HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  eighmorth Structured version   Visualization version   GIF version

Theorem eighmorth 29658
Description: Eigenvectors of a Hermitian operator with distinct eigenvalues are orthogonal. Equation 1.31 of [Hughes] p. 49. (Contributed by NM, 23-Mar-2006.) (New usage is discouraged.)
Assertion
Ref Expression
eighmorth (((𝑇 ∈ HrmOp ∧ 𝐴 ∈ (eigvec‘𝑇)) ∧ (𝐵 ∈ (eigvec‘𝑇) ∧ ((eigval‘𝑇)‘𝐴) ≠ ((eigval‘𝑇)‘𝐵))) → (𝐴 ·ih 𝐵) = 0)

Proof of Theorem eighmorth
StepHypRef Expression
1 hmopf 29568 . . . . . . 7 (𝑇 ∈ HrmOp → 𝑇: ℋ⟶ ℋ)
2 eleigveccl 29653 . . . . . . 7 ((𝑇: ℋ⟶ ℋ ∧ 𝐴 ∈ (eigvec‘𝑇)) → 𝐴 ∈ ℋ)
31, 2sylan 580 . . . . . 6 ((𝑇 ∈ HrmOp ∧ 𝐴 ∈ (eigvec‘𝑇)) → 𝐴 ∈ ℋ)
43adantr 481 . . . . 5 (((𝑇 ∈ HrmOp ∧ 𝐴 ∈ (eigvec‘𝑇)) ∧ 𝐵 ∈ (eigvec‘𝑇)) → 𝐴 ∈ ℋ)
5 eleigveccl 29653 . . . . . . 7 ((𝑇: ℋ⟶ ℋ ∧ 𝐵 ∈ (eigvec‘𝑇)) → 𝐵 ∈ ℋ)
61, 5sylan 580 . . . . . 6 ((𝑇 ∈ HrmOp ∧ 𝐵 ∈ (eigvec‘𝑇)) → 𝐵 ∈ ℋ)
76adantlr 711 . . . . 5 (((𝑇 ∈ HrmOp ∧ 𝐴 ∈ (eigvec‘𝑇)) ∧ 𝐵 ∈ (eigvec‘𝑇)) → 𝐵 ∈ ℋ)
84, 7jca 512 . . . 4 (((𝑇 ∈ HrmOp ∧ 𝐴 ∈ (eigvec‘𝑇)) ∧ 𝐵 ∈ (eigvec‘𝑇)) → (𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ))
9 eighmre 29657 . . . . . . 7 ((𝑇 ∈ HrmOp ∧ 𝐴 ∈ (eigvec‘𝑇)) → ((eigval‘𝑇)‘𝐴) ∈ ℝ)
109recnd 10661 . . . . . 6 ((𝑇 ∈ HrmOp ∧ 𝐴 ∈ (eigvec‘𝑇)) → ((eigval‘𝑇)‘𝐴) ∈ ℂ)
1110adantr 481 . . . . 5 (((𝑇 ∈ HrmOp ∧ 𝐴 ∈ (eigvec‘𝑇)) ∧ 𝐵 ∈ (eigvec‘𝑇)) → ((eigval‘𝑇)‘𝐴) ∈ ℂ)
12 eighmre 29657 . . . . . . 7 ((𝑇 ∈ HrmOp ∧ 𝐵 ∈ (eigvec‘𝑇)) → ((eigval‘𝑇)‘𝐵) ∈ ℝ)
1312recnd 10661 . . . . . 6 ((𝑇 ∈ HrmOp ∧ 𝐵 ∈ (eigvec‘𝑇)) → ((eigval‘𝑇)‘𝐵) ∈ ℂ)
1413adantlr 711 . . . . 5 (((𝑇 ∈ HrmOp ∧ 𝐴 ∈ (eigvec‘𝑇)) ∧ 𝐵 ∈ (eigvec‘𝑇)) → ((eigval‘𝑇)‘𝐵) ∈ ℂ)
1511, 14jca 512 . . . 4 (((𝑇 ∈ HrmOp ∧ 𝐴 ∈ (eigvec‘𝑇)) ∧ 𝐵 ∈ (eigvec‘𝑇)) → (((eigval‘𝑇)‘𝐴) ∈ ℂ ∧ ((eigval‘𝑇)‘𝐵) ∈ ℂ))
168, 15jca 512 . . 3 (((𝑇 ∈ HrmOp ∧ 𝐴 ∈ (eigvec‘𝑇)) ∧ 𝐵 ∈ (eigvec‘𝑇)) → ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (((eigval‘𝑇)‘𝐴) ∈ ℂ ∧ ((eigval‘𝑇)‘𝐵) ∈ ℂ)))
1716adantrr 713 . 2 (((𝑇 ∈ HrmOp ∧ 𝐴 ∈ (eigvec‘𝑇)) ∧ (𝐵 ∈ (eigvec‘𝑇) ∧ ((eigval‘𝑇)‘𝐴) ≠ ((eigval‘𝑇)‘𝐵))) → ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (((eigval‘𝑇)‘𝐴) ∈ ℂ ∧ ((eigval‘𝑇)‘𝐵) ∈ ℂ)))
18 eigvec1 29656 . . . . . . . 8 ((𝑇: ℋ⟶ ℋ ∧ 𝐴 ∈ (eigvec‘𝑇)) → ((𝑇𝐴) = (((eigval‘𝑇)‘𝐴) · 𝐴) ∧ 𝐴 ≠ 0))
1918simpld 495 . . . . . . 7 ((𝑇: ℋ⟶ ℋ ∧ 𝐴 ∈ (eigvec‘𝑇)) → (𝑇𝐴) = (((eigval‘𝑇)‘𝐴) · 𝐴))
201, 19sylan 580 . . . . . 6 ((𝑇 ∈ HrmOp ∧ 𝐴 ∈ (eigvec‘𝑇)) → (𝑇𝐴) = (((eigval‘𝑇)‘𝐴) · 𝐴))
2120adantr 481 . . . . 5 (((𝑇 ∈ HrmOp ∧ 𝐴 ∈ (eigvec‘𝑇)) ∧ 𝐵 ∈ (eigvec‘𝑇)) → (𝑇𝐴) = (((eigval‘𝑇)‘𝐴) · 𝐴))
22 eigvec1 29656 . . . . . . . 8 ((𝑇: ℋ⟶ ℋ ∧ 𝐵 ∈ (eigvec‘𝑇)) → ((𝑇𝐵) = (((eigval‘𝑇)‘𝐵) · 𝐵) ∧ 𝐵 ≠ 0))
2322simpld 495 . . . . . . 7 ((𝑇: ℋ⟶ ℋ ∧ 𝐵 ∈ (eigvec‘𝑇)) → (𝑇𝐵) = (((eigval‘𝑇)‘𝐵) · 𝐵))
241, 23sylan 580 . . . . . 6 ((𝑇 ∈ HrmOp ∧ 𝐵 ∈ (eigvec‘𝑇)) → (𝑇𝐵) = (((eigval‘𝑇)‘𝐵) · 𝐵))
2524adantlr 711 . . . . 5 (((𝑇 ∈ HrmOp ∧ 𝐴 ∈ (eigvec‘𝑇)) ∧ 𝐵 ∈ (eigvec‘𝑇)) → (𝑇𝐵) = (((eigval‘𝑇)‘𝐵) · 𝐵))
2621, 25jca 512 . . . 4 (((𝑇 ∈ HrmOp ∧ 𝐴 ∈ (eigvec‘𝑇)) ∧ 𝐵 ∈ (eigvec‘𝑇)) → ((𝑇𝐴) = (((eigval‘𝑇)‘𝐴) · 𝐴) ∧ (𝑇𝐵) = (((eigval‘𝑇)‘𝐵) · 𝐵)))
2726adantrr 713 . . 3 (((𝑇 ∈ HrmOp ∧ 𝐴 ∈ (eigvec‘𝑇)) ∧ (𝐵 ∈ (eigvec‘𝑇) ∧ ((eigval‘𝑇)‘𝐴) ≠ ((eigval‘𝑇)‘𝐵))) → ((𝑇𝐴) = (((eigval‘𝑇)‘𝐴) · 𝐴) ∧ (𝑇𝐵) = (((eigval‘𝑇)‘𝐵) · 𝐵)))
2812cjred 14578 . . . . . . 7 ((𝑇 ∈ HrmOp ∧ 𝐵 ∈ (eigvec‘𝑇)) → (∗‘((eigval‘𝑇)‘𝐵)) = ((eigval‘𝑇)‘𝐵))
2928neeq2d 3080 . . . . . 6 ((𝑇 ∈ HrmOp ∧ 𝐵 ∈ (eigvec‘𝑇)) → (((eigval‘𝑇)‘𝐴) ≠ (∗‘((eigval‘𝑇)‘𝐵)) ↔ ((eigval‘𝑇)‘𝐴) ≠ ((eigval‘𝑇)‘𝐵)))
3029biimpar 478 . . . . 5 (((𝑇 ∈ HrmOp ∧ 𝐵 ∈ (eigvec‘𝑇)) ∧ ((eigval‘𝑇)‘𝐴) ≠ ((eigval‘𝑇)‘𝐵)) → ((eigval‘𝑇)‘𝐴) ≠ (∗‘((eigval‘𝑇)‘𝐵)))
3130anasss 467 . . . 4 ((𝑇 ∈ HrmOp ∧ (𝐵 ∈ (eigvec‘𝑇) ∧ ((eigval‘𝑇)‘𝐴) ≠ ((eigval‘𝑇)‘𝐵))) → ((eigval‘𝑇)‘𝐴) ≠ (∗‘((eigval‘𝑇)‘𝐵)))
3231adantlr 711 . . 3 (((𝑇 ∈ HrmOp ∧ 𝐴 ∈ (eigvec‘𝑇)) ∧ (𝐵 ∈ (eigvec‘𝑇) ∧ ((eigval‘𝑇)‘𝐴) ≠ ((eigval‘𝑇)‘𝐵))) → ((eigval‘𝑇)‘𝐴) ≠ (∗‘((eigval‘𝑇)‘𝐵)))
3327, 32jca 512 . 2 (((𝑇 ∈ HrmOp ∧ 𝐴 ∈ (eigvec‘𝑇)) ∧ (𝐵 ∈ (eigvec‘𝑇) ∧ ((eigval‘𝑇)‘𝐴) ≠ ((eigval‘𝑇)‘𝐵))) → (((𝑇𝐴) = (((eigval‘𝑇)‘𝐴) · 𝐴) ∧ (𝑇𝐵) = (((eigval‘𝑇)‘𝐵) · 𝐵)) ∧ ((eigval‘𝑇)‘𝐴) ≠ (∗‘((eigval‘𝑇)‘𝐵))))
34 simpll 763 . . . 4 (((𝑇 ∈ HrmOp ∧ 𝐴 ∈ (eigvec‘𝑇)) ∧ 𝐵 ∈ (eigvec‘𝑇)) → 𝑇 ∈ HrmOp)
35 hmop 29616 . . . 4 ((𝑇 ∈ HrmOp ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ih (𝑇𝐵)) = ((𝑇𝐴) ·ih 𝐵))
3634, 4, 7, 35syl3anc 1365 . . 3 (((𝑇 ∈ HrmOp ∧ 𝐴 ∈ (eigvec‘𝑇)) ∧ 𝐵 ∈ (eigvec‘𝑇)) → (𝐴 ·ih (𝑇𝐵)) = ((𝑇𝐴) ·ih 𝐵))
3736adantrr 713 . 2 (((𝑇 ∈ HrmOp ∧ 𝐴 ∈ (eigvec‘𝑇)) ∧ (𝐵 ∈ (eigvec‘𝑇) ∧ ((eigval‘𝑇)‘𝐴) ≠ ((eigval‘𝑇)‘𝐵))) → (𝐴 ·ih (𝑇𝐵)) = ((𝑇𝐴) ·ih 𝐵))
38 eigorth 29532 . . 3 ((((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (((eigval‘𝑇)‘𝐴) ∈ ℂ ∧ ((eigval‘𝑇)‘𝐵) ∈ ℂ)) ∧ (((𝑇𝐴) = (((eigval‘𝑇)‘𝐴) · 𝐴) ∧ (𝑇𝐵) = (((eigval‘𝑇)‘𝐵) · 𝐵)) ∧ ((eigval‘𝑇)‘𝐴) ≠ (∗‘((eigval‘𝑇)‘𝐵)))) → ((𝐴 ·ih (𝑇𝐵)) = ((𝑇𝐴) ·ih 𝐵) ↔ (𝐴 ·ih 𝐵) = 0))
3938biimpa 477 . 2 (((((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (((eigval‘𝑇)‘𝐴) ∈ ℂ ∧ ((eigval‘𝑇)‘𝐵) ∈ ℂ)) ∧ (((𝑇𝐴) = (((eigval‘𝑇)‘𝐴) · 𝐴) ∧ (𝑇𝐵) = (((eigval‘𝑇)‘𝐵) · 𝐵)) ∧ ((eigval‘𝑇)‘𝐴) ≠ (∗‘((eigval‘𝑇)‘𝐵)))) ∧ (𝐴 ·ih (𝑇𝐵)) = ((𝑇𝐴) ·ih 𝐵)) → (𝐴 ·ih 𝐵) = 0)
4017, 33, 37, 39syl21anc 835 1 (((𝑇 ∈ HrmOp ∧ 𝐴 ∈ (eigvec‘𝑇)) ∧ (𝐵 ∈ (eigvec‘𝑇) ∧ ((eigval‘𝑇)‘𝐴) ≠ ((eigval‘𝑇)‘𝐵))) → (𝐴 ·ih 𝐵) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1530  wcel 2107  wne 3020  wf 6347  cfv 6351  (class class class)co 7151  cc 10527  0cc0 10529  ccj 14448  chba 28613   · csm 28615   ·ih csp 28616  0c0v 28618  HrmOpcho 28644  eigveccei 28653  eigvalcel 28654
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-13 2385  ax-ext 2797  ax-rep 5186  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-inf2 9096  ax-cc 9849  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607  ax-addf 10608  ax-mulf 10609  ax-hilex 28693  ax-hfvadd 28694  ax-hvcom 28695  ax-hvass 28696  ax-hv0cl 28697  ax-hvaddid 28698  ax-hfvmul 28699  ax-hvmulid 28700  ax-hvmulass 28701  ax-hvdistr1 28702  ax-hvdistr2 28703  ax-hvmul0 28704  ax-hfi 28773  ax-his1 28776  ax-his2 28777  ax-his3 28778  ax-his4 28779  ax-hcompl 28896
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-fal 1543  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2619  df-eu 2651  df-clab 2804  df-cleq 2818  df-clel 2897  df-nfc 2967  df-ne 3021  df-nel 3128  df-ral 3147  df-rex 3148  df-reu 3149  df-rmo 3150  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-uni 4837  df-int 4874  df-iun 4918  df-iin 4919  df-br 5063  df-opab 5125  df-mpt 5143  df-tr 5169  df-id 5458  df-eprel 5463  df-po 5472  df-so 5473  df-fr 5512  df-se 5513  df-we 5514  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-pred 6145  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-isom 6360  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-of 7402  df-om 7572  df-1st 7683  df-2nd 7684  df-supp 7825  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-2o 8097  df-oadd 8100  df-omul 8101  df-er 8282  df-map 8401  df-pm 8402  df-ixp 8454  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-fsupp 8826  df-fi 8867  df-sup 8898  df-inf 8899  df-oi 8966  df-card 9360  df-acn 9363  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-z 11974  df-dec 12091  df-uz 12236  df-q 12341  df-rp 12383  df-xneg 12500  df-xadd 12501  df-xmul 12502  df-ioo 12735  df-ico 12737  df-icc 12738  df-fz 12886  df-fzo 13027  df-fl 13155  df-seq 13363  df-exp 13423  df-hash 13684  df-cj 14451  df-re 14452  df-im 14453  df-sqrt 14587  df-abs 14588  df-clim 14838  df-rlim 14839  df-sum 15036  df-struct 16478  df-ndx 16479  df-slot 16480  df-base 16482  df-sets 16483  df-ress 16484  df-plusg 16571  df-mulr 16572  df-starv 16573  df-sca 16574  df-vsca 16575  df-ip 16576  df-tset 16577  df-ple 16578  df-ds 16580  df-unif 16581  df-hom 16582  df-cco 16583  df-rest 16689  df-topn 16690  df-0g 16708  df-gsum 16709  df-topgen 16710  df-pt 16711  df-prds 16714  df-xrs 16768  df-qtop 16773  df-imas 16774  df-xps 16776  df-mre 16850  df-mrc 16851  df-acs 16853  df-mgm 17845  df-sgrp 17893  df-mnd 17904  df-submnd 17948  df-mulg 18158  df-cntz 18380  df-cmn 18831  df-psmet 20456  df-xmet 20457  df-met 20458  df-bl 20459  df-mopn 20460  df-fbas 20461  df-fg 20462  df-cnfld 20465  df-top 21421  df-topon 21438  df-topsp 21460  df-bases 21473  df-cld 21546  df-ntr 21547  df-cls 21548  df-nei 21625  df-cn 21754  df-cnp 21755  df-lm 21756  df-haus 21842  df-tx 22089  df-hmeo 22282  df-fil 22373  df-fm 22465  df-flim 22466  df-flf 22467  df-xms 22848  df-ms 22849  df-tms 22850  df-cfil 23776  df-cau 23777  df-cmet 23778  df-grpo 28187  df-gid 28188  df-ginv 28189  df-gdiv 28190  df-ablo 28239  df-vc 28253  df-nv 28286  df-va 28289  df-ba 28290  df-sm 28291  df-0v 28292  df-vs 28293  df-nmcv 28294  df-ims 28295  df-dip 28395  df-ssp 28416  df-ph 28507  df-cbn 28557  df-hnorm 28662  df-hba 28663  df-hvsub 28665  df-hlim 28666  df-hcau 28667  df-sh 28901  df-ch 28915  df-oc 28946  df-ch0 28947  df-span 29003  df-hmop 29538  df-eigvec 29547  df-eigval 29548
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator