HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  eighmorth Structured version   Visualization version   GIF version

Theorem eighmorth 31996
Description: Eigenvectors of a Hermitian operator with distinct eigenvalues are orthogonal. Equation 1.31 of [Hughes] p. 49. (Contributed by NM, 23-Mar-2006.) (New usage is discouraged.)
Assertion
Ref Expression
eighmorth (((𝑇 ∈ HrmOp ∧ 𝐴 ∈ (eigvec‘𝑇)) ∧ (𝐵 ∈ (eigvec‘𝑇) ∧ ((eigval‘𝑇)‘𝐴) ≠ ((eigval‘𝑇)‘𝐵))) → (𝐴 ·ih 𝐵) = 0)

Proof of Theorem eighmorth
StepHypRef Expression
1 hmopf 31906 . . . . . . 7 (𝑇 ∈ HrmOp → 𝑇: ℋ⟶ ℋ)
2 eleigveccl 31991 . . . . . . 7 ((𝑇: ℋ⟶ ℋ ∧ 𝐴 ∈ (eigvec‘𝑇)) → 𝐴 ∈ ℋ)
31, 2sylan 579 . . . . . 6 ((𝑇 ∈ HrmOp ∧ 𝐴 ∈ (eigvec‘𝑇)) → 𝐴 ∈ ℋ)
43adantr 480 . . . . 5 (((𝑇 ∈ HrmOp ∧ 𝐴 ∈ (eigvec‘𝑇)) ∧ 𝐵 ∈ (eigvec‘𝑇)) → 𝐴 ∈ ℋ)
5 eleigveccl 31991 . . . . . . 7 ((𝑇: ℋ⟶ ℋ ∧ 𝐵 ∈ (eigvec‘𝑇)) → 𝐵 ∈ ℋ)
61, 5sylan 579 . . . . . 6 ((𝑇 ∈ HrmOp ∧ 𝐵 ∈ (eigvec‘𝑇)) → 𝐵 ∈ ℋ)
76adantlr 714 . . . . 5 (((𝑇 ∈ HrmOp ∧ 𝐴 ∈ (eigvec‘𝑇)) ∧ 𝐵 ∈ (eigvec‘𝑇)) → 𝐵 ∈ ℋ)
84, 7jca 511 . . . 4 (((𝑇 ∈ HrmOp ∧ 𝐴 ∈ (eigvec‘𝑇)) ∧ 𝐵 ∈ (eigvec‘𝑇)) → (𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ))
9 eighmre 31995 . . . . . . 7 ((𝑇 ∈ HrmOp ∧ 𝐴 ∈ (eigvec‘𝑇)) → ((eigval‘𝑇)‘𝐴) ∈ ℝ)
109recnd 11318 . . . . . 6 ((𝑇 ∈ HrmOp ∧ 𝐴 ∈ (eigvec‘𝑇)) → ((eigval‘𝑇)‘𝐴) ∈ ℂ)
1110adantr 480 . . . . 5 (((𝑇 ∈ HrmOp ∧ 𝐴 ∈ (eigvec‘𝑇)) ∧ 𝐵 ∈ (eigvec‘𝑇)) → ((eigval‘𝑇)‘𝐴) ∈ ℂ)
12 eighmre 31995 . . . . . . 7 ((𝑇 ∈ HrmOp ∧ 𝐵 ∈ (eigvec‘𝑇)) → ((eigval‘𝑇)‘𝐵) ∈ ℝ)
1312recnd 11318 . . . . . 6 ((𝑇 ∈ HrmOp ∧ 𝐵 ∈ (eigvec‘𝑇)) → ((eigval‘𝑇)‘𝐵) ∈ ℂ)
1413adantlr 714 . . . . 5 (((𝑇 ∈ HrmOp ∧ 𝐴 ∈ (eigvec‘𝑇)) ∧ 𝐵 ∈ (eigvec‘𝑇)) → ((eigval‘𝑇)‘𝐵) ∈ ℂ)
1511, 14jca 511 . . . 4 (((𝑇 ∈ HrmOp ∧ 𝐴 ∈ (eigvec‘𝑇)) ∧ 𝐵 ∈ (eigvec‘𝑇)) → (((eigval‘𝑇)‘𝐴) ∈ ℂ ∧ ((eigval‘𝑇)‘𝐵) ∈ ℂ))
168, 15jca 511 . . 3 (((𝑇 ∈ HrmOp ∧ 𝐴 ∈ (eigvec‘𝑇)) ∧ 𝐵 ∈ (eigvec‘𝑇)) → ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (((eigval‘𝑇)‘𝐴) ∈ ℂ ∧ ((eigval‘𝑇)‘𝐵) ∈ ℂ)))
1716adantrr 716 . 2 (((𝑇 ∈ HrmOp ∧ 𝐴 ∈ (eigvec‘𝑇)) ∧ (𝐵 ∈ (eigvec‘𝑇) ∧ ((eigval‘𝑇)‘𝐴) ≠ ((eigval‘𝑇)‘𝐵))) → ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (((eigval‘𝑇)‘𝐴) ∈ ℂ ∧ ((eigval‘𝑇)‘𝐵) ∈ ℂ)))
18 eigvec1 31994 . . . . . . . 8 ((𝑇: ℋ⟶ ℋ ∧ 𝐴 ∈ (eigvec‘𝑇)) → ((𝑇𝐴) = (((eigval‘𝑇)‘𝐴) · 𝐴) ∧ 𝐴 ≠ 0))
1918simpld 494 . . . . . . 7 ((𝑇: ℋ⟶ ℋ ∧ 𝐴 ∈ (eigvec‘𝑇)) → (𝑇𝐴) = (((eigval‘𝑇)‘𝐴) · 𝐴))
201, 19sylan 579 . . . . . 6 ((𝑇 ∈ HrmOp ∧ 𝐴 ∈ (eigvec‘𝑇)) → (𝑇𝐴) = (((eigval‘𝑇)‘𝐴) · 𝐴))
2120adantr 480 . . . . 5 (((𝑇 ∈ HrmOp ∧ 𝐴 ∈ (eigvec‘𝑇)) ∧ 𝐵 ∈ (eigvec‘𝑇)) → (𝑇𝐴) = (((eigval‘𝑇)‘𝐴) · 𝐴))
22 eigvec1 31994 . . . . . . . 8 ((𝑇: ℋ⟶ ℋ ∧ 𝐵 ∈ (eigvec‘𝑇)) → ((𝑇𝐵) = (((eigval‘𝑇)‘𝐵) · 𝐵) ∧ 𝐵 ≠ 0))
2322simpld 494 . . . . . . 7 ((𝑇: ℋ⟶ ℋ ∧ 𝐵 ∈ (eigvec‘𝑇)) → (𝑇𝐵) = (((eigval‘𝑇)‘𝐵) · 𝐵))
241, 23sylan 579 . . . . . 6 ((𝑇 ∈ HrmOp ∧ 𝐵 ∈ (eigvec‘𝑇)) → (𝑇𝐵) = (((eigval‘𝑇)‘𝐵) · 𝐵))
2524adantlr 714 . . . . 5 (((𝑇 ∈ HrmOp ∧ 𝐴 ∈ (eigvec‘𝑇)) ∧ 𝐵 ∈ (eigvec‘𝑇)) → (𝑇𝐵) = (((eigval‘𝑇)‘𝐵) · 𝐵))
2621, 25jca 511 . . . 4 (((𝑇 ∈ HrmOp ∧ 𝐴 ∈ (eigvec‘𝑇)) ∧ 𝐵 ∈ (eigvec‘𝑇)) → ((𝑇𝐴) = (((eigval‘𝑇)‘𝐴) · 𝐴) ∧ (𝑇𝐵) = (((eigval‘𝑇)‘𝐵) · 𝐵)))
2726adantrr 716 . . 3 (((𝑇 ∈ HrmOp ∧ 𝐴 ∈ (eigvec‘𝑇)) ∧ (𝐵 ∈ (eigvec‘𝑇) ∧ ((eigval‘𝑇)‘𝐴) ≠ ((eigval‘𝑇)‘𝐵))) → ((𝑇𝐴) = (((eigval‘𝑇)‘𝐴) · 𝐴) ∧ (𝑇𝐵) = (((eigval‘𝑇)‘𝐵) · 𝐵)))
2812cjred 15275 . . . . . . 7 ((𝑇 ∈ HrmOp ∧ 𝐵 ∈ (eigvec‘𝑇)) → (∗‘((eigval‘𝑇)‘𝐵)) = ((eigval‘𝑇)‘𝐵))
2928neeq2d 3007 . . . . . 6 ((𝑇 ∈ HrmOp ∧ 𝐵 ∈ (eigvec‘𝑇)) → (((eigval‘𝑇)‘𝐴) ≠ (∗‘((eigval‘𝑇)‘𝐵)) ↔ ((eigval‘𝑇)‘𝐴) ≠ ((eigval‘𝑇)‘𝐵)))
3029biimpar 477 . . . . 5 (((𝑇 ∈ HrmOp ∧ 𝐵 ∈ (eigvec‘𝑇)) ∧ ((eigval‘𝑇)‘𝐴) ≠ ((eigval‘𝑇)‘𝐵)) → ((eigval‘𝑇)‘𝐴) ≠ (∗‘((eigval‘𝑇)‘𝐵)))
3130anasss 466 . . . 4 ((𝑇 ∈ HrmOp ∧ (𝐵 ∈ (eigvec‘𝑇) ∧ ((eigval‘𝑇)‘𝐴) ≠ ((eigval‘𝑇)‘𝐵))) → ((eigval‘𝑇)‘𝐴) ≠ (∗‘((eigval‘𝑇)‘𝐵)))
3231adantlr 714 . . 3 (((𝑇 ∈ HrmOp ∧ 𝐴 ∈ (eigvec‘𝑇)) ∧ (𝐵 ∈ (eigvec‘𝑇) ∧ ((eigval‘𝑇)‘𝐴) ≠ ((eigval‘𝑇)‘𝐵))) → ((eigval‘𝑇)‘𝐴) ≠ (∗‘((eigval‘𝑇)‘𝐵)))
3327, 32jca 511 . 2 (((𝑇 ∈ HrmOp ∧ 𝐴 ∈ (eigvec‘𝑇)) ∧ (𝐵 ∈ (eigvec‘𝑇) ∧ ((eigval‘𝑇)‘𝐴) ≠ ((eigval‘𝑇)‘𝐵))) → (((𝑇𝐴) = (((eigval‘𝑇)‘𝐴) · 𝐴) ∧ (𝑇𝐵) = (((eigval‘𝑇)‘𝐵) · 𝐵)) ∧ ((eigval‘𝑇)‘𝐴) ≠ (∗‘((eigval‘𝑇)‘𝐵))))
34 simpll 766 . . . 4 (((𝑇 ∈ HrmOp ∧ 𝐴 ∈ (eigvec‘𝑇)) ∧ 𝐵 ∈ (eigvec‘𝑇)) → 𝑇 ∈ HrmOp)
35 hmop 31954 . . . 4 ((𝑇 ∈ HrmOp ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ih (𝑇𝐵)) = ((𝑇𝐴) ·ih 𝐵))
3634, 4, 7, 35syl3anc 1371 . . 3 (((𝑇 ∈ HrmOp ∧ 𝐴 ∈ (eigvec‘𝑇)) ∧ 𝐵 ∈ (eigvec‘𝑇)) → (𝐴 ·ih (𝑇𝐵)) = ((𝑇𝐴) ·ih 𝐵))
3736adantrr 716 . 2 (((𝑇 ∈ HrmOp ∧ 𝐴 ∈ (eigvec‘𝑇)) ∧ (𝐵 ∈ (eigvec‘𝑇) ∧ ((eigval‘𝑇)‘𝐴) ≠ ((eigval‘𝑇)‘𝐵))) → (𝐴 ·ih (𝑇𝐵)) = ((𝑇𝐴) ·ih 𝐵))
38 eigorth 31870 . . 3 ((((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (((eigval‘𝑇)‘𝐴) ∈ ℂ ∧ ((eigval‘𝑇)‘𝐵) ∈ ℂ)) ∧ (((𝑇𝐴) = (((eigval‘𝑇)‘𝐴) · 𝐴) ∧ (𝑇𝐵) = (((eigval‘𝑇)‘𝐵) · 𝐵)) ∧ ((eigval‘𝑇)‘𝐴) ≠ (∗‘((eigval‘𝑇)‘𝐵)))) → ((𝐴 ·ih (𝑇𝐵)) = ((𝑇𝐴) ·ih 𝐵) ↔ (𝐴 ·ih 𝐵) = 0))
3938biimpa 476 . 2 (((((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (((eigval‘𝑇)‘𝐴) ∈ ℂ ∧ ((eigval‘𝑇)‘𝐵) ∈ ℂ)) ∧ (((𝑇𝐴) = (((eigval‘𝑇)‘𝐴) · 𝐴) ∧ (𝑇𝐵) = (((eigval‘𝑇)‘𝐵) · 𝐵)) ∧ ((eigval‘𝑇)‘𝐴) ≠ (∗‘((eigval‘𝑇)‘𝐵)))) ∧ (𝐴 ·ih (𝑇𝐵)) = ((𝑇𝐴) ·ih 𝐵)) → (𝐴 ·ih 𝐵) = 0)
4017, 33, 37, 39syl21anc 837 1 (((𝑇 ∈ HrmOp ∧ 𝐴 ∈ (eigvec‘𝑇)) ∧ (𝐵 ∈ (eigvec‘𝑇) ∧ ((eigval‘𝑇)‘𝐴) ≠ ((eigval‘𝑇)‘𝐵))) → (𝐴 ·ih 𝐵) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wne 2946  wf 6569  cfv 6573  (class class class)co 7448  cc 11182  0cc0 11184  ccj 15145  chba 30951   · csm 30953   ·ih csp 30954  0c0v 30956  HrmOpcho 30982  eigveccei 30991  eigvalcel 30992
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cc 10504  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263  ax-mulf 11264  ax-hilex 31031  ax-hfvadd 31032  ax-hvcom 31033  ax-hvass 31034  ax-hv0cl 31035  ax-hvaddid 31036  ax-hfvmul 31037  ax-hvmulid 31038  ax-hvmulass 31039  ax-hvdistr1 31040  ax-hvdistr2 31041  ax-hvmul0 31042  ax-hfi 31111  ax-his1 31114  ax-his2 31115  ax-his3 31116  ax-his4 31117  ax-hcompl 31234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-oadd 8526  df-omul 8527  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-fi 9480  df-sup 9511  df-inf 9512  df-oi 9579  df-card 10008  df-acn 10011  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ioo 13411  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-fl 13843  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-rlim 15535  df-sum 15735  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-rest 17482  df-topn 17483  df-0g 17501  df-gsum 17502  df-topgen 17503  df-pt 17504  df-prds 17507  df-xrs 17562  df-qtop 17567  df-imas 17568  df-xps 17570  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-mulg 19108  df-cntz 19357  df-cmn 19824  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-fbas 21384  df-fg 21385  df-cnfld 21388  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-cld 23048  df-ntr 23049  df-cls 23050  df-nei 23127  df-cn 23256  df-cnp 23257  df-lm 23258  df-haus 23344  df-tx 23591  df-hmeo 23784  df-fil 23875  df-fm 23967  df-flim 23968  df-flf 23969  df-xms 24351  df-ms 24352  df-tms 24353  df-cfil 25308  df-cau 25309  df-cmet 25310  df-grpo 30525  df-gid 30526  df-ginv 30527  df-gdiv 30528  df-ablo 30577  df-vc 30591  df-nv 30624  df-va 30627  df-ba 30628  df-sm 30629  df-0v 30630  df-vs 30631  df-nmcv 30632  df-ims 30633  df-dip 30733  df-ssp 30754  df-ph 30845  df-cbn 30895  df-hnorm 31000  df-hba 31001  df-hvsub 31003  df-hlim 31004  df-hcau 31005  df-sh 31239  df-ch 31253  df-oc 31284  df-ch0 31285  df-span 31341  df-hmop 31876  df-eigvec 31885  df-eigval 31886
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator