((eigval‘𝑇)‘𝐴) ∈ ℂ) |
| 12 | eighmre 31907 | . . . . . . 7 ⊢ ((𝑇 ∈ HrmOp ∧ 𝐵 ∈ (eigvec‘𝑇)) → ((eigval‘𝑇)‘𝐵) ∈ ℝ) | |
| 13 | 12 | recnd 11143 | . . . . . 6 ⊢ ((𝑇 ∈ HrmOp ∧ 𝐵 ∈ (eigvec‘𝑇)) → ((eigval‘𝑇)‘𝐵) ∈ ℂ) |
| 14 | 13 | adantlr 715 | . . . . 5 ⊢ (((𝑇 ∈ HrmOp ∧ 𝐴 ∈ (eigvec‘𝑇)) ∧ 𝐵 ∈ (eigvec‘𝑇)) → ((eigval‘𝑇)‘𝐵) ∈ ℂ) |
| 15 | 11, 14 | jca 511 | . . . 4 ⊢ (((𝑇 ∈ HrmOp ∧ 𝐴 ∈ (eigvec‘𝑇)) ∧ 𝐵 ∈ (eigvec‘𝑇)) → (((eigval‘𝑇)‘𝐴) ∈ ℂ ∧ ((eigval‘𝑇)‘𝐵) ∈ ℂ)) |
| 16 | 8, 15 | jca 511 | . . 3 ⊢ (((𝑇 ∈ HrmOp ∧ 𝐴 ∈ (eigvec‘𝑇)) ∧ 𝐵 ∈ (eigvec‘𝑇)) → ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (((eigval‘𝑇)‘𝐴) ∈ ℂ ∧ ((eigval‘𝑇)‘𝐵) ∈ ℂ))) |
| 17 | 16 | adantrr 717 | . 2 ⊢ (((𝑇 ∈ HrmOp ∧ 𝐴 ∈ (eigvec‘𝑇)) ∧ (𝐵 ∈ (eigvec‘𝑇) ∧ ((eigval‘𝑇)‘𝐴) ≠ ((eigval‘𝑇)‘𝐵))) → ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (((eigval‘𝑇)‘𝐴) ∈ ℂ ∧ ((eigval‘𝑇)‘𝐵) ∈ ℂ))) |
| 18 | eigvec1 31906 | . . . . . . . 8 ⊢ ((𝑇: ℋ⟶ ℋ ∧ 𝐴 ∈ (eigvec‘𝑇)) → ((𝑇‘𝐴) = (((eigval‘𝑇)‘𝐴) ·ℎ 𝐴) ∧ 𝐴 ≠ 0ℎ)) | |
| 19 | 18 | simpld 494 | . . . . . . 7 ⊢ ((𝑇: ℋ⟶ ℋ ∧ 𝐴 ∈ (eigvec‘𝑇)) → (𝑇‘𝐴) = (((eigval‘𝑇)‘𝐴) ·ℎ 𝐴)) |
| 20 | 1, 19 | sylan 580 | . . . . . 6 ⊢ ((𝑇 ∈ HrmOp ∧ 𝐴 ∈ (eigvec‘𝑇)) → (𝑇‘𝐴) = (((eigval‘𝑇)‘𝐴) ·ℎ 𝐴)) |
| 21 | 20 | adantr 480 | . . . . 5 ⊢ (((𝑇 ∈ HrmOp ∧ 𝐴 ∈ (eigvec‘𝑇)) ∧ 𝐵 ∈ (eigvec‘𝑇)) → (𝑇‘𝐴) = (((eigval‘𝑇)‘𝐴) ·ℎ 𝐴)) |
| 22 | eigvec1 31906 | . . . . . . . 8 ⊢ ((𝑇: ℋ⟶ ℋ ∧ 𝐵 ∈ (eigvec‘𝑇)) → ((𝑇‘𝐵) = (((eigval‘𝑇)‘𝐵) ·ℎ 𝐵) ∧ 𝐵 ≠ 0ℎ)) | |
| 23 | 22 | simpld 494 | . . . . . . 7 ⊢ ((𝑇: ℋ⟶ ℋ ∧ 𝐵 ∈ (eigvec‘𝑇)) → (𝑇‘𝐵) = (((eigval‘𝑇)‘𝐵) ·ℎ 𝐵)) |
| 24 | 1, 23 | sylan 580 | . . . . . 6 ⊢ ((𝑇 ∈ HrmOp ∧ 𝐵 ∈ (eigvec‘𝑇)) → (𝑇‘𝐵) = (((eigval‘𝑇)‘𝐵) ·ℎ 𝐵)) |
| 25 | 24 | adantlr 715 | . . . . 5 ⊢ (((𝑇 ∈ HrmOp ∧ 𝐴 ∈ (eigvec‘𝑇)) ∧ 𝐵 ∈ (eigvec‘𝑇)) → (𝑇‘𝐵) = (((eigval‘𝑇)‘𝐵) ·ℎ 𝐵)) |
| 26 | 21, 25 | jca 511 | . . . 4 ⊢ (((𝑇 ∈ HrmOp ∧ 𝐴 ∈ (eigvec‘𝑇)) ∧ 𝐵 ∈ (eigvec‘𝑇)) → ((𝑇‘𝐴) = (((eigval‘𝑇)‘𝐴) ·ℎ 𝐴) ∧ (𝑇‘𝐵) = (((eigval‘𝑇)‘𝐵) ·ℎ 𝐵))) |
| 27 | 26 | adantrr 717 | . . 3 ⊢ (((𝑇 ∈ HrmOp ∧ 𝐴 ∈ (eigvec‘𝑇)) ∧ (𝐵 ∈ (eigvec‘𝑇) ∧ ((eigval‘𝑇)‘𝐴) ≠ ((eigval‘𝑇)‘𝐵))) → ((𝑇‘𝐴) = (((eigval‘𝑇)‘𝐴) ·ℎ 𝐴) ∧ (𝑇‘𝐵) = (((eigval‘𝑇)‘𝐵) ·ℎ 𝐵))) |
| 28 | 12 | cjred 15133 | . . . . . . 7 ⊢ ((𝑇 ∈ HrmOp ∧ 𝐵 ∈ (eigvec‘𝑇)) → (∗‘((eigval‘𝑇)‘𝐵)) = ((eigval‘𝑇)‘𝐵)) |
| 29 | 28 | neeq2d 2985 | . . . . . 6 ⊢ ((𝑇 ∈ HrmOp ∧ 𝐵 ∈ (eigvec‘𝑇)) → (((eigval‘𝑇)‘𝐴) ≠ (∗‘((eigval‘𝑇)‘𝐵)) ↔ ((eigval‘𝑇)‘𝐴) ≠ ((eigval‘𝑇)‘𝐵))) |
| 30 | 29 | biimpar 477 | . . . . 5 ⊢ (((𝑇 ∈ HrmOp ∧ 𝐵 ∈ (eigvec‘𝑇)) ∧ ((eigval‘𝑇)‘𝐴) ≠ ((eigval‘𝑇)‘𝐵)) → ((eigval‘𝑇)‘𝐴) ≠ (∗‘((eigval‘𝑇)‘𝐵))) |
| 31 | 30 | anasss 466 | . . . 4 ⊢ ((𝑇 ∈ HrmOp ∧ (𝐵 ∈ (eigvec‘𝑇) ∧ ((eigval‘𝑇)‘𝐴) ≠ ((eigval‘𝑇)‘𝐵))) → ((eigval‘𝑇)‘𝐴) ≠ (∗‘((eigval‘𝑇)‘𝐵))) |
| 32 | 31 | adantlr 715 | . . 3 ⊢ (((𝑇 ∈ HrmOp ∧ 𝐴 ∈ (eigvec‘𝑇)) ∧ (𝐵 ∈ (eigvec‘𝑇) ∧ ((eigval‘𝑇)‘𝐴) ≠ ((eigval‘𝑇)‘𝐵))) → ((eigval‘𝑇)‘𝐴) ≠ (∗‘((eigval‘𝑇)‘𝐵))) |
| 33 | 27, 32 | jca 511 | . 2 ⊢ (((𝑇 ∈ HrmOp ∧ 𝐴 ∈ (eigvec‘𝑇)) ∧ (𝐵 ∈ (eigvec‘𝑇) ∧ ((eigval‘𝑇)‘𝐴) ≠ ((eigval‘𝑇)‘𝐵))) → (((𝑇‘𝐴) = (((eigval‘𝑇)‘𝐴) ·ℎ 𝐴) ∧ (𝑇‘𝐵) = (((eigval‘𝑇)‘𝐵) ·ℎ 𝐵)) ∧ ((eigval‘𝑇)‘𝐴) ≠ (∗‘((eigval‘𝑇)‘𝐵)))) |
| 34 | simpll 766 | . . . 4 ⊢ (((𝑇 ∈ HrmOp ∧ 𝐴 ∈ (eigvec‘𝑇)) ∧ 𝐵 ∈ (eigvec‘𝑇)) → 𝑇 ∈ HrmOp) | |
| 35 | hmop 31866 | . . . 4 ⊢ ((𝑇 ∈ HrmOp ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ih (𝑇‘𝐵)) = ((𝑇‘𝐴) ·ih 𝐵)) | |
| 36 | 34, 4, 7, 35 | syl3anc 1373 | . . 3 ⊢ (((𝑇 ∈ HrmOp ∧ 𝐴 ∈ (eigvec‘𝑇)) ∧ 𝐵 ∈ (eigvec‘𝑇)) → (𝐴 ·ih (𝑇‘𝐵)) = ((𝑇‘𝐴) ·ih 𝐵)) |
| 37 | 36 | adantrr 717 | . 2 ⊢ (((𝑇 ∈ HrmOp ∧ 𝐴 ∈ (eigvec‘𝑇)) ∧ (𝐵 ∈ (eigvec‘𝑇) ∧ ((eigval‘𝑇)‘𝐴) ≠ ((eigval‘𝑇)‘𝐵))) → (𝐴 ·ih (𝑇‘𝐵)) = ((𝑇‘𝐴) ·ih 𝐵)) |
| 38 | eigorth 31782 | . . 3 ⊢ ((((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (((eigval‘𝑇)‘𝐴) ∈ ℂ ∧ ((eigval‘𝑇)‘𝐵) ∈ ℂ)) ∧ (((𝑇‘𝐴) = (((eigval‘𝑇)‘𝐴) ·ℎ 𝐴) ∧ (𝑇‘𝐵) = (((eigval‘𝑇)‘𝐵) ·ℎ 𝐵)) ∧ ((eigval‘𝑇)‘𝐴) ≠ (∗‘((eigval‘𝑇)‘𝐵)))) → ((𝐴 ·ih (𝑇‘𝐵)) = ((𝑇‘𝐴) ·ih 𝐵) ↔ (𝐴 ·ih 𝐵) = 0)) | |
| 39 | 38 | biimpa 476 | . 2 ⊢ (((((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (((eigval‘𝑇)‘𝐴) ∈ ℂ ∧ ((eigval‘𝑇)‘𝐵) ∈ ℂ)) ∧ (((𝑇‘𝐴) = (((eigval‘𝑇)‘𝐴) ·ℎ 𝐴) ∧ (𝑇‘𝐵) = (((eigval‘𝑇)‘𝐵) ·ℎ 𝐵)) ∧ ((eigval‘𝑇)‘𝐴) ≠ (∗‘((eigval‘𝑇)‘𝐵)))) ∧ (𝐴 ·ih (𝑇‘𝐵)) = ((𝑇‘𝐴) ·ih 𝐵)) → (𝐴 ·ih 𝐵) = 0) |
| 40 | 17, 33, 37, 39 | syl21anc 837 | 1 ⊢ (((𝑇 ∈ HrmOp ∧ 𝐴 ∈ (eigvec‘𝑇)) ∧ (𝐵 ∈ (eigvec‘𝑇) ∧ ((eigval‘𝑇)‘𝐴) ≠ ((eigval‘𝑇)‘𝐵))) → (𝐴 ·ih 𝐵) = 0) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ⟶wf 6478 ‘cfv 6482 (class class class)co 7349 ℂcc 11007 0cc0 11009 ∗ccj 15003 ℋchba 30863 ·ℎ csm 30865 ·ih csp 30866 0ℎc0v 30868 HrmOpcho 30894 eigveccei 30903 eigvalcel 30904 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-inf2 9537 ax-cc 10329 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 ax-addf 11088 ax-mulf 11089 ax-hilex 30943 ax-hfvadd 30944 ax-hvcom 30945 ax-hvass 30946 ax-hv0cl 30947 ax-hvaddid 30948 ax-hfvmul 30949 ax-hvmulid 30950 ax-hvmulass 30951 ax-hvdistr1 30952 ax-hvdistr2 30953 ax-hvmul0 30954 ax-hfi 31023 ax-his1 31026 ax-his2 31027 ax-his3 31028 ax-his4 31029 ax-hcompl 31146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-iin 4944 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-isom 6491 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-of 7613 df-om 7800 df-1st 7924 df-2nd 7925 df-supp 8094 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-2o 8389 df-oadd 8392 df-omul 8393 df-er 8625 df-map 8755 df-pm 8756 df-ixp 8825 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-fsupp 9252 df-fi 9301 df-sup 9332 df-inf 9333 df-oi 9402 df-card 9835 df-acn 9838 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-n0 12385 df-z 12472 df-dec 12592 df-uz 12736 df-q 12850 df-rp 12894 df-xneg 13014 df-xadd 13015 df-xmul 13016 df-ioo 13252 df-ico 13254 df-icc 13255 df-fz 13411 df-fzo 13558 df-fl 13696 df-seq 13909 df-exp 13969 df-hash 14238 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-clim 15395 df-rlim 15396 df-sum 15594 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-starv 17176 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-hom 17185 df-cco 17186 df-rest 17326 df-topn 17327 df-0g 17345 df-gsum 17346 df-topgen 17347 df-pt 17348 df-prds 17351 df-xrs 17406 df-qtop 17411 df-imas 17412 df-xps 17414 df-mre 17488 df-mrc 17489 df-acs 17491 df-mgm 18514 df-sgrp 18593 df-mnd 18609 df-submnd 18658 df-mulg 18947 df-cntz 19196 df-cmn 19661 df-psmet 21253 df-xmet 21254 df-met 21255 df-bl 21256 df-mopn 21257 df-fbas 21258 df-fg 21259 df-cnfld 21262 df-top 22779 df-topon 22796 df-topsp 22818 df-bases 22831 df-cld 22904 df-ntr 22905 df-cls 22906 df-nei 22983 df-cn 23112 df-cnp 23113 df-lm 23114 df-haus 23200 df-tx 23447 df-hmeo 23640 df-fil 23731 df-fm 23823 df-flim 23824 df-flf 23825 df-xms 24206 df-ms 24207 df-tms 24208 df-cfil 25153 df-cau 25154 df-cmet 25155 df-grpo 30437 df-gid 30438 df-ginv 30439 df-gdiv 30440 df-ablo 30489 df-vc 30503 df-nv 30536 df-va 30539 df-ba 30540 df-sm 30541 df-0v 30542 df-vs 30543 df-nmcv 30544 df-ims 30545 df-dip 30645 df-ssp 30666 df-ph 30757 df-cbn 30807 df-hnorm 30912 df-hba 30913 df-hvsub 30915 df-hlim 30916 df-hcau 30917 df-sh 31151 df-ch 31165 df-oc 31196 df-ch0 31197 df-span 31253 df-hmop 31788 df-eigvec 31797 df-eigval 31798 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |