Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lduallkr3 Structured version   Visualization version   GIF version

Theorem lduallkr3 39267
Description: The kernels of nonzero functionals are hyperplanes. (Contributed by NM, 22-Feb-2015.)
Hypotheses
Ref Expression
lduallkr3.h 𝐻 = (LSHyp‘𝑊)
lduallkr3.f 𝐹 = (LFnl‘𝑊)
lduallkr3.k 𝐾 = (LKer‘𝑊)
lduallkr3.d 𝐷 = (LDual‘𝑊)
lduallkr3.o 0 = (0g𝐷)
lduallkr3.w (𝜑𝑊 ∈ LVec)
lduallkr3.g (𝜑𝐺𝐹)
Assertion
Ref Expression
lduallkr3 (𝜑 → ((𝐾𝐺) ∈ 𝐻𝐺0 ))

Proof of Theorem lduallkr3
StepHypRef Expression
1 eqid 2731 . . 3 (Base‘𝑊) = (Base‘𝑊)
2 eqid 2731 . . 3 (Scalar‘𝑊) = (Scalar‘𝑊)
3 eqid 2731 . . 3 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
4 lduallkr3.h . . 3 𝐻 = (LSHyp‘𝑊)
5 lduallkr3.f . . 3 𝐹 = (LFnl‘𝑊)
6 lduallkr3.k . . 3 𝐾 = (LKer‘𝑊)
7 lduallkr3.w . . 3 (𝜑𝑊 ∈ LVec)
8 lduallkr3.g . . 3 (𝜑𝐺𝐹)
91, 2, 3, 4, 5, 6, 7, 8lkrshp3 39211 . 2 (𝜑 → ((𝐾𝐺) ∈ 𝐻𝐺 ≠ ((Base‘𝑊) × {(0g‘(Scalar‘𝑊))})))
10 lduallkr3.d . . . 4 𝐷 = (LDual‘𝑊)
11 lduallkr3.o . . . 4 0 = (0g𝐷)
12 lveclmod 21046 . . . . 5 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
137, 12syl 17 . . . 4 (𝜑𝑊 ∈ LMod)
141, 2, 3, 10, 11, 13ldual0v 39255 . . 3 (𝜑0 = ((Base‘𝑊) × {(0g‘(Scalar‘𝑊))}))
1514neeq2d 2988 . 2 (𝜑 → (𝐺0𝐺 ≠ ((Base‘𝑊) × {(0g‘(Scalar‘𝑊))})))
169, 15bitr4d 282 1 (𝜑 → ((𝐾𝐺) ∈ 𝐻𝐺0 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1541  wcel 2111  wne 2928  {csn 4575   × cxp 5617  cfv 6487  Basecbs 17126  Scalarcsca 17170  0gc0g 17349  LModclmod 20799  LVecclvec 21042  LSHypclsh 39080  LFnlclfn 39162  LKerclk 39190  LDualcld 39228
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11068  ax-resscn 11069  ax-1cn 11070  ax-icn 11071  ax-addcl 11072  ax-addrcl 11073  ax-mulcl 11074  ax-mulrcl 11075  ax-mulcom 11076  ax-addass 11077  ax-mulass 11078  ax-distr 11079  ax-i2m1 11080  ax-1ne0 11081  ax-1rid 11082  ax-rnegex 11083  ax-rrecex 11084  ax-cnre 11085  ax-pre-lttri 11086  ax-pre-lttrn 11087  ax-pre-ltadd 11088  ax-pre-mulgt0 11089
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6254  df-ord 6315  df-on 6316  df-lim 6317  df-suc 6318  df-iota 6443  df-fun 6489  df-fn 6490  df-f 6491  df-f1 6492  df-fo 6493  df-f1o 6494  df-fv 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-of 7616  df-om 7803  df-1st 7927  df-2nd 7928  df-tpos 8162  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-er 8628  df-map 8758  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-pnf 11154  df-mnf 11155  df-xr 11156  df-ltxr 11157  df-le 11158  df-sub 11352  df-neg 11353  df-nn 12132  df-2 12194  df-3 12195  df-4 12196  df-5 12197  df-6 12198  df-n0 12388  df-z 12475  df-uz 12739  df-fz 13414  df-struct 17064  df-sets 17081  df-slot 17099  df-ndx 17111  df-base 17127  df-ress 17148  df-plusg 17180  df-mulr 17181  df-sca 17183  df-vsca 17184  df-0g 17351  df-mgm 18554  df-sgrp 18633  df-mnd 18649  df-submnd 18698  df-grp 18855  df-minusg 18856  df-sbg 18857  df-subg 19042  df-cntz 19235  df-lsm 19554  df-cmn 19700  df-abl 19701  df-mgp 20065  df-rng 20077  df-ur 20106  df-ring 20159  df-oppr 20261  df-dvdsr 20281  df-unit 20282  df-invr 20312  df-drng 20652  df-lmod 20801  df-lss 20871  df-lsp 20911  df-lvec 21043  df-lshyp 39082  df-lfl 39163  df-lkr 39191  df-ldual 39229
This theorem is referenced by:  lcfrlem25  41672  lcfrlem35  41682
  Copyright terms: Public domain W3C validator