MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumcn Structured version   Visualization version   GIF version

Theorem fsumcn 22886
Description: A finite sum of functions to complex numbers from a common topological space is continuous. The class expression for 𝐵 normally contains free variables 𝑘 and 𝑥 to index it. (Contributed by NM, 8-Aug-2007.) (Revised by Mario Carneiro, 23-Aug-2014.)
Hypotheses
Ref Expression
fsumcn.3 𝐾 = (TopOpen‘ℂfld)
fsumcn.4 (𝜑𝐽 ∈ (TopOn‘𝑋))
fsumcn.5 (𝜑𝐴 ∈ Fin)
fsumcn.6 ((𝜑𝑘𝐴) → (𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐾))
Assertion
Ref Expression
fsumcn (𝜑 → (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵) ∈ (𝐽 Cn 𝐾))
Distinct variable groups:   𝑥,𝑘,𝐴   𝑘,𝐽,𝑥   𝜑,𝑘,𝑥   𝑘,𝐾,𝑥   𝑘,𝑋,𝑥
Allowed substitution hints:   𝐵(𝑥,𝑘)

Proof of Theorem fsumcn
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssid 3820 . 2 𝐴𝐴
2 fsumcn.5 . . 3 (𝜑𝐴 ∈ Fin)
3 sseq1 3823 . . . . . 6 (𝑤 = ∅ → (𝑤𝐴 ↔ ∅ ⊆ 𝐴))
4 sumeq1 14642 . . . . . . . 8 (𝑤 = ∅ → Σ𝑘𝑤 𝐵 = Σ𝑘 ∈ ∅ 𝐵)
54mpteq2dv 4939 . . . . . . 7 (𝑤 = ∅ → (𝑥𝑋 ↦ Σ𝑘𝑤 𝐵) = (𝑥𝑋 ↦ Σ𝑘 ∈ ∅ 𝐵))
65eleq1d 2870 . . . . . 6 (𝑤 = ∅ → ((𝑥𝑋 ↦ Σ𝑘𝑤 𝐵) ∈ (𝐽 Cn 𝐾) ↔ (𝑥𝑋 ↦ Σ𝑘 ∈ ∅ 𝐵) ∈ (𝐽 Cn 𝐾)))
73, 6imbi12d 335 . . . . 5 (𝑤 = ∅ → ((𝑤𝐴 → (𝑥𝑋 ↦ Σ𝑘𝑤 𝐵) ∈ (𝐽 Cn 𝐾)) ↔ (∅ ⊆ 𝐴 → (𝑥𝑋 ↦ Σ𝑘 ∈ ∅ 𝐵) ∈ (𝐽 Cn 𝐾))))
87imbi2d 331 . . . 4 (𝑤 = ∅ → ((𝜑 → (𝑤𝐴 → (𝑥𝑋 ↦ Σ𝑘𝑤 𝐵) ∈ (𝐽 Cn 𝐾))) ↔ (𝜑 → (∅ ⊆ 𝐴 → (𝑥𝑋 ↦ Σ𝑘 ∈ ∅ 𝐵) ∈ (𝐽 Cn 𝐾)))))
9 sseq1 3823 . . . . . 6 (𝑤 = 𝑦 → (𝑤𝐴𝑦𝐴))
10 sumeq1 14642 . . . . . . . 8 (𝑤 = 𝑦 → Σ𝑘𝑤 𝐵 = Σ𝑘𝑦 𝐵)
1110mpteq2dv 4939 . . . . . . 7 (𝑤 = 𝑦 → (𝑥𝑋 ↦ Σ𝑘𝑤 𝐵) = (𝑥𝑋 ↦ Σ𝑘𝑦 𝐵))
1211eleq1d 2870 . . . . . 6 (𝑤 = 𝑦 → ((𝑥𝑋 ↦ Σ𝑘𝑤 𝐵) ∈ (𝐽 Cn 𝐾) ↔ (𝑥𝑋 ↦ Σ𝑘𝑦 𝐵) ∈ (𝐽 Cn 𝐾)))
139, 12imbi12d 335 . . . . 5 (𝑤 = 𝑦 → ((𝑤𝐴 → (𝑥𝑋 ↦ Σ𝑘𝑤 𝐵) ∈ (𝐽 Cn 𝐾)) ↔ (𝑦𝐴 → (𝑥𝑋 ↦ Σ𝑘𝑦 𝐵) ∈ (𝐽 Cn 𝐾))))
1413imbi2d 331 . . . 4 (𝑤 = 𝑦 → ((𝜑 → (𝑤𝐴 → (𝑥𝑋 ↦ Σ𝑘𝑤 𝐵) ∈ (𝐽 Cn 𝐾))) ↔ (𝜑 → (𝑦𝐴 → (𝑥𝑋 ↦ Σ𝑘𝑦 𝐵) ∈ (𝐽 Cn 𝐾)))))
15 sseq1 3823 . . . . . 6 (𝑤 = (𝑦 ∪ {𝑧}) → (𝑤𝐴 ↔ (𝑦 ∪ {𝑧}) ⊆ 𝐴))
16 sumeq1 14642 . . . . . . . 8 (𝑤 = (𝑦 ∪ {𝑧}) → Σ𝑘𝑤 𝐵 = Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)
1716mpteq2dv 4939 . . . . . . 7 (𝑤 = (𝑦 ∪ {𝑧}) → (𝑥𝑋 ↦ Σ𝑘𝑤 𝐵) = (𝑥𝑋 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵))
1817eleq1d 2870 . . . . . 6 (𝑤 = (𝑦 ∪ {𝑧}) → ((𝑥𝑋 ↦ Σ𝑘𝑤 𝐵) ∈ (𝐽 Cn 𝐾) ↔ (𝑥𝑋 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) ∈ (𝐽 Cn 𝐾)))
1915, 18imbi12d 335 . . . . 5 (𝑤 = (𝑦 ∪ {𝑧}) → ((𝑤𝐴 → (𝑥𝑋 ↦ Σ𝑘𝑤 𝐵) ∈ (𝐽 Cn 𝐾)) ↔ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 → (𝑥𝑋 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) ∈ (𝐽 Cn 𝐾))))
2019imbi2d 331 . . . 4 (𝑤 = (𝑦 ∪ {𝑧}) → ((𝜑 → (𝑤𝐴 → (𝑥𝑋 ↦ Σ𝑘𝑤 𝐵) ∈ (𝐽 Cn 𝐾))) ↔ (𝜑 → ((𝑦 ∪ {𝑧}) ⊆ 𝐴 → (𝑥𝑋 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) ∈ (𝐽 Cn 𝐾)))))
21 sseq1 3823 . . . . . 6 (𝑤 = 𝐴 → (𝑤𝐴𝐴𝐴))
22 sumeq1 14642 . . . . . . . 8 (𝑤 = 𝐴 → Σ𝑘𝑤 𝐵 = Σ𝑘𝐴 𝐵)
2322mpteq2dv 4939 . . . . . . 7 (𝑤 = 𝐴 → (𝑥𝑋 ↦ Σ𝑘𝑤 𝐵) = (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵))
2423eleq1d 2870 . . . . . 6 (𝑤 = 𝐴 → ((𝑥𝑋 ↦ Σ𝑘𝑤 𝐵) ∈ (𝐽 Cn 𝐾) ↔ (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵) ∈ (𝐽 Cn 𝐾)))
2521, 24imbi12d 335 . . . . 5 (𝑤 = 𝐴 → ((𝑤𝐴 → (𝑥𝑋 ↦ Σ𝑘𝑤 𝐵) ∈ (𝐽 Cn 𝐾)) ↔ (𝐴𝐴 → (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵) ∈ (𝐽 Cn 𝐾))))
2625imbi2d 331 . . . 4 (𝑤 = 𝐴 → ((𝜑 → (𝑤𝐴 → (𝑥𝑋 ↦ Σ𝑘𝑤 𝐵) ∈ (𝐽 Cn 𝐾))) ↔ (𝜑 → (𝐴𝐴 → (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵) ∈ (𝐽 Cn 𝐾)))))
27 sum0 14675 . . . . . . 7 Σ𝑘 ∈ ∅ 𝐵 = 0
2827mpteq2i 4935 . . . . . 6 (𝑥𝑋 ↦ Σ𝑘 ∈ ∅ 𝐵) = (𝑥𝑋 ↦ 0)
29 fsumcn.4 . . . . . . 7 (𝜑𝐽 ∈ (TopOn‘𝑋))
30 fsumcn.3 . . . . . . . . 9 𝐾 = (TopOpen‘ℂfld)
3130cnfldtopon 22799 . . . . . . . 8 𝐾 ∈ (TopOn‘ℂ)
3231a1i 11 . . . . . . 7 (𝜑𝐾 ∈ (TopOn‘ℂ))
33 0cnd 10318 . . . . . . 7 (𝜑 → 0 ∈ ℂ)
3429, 32, 33cnmptc 21679 . . . . . 6 (𝜑 → (𝑥𝑋 ↦ 0) ∈ (𝐽 Cn 𝐾))
3528, 34syl5eqel 2889 . . . . 5 (𝜑 → (𝑥𝑋 ↦ Σ𝑘 ∈ ∅ 𝐵) ∈ (𝐽 Cn 𝐾))
3635a1d 25 . . . 4 (𝜑 → (∅ ⊆ 𝐴 → (𝑥𝑋 ↦ Σ𝑘 ∈ ∅ 𝐵) ∈ (𝐽 Cn 𝐾)))
37 ssun1 3975 . . . . . . . . . 10 𝑦 ⊆ (𝑦 ∪ {𝑧})
38 sstr 3806 . . . . . . . . . 10 ((𝑦 ⊆ (𝑦 ∪ {𝑧}) ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴) → 𝑦𝐴)
3937, 38mpan 673 . . . . . . . . 9 ((𝑦 ∪ {𝑧}) ⊆ 𝐴𝑦𝐴)
4039imim1i 63 . . . . . . . 8 ((𝑦𝐴 → (𝑥𝑋 ↦ Σ𝑘𝑦 𝐵) ∈ (𝐽 Cn 𝐾)) → ((𝑦 ∪ {𝑧}) ⊆ 𝐴 → (𝑥𝑋 ↦ Σ𝑘𝑦 𝐵) ∈ (𝐽 Cn 𝐾)))
41 simplr 776 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴𝑥𝑋)) → ¬ 𝑧𝑦)
42 disjsn 4438 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∩ {𝑧}) = ∅ ↔ ¬ 𝑧𝑦)
4341, 42sylibr 225 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴𝑥𝑋)) → (𝑦 ∩ {𝑧}) = ∅)
44 eqidd 2807 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴𝑥𝑋)) → (𝑦 ∪ {𝑧}) = (𝑦 ∪ {𝑧}))
452ad2antrr 708 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴𝑥𝑋)) → 𝐴 ∈ Fin)
46 simprl 778 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴𝑥𝑋)) → (𝑦 ∪ {𝑧}) ⊆ 𝐴)
47 ssfi 8419 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ Fin ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴) → (𝑦 ∪ {𝑧}) ∈ Fin)
4845, 46, 47syl2anc 575 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴𝑥𝑋)) → (𝑦 ∪ {𝑧}) ∈ Fin)
49 simplll 782 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴𝑥𝑋)) ∧ 𝑘 ∈ (𝑦 ∪ {𝑧})) → 𝜑)
5046sselda 3798 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴𝑥𝑋)) ∧ 𝑘 ∈ (𝑦 ∪ {𝑧})) → 𝑘𝐴)
51 simplrr 787 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴𝑥𝑋)) ∧ 𝑘 ∈ (𝑦 ∪ {𝑧})) → 𝑥𝑋)
5229adantr 468 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑘𝐴) → 𝐽 ∈ (TopOn‘𝑋))
5331a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑘𝐴) → 𝐾 ∈ (TopOn‘ℂ))
54 fsumcn.6 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑘𝐴) → (𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐾))
55 cnf2 21267 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘ℂ) ∧ (𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐾)) → (𝑥𝑋𝐵):𝑋⟶ℂ)
5652, 53, 54, 55syl3anc 1483 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑘𝐴) → (𝑥𝑋𝐵):𝑋⟶ℂ)
57 eqid 2806 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥𝑋𝐵) = (𝑥𝑋𝐵)
5857fmpt 6602 . . . . . . . . . . . . . . . . . . . . 21 (∀𝑥𝑋 𝐵 ∈ ℂ ↔ (𝑥𝑋𝐵):𝑋⟶ℂ)
5956, 58sylibr 225 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑘𝐴) → ∀𝑥𝑋 𝐵 ∈ ℂ)
60 rsp 3117 . . . . . . . . . . . . . . . . . . . 20 (∀𝑥𝑋 𝐵 ∈ ℂ → (𝑥𝑋𝐵 ∈ ℂ))
6159, 60syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘𝐴) → (𝑥𝑋𝐵 ∈ ℂ))
6261imp 395 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑘𝐴) ∧ 𝑥𝑋) → 𝐵 ∈ ℂ)
6349, 50, 51, 62syl21anc 857 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴𝑥𝑋)) ∧ 𝑘 ∈ (𝑦 ∪ {𝑧})) → 𝐵 ∈ ℂ)
6443, 44, 48, 63fsumsplit 14694 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴𝑥𝑋)) → Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 = (Σ𝑘𝑦 𝐵 + Σ𝑘 ∈ {𝑧}𝐵))
65 simpr 473 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ ¬ 𝑧𝑦) ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴) → (𝑦 ∪ {𝑧}) ⊆ 𝐴)
6665unssbd 3990 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ ¬ 𝑧𝑦) ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴) → {𝑧} ⊆ 𝐴)
67 vex 3394 . . . . . . . . . . . . . . . . . . . . 21 𝑧 ∈ V
6867snss 4506 . . . . . . . . . . . . . . . . . . . 20 (𝑧𝐴 ↔ {𝑧} ⊆ 𝐴)
6966, 68sylibr 225 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ ¬ 𝑧𝑦) ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴) → 𝑧𝐴)
7069adantrr 699 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴𝑥𝑋)) → 𝑧𝐴)
7161impancom 441 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥𝑋) → (𝑘𝐴𝐵 ∈ ℂ))
7271ralrimiv 3153 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥𝑋) → ∀𝑘𝐴 𝐵 ∈ ℂ)
7372ad2ant2rl 746 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴𝑥𝑋)) → ∀𝑘𝐴 𝐵 ∈ ℂ)
74 nfcsb1v 3744 . . . . . . . . . . . . . . . . . . . . 21 𝑘𝑧 / 𝑘𝐵
7574nfel1 2963 . . . . . . . . . . . . . . . . . . . 20 𝑘𝑧 / 𝑘𝐵 ∈ ℂ
76 csbeq1a 3737 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 = 𝑧𝐵 = 𝑧 / 𝑘𝐵)
7776eleq1d 2870 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 𝑧 → (𝐵 ∈ ℂ ↔ 𝑧 / 𝑘𝐵 ∈ ℂ))
7875, 77rspc 3496 . . . . . . . . . . . . . . . . . . 19 (𝑧𝐴 → (∀𝑘𝐴 𝐵 ∈ ℂ → 𝑧 / 𝑘𝐵 ∈ ℂ))
7970, 73, 78sylc 65 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴𝑥𝑋)) → 𝑧 / 𝑘𝐵 ∈ ℂ)
80 sumsns 14702 . . . . . . . . . . . . . . . . . 18 ((𝑧𝐴𝑧 / 𝑘𝐵 ∈ ℂ) → Σ𝑘 ∈ {𝑧}𝐵 = 𝑧 / 𝑘𝐵)
8170, 79, 80syl2anc 575 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴𝑥𝑋)) → Σ𝑘 ∈ {𝑧}𝐵 = 𝑧 / 𝑘𝐵)
8281oveq2d 6890 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴𝑥𝑋)) → (Σ𝑘𝑦 𝐵 + Σ𝑘 ∈ {𝑧}𝐵) = (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵))
8364, 82eqtrd 2840 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴𝑥𝑋)) → Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 = (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵))
8483anassrs 455 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ¬ 𝑧𝑦) ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴) ∧ 𝑥𝑋) → Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 = (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵))
8584mpteq2dva 4938 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ 𝑧𝑦) ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴) → (𝑥𝑋 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) = (𝑥𝑋 ↦ (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵)))
8685adantrr 699 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ (𝑥𝑋 ↦ Σ𝑘𝑦 𝐵) ∈ (𝐽 Cn 𝐾))) → (𝑥𝑋 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) = (𝑥𝑋 ↦ (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵)))
87 nfcv 2948 . . . . . . . . . . . . 13 𝑤𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵)
88 nfcv 2948 . . . . . . . . . . . . . . 15 𝑥𝑦
89 nfcsb1v 3744 . . . . . . . . . . . . . . 15 𝑥𝑤 / 𝑥𝐵
9088, 89nfsum 14644 . . . . . . . . . . . . . 14 𝑥Σ𝑘𝑦 𝑤 / 𝑥𝐵
91 nfcv 2948 . . . . . . . . . . . . . 14 𝑥 +
92 nfcv 2948 . . . . . . . . . . . . . . 15 𝑥𝑧
9392, 89nfcsb 3746 . . . . . . . . . . . . . 14 𝑥𝑧 / 𝑘𝑤 / 𝑥𝐵
9490, 91, 93nfov 6904 . . . . . . . . . . . . 13 𝑥𝑘𝑦 𝑤 / 𝑥𝐵 + 𝑧 / 𝑘𝑤 / 𝑥𝐵)
95 csbeq1a 3737 . . . . . . . . . . . . . . 15 (𝑥 = 𝑤𝐵 = 𝑤 / 𝑥𝐵)
9695sumeq2sdv 14658 . . . . . . . . . . . . . 14 (𝑥 = 𝑤 → Σ𝑘𝑦 𝐵 = Σ𝑘𝑦 𝑤 / 𝑥𝐵)
9795csbeq2dv 4189 . . . . . . . . . . . . . 14 (𝑥 = 𝑤𝑧 / 𝑘𝐵 = 𝑧 / 𝑘𝑤 / 𝑥𝐵)
9896, 97oveq12d 6892 . . . . . . . . . . . . 13 (𝑥 = 𝑤 → (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵) = (Σ𝑘𝑦 𝑤 / 𝑥𝐵 + 𝑧 / 𝑘𝑤 / 𝑥𝐵))
9987, 94, 98cbvmpt 4943 . . . . . . . . . . . 12 (𝑥𝑋 ↦ (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵)) = (𝑤𝑋 ↦ (Σ𝑘𝑦 𝑤 / 𝑥𝐵 + 𝑧 / 𝑘𝑤 / 𝑥𝐵))
10086, 99syl6eq 2856 . . . . . . . . . . 11 (((𝜑 ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ (𝑥𝑋 ↦ Σ𝑘𝑦 𝐵) ∈ (𝐽 Cn 𝐾))) → (𝑥𝑋 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) = (𝑤𝑋 ↦ (Σ𝑘𝑦 𝑤 / 𝑥𝐵 + 𝑧 / 𝑘𝑤 / 𝑥𝐵)))
10129ad2antrr 708 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ (𝑥𝑋 ↦ Σ𝑘𝑦 𝐵) ∈ (𝐽 Cn 𝐾))) → 𝐽 ∈ (TopOn‘𝑋))
102 nfcv 2948 . . . . . . . . . . . . . 14 𝑤Σ𝑘𝑦 𝐵
103102, 90, 96cbvmpt 4943 . . . . . . . . . . . . 13 (𝑥𝑋 ↦ Σ𝑘𝑦 𝐵) = (𝑤𝑋 ↦ Σ𝑘𝑦 𝑤 / 𝑥𝐵)
104 simprr 780 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ (𝑥𝑋 ↦ Σ𝑘𝑦 𝐵) ∈ (𝐽 Cn 𝐾))) → (𝑥𝑋 ↦ Σ𝑘𝑦 𝐵) ∈ (𝐽 Cn 𝐾))
105103, 104syl5eqelr 2890 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ (𝑥𝑋 ↦ Σ𝑘𝑦 𝐵) ∈ (𝐽 Cn 𝐾))) → (𝑤𝑋 ↦ Σ𝑘𝑦 𝑤 / 𝑥𝐵) ∈ (𝐽 Cn 𝐾))
106 nfcv 2948 . . . . . . . . . . . . . 14 𝑤𝑧 / 𝑘𝐵
107106, 93, 97cbvmpt 4943 . . . . . . . . . . . . 13 (𝑥𝑋𝑧 / 𝑘𝐵) = (𝑤𝑋𝑧 / 𝑘𝑤 / 𝑥𝐵)
10869adantrr 699 . . . . . . . . . . . . . 14 (((𝜑 ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ (𝑥𝑋 ↦ Σ𝑘𝑦 𝐵) ∈ (𝐽 Cn 𝐾))) → 𝑧𝐴)
10954ralrimiva 3154 . . . . . . . . . . . . . . 15 (𝜑 → ∀𝑘𝐴 (𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐾))
110109ad2antrr 708 . . . . . . . . . . . . . 14 (((𝜑 ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ (𝑥𝑋 ↦ Σ𝑘𝑦 𝐵) ∈ (𝐽 Cn 𝐾))) → ∀𝑘𝐴 (𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐾))
111 nfcv 2948 . . . . . . . . . . . . . . . . 17 𝑘𝑋
112111, 74nfmpt 4940 . . . . . . . . . . . . . . . 16 𝑘(𝑥𝑋𝑧 / 𝑘𝐵)
113112nfel1 2963 . . . . . . . . . . . . . . 15 𝑘(𝑥𝑋𝑧 / 𝑘𝐵) ∈ (𝐽 Cn 𝐾)
11476mpteq2dv 4939 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑧 → (𝑥𝑋𝐵) = (𝑥𝑋𝑧 / 𝑘𝐵))
115114eleq1d 2870 . . . . . . . . . . . . . . 15 (𝑘 = 𝑧 → ((𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐾) ↔ (𝑥𝑋𝑧 / 𝑘𝐵) ∈ (𝐽 Cn 𝐾)))
116113, 115rspc 3496 . . . . . . . . . . . . . 14 (𝑧𝐴 → (∀𝑘𝐴 (𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐾) → (𝑥𝑋𝑧 / 𝑘𝐵) ∈ (𝐽 Cn 𝐾)))
117108, 110, 116sylc 65 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ (𝑥𝑋 ↦ Σ𝑘𝑦 𝐵) ∈ (𝐽 Cn 𝐾))) → (𝑥𝑋𝑧 / 𝑘𝐵) ∈ (𝐽 Cn 𝐾))
118107, 117syl5eqelr 2890 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ (𝑥𝑋 ↦ Σ𝑘𝑦 𝐵) ∈ (𝐽 Cn 𝐾))) → (𝑤𝑋𝑧 / 𝑘𝑤 / 𝑥𝐵) ∈ (𝐽 Cn 𝐾))
11930addcn 22881 . . . . . . . . . . . . 13 + ∈ ((𝐾 ×t 𝐾) Cn 𝐾)
120119a1i 11 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ (𝑥𝑋 ↦ Σ𝑘𝑦 𝐵) ∈ (𝐽 Cn 𝐾))) → + ∈ ((𝐾 ×t 𝐾) Cn 𝐾))
121101, 105, 118, 120cnmpt12f 21683 . . . . . . . . . . 11 (((𝜑 ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ (𝑥𝑋 ↦ Σ𝑘𝑦 𝐵) ∈ (𝐽 Cn 𝐾))) → (𝑤𝑋 ↦ (Σ𝑘𝑦 𝑤 / 𝑥𝐵 + 𝑧 / 𝑘𝑤 / 𝑥𝐵)) ∈ (𝐽 Cn 𝐾))
122100, 121eqeltrd 2885 . . . . . . . . . 10 (((𝜑 ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ (𝑥𝑋 ↦ Σ𝑘𝑦 𝐵) ∈ (𝐽 Cn 𝐾))) → (𝑥𝑋 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) ∈ (𝐽 Cn 𝐾))
123122exp32 409 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝑧𝑦) → ((𝑦 ∪ {𝑧}) ⊆ 𝐴 → ((𝑥𝑋 ↦ Σ𝑘𝑦 𝐵) ∈ (𝐽 Cn 𝐾) → (𝑥𝑋 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) ∈ (𝐽 Cn 𝐾))))
124123a2d 29 . . . . . . . 8 ((𝜑 ∧ ¬ 𝑧𝑦) → (((𝑦 ∪ {𝑧}) ⊆ 𝐴 → (𝑥𝑋 ↦ Σ𝑘𝑦 𝐵) ∈ (𝐽 Cn 𝐾)) → ((𝑦 ∪ {𝑧}) ⊆ 𝐴 → (𝑥𝑋 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) ∈ (𝐽 Cn 𝐾))))
12540, 124syl5 34 . . . . . . 7 ((𝜑 ∧ ¬ 𝑧𝑦) → ((𝑦𝐴 → (𝑥𝑋 ↦ Σ𝑘𝑦 𝐵) ∈ (𝐽 Cn 𝐾)) → ((𝑦 ∪ {𝑧}) ⊆ 𝐴 → (𝑥𝑋 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) ∈ (𝐽 Cn 𝐾))))
126125expcom 400 . . . . . 6 𝑧𝑦 → (𝜑 → ((𝑦𝐴 → (𝑥𝑋 ↦ Σ𝑘𝑦 𝐵) ∈ (𝐽 Cn 𝐾)) → ((𝑦 ∪ {𝑧}) ⊆ 𝐴 → (𝑥𝑋 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) ∈ (𝐽 Cn 𝐾)))))
127126adantl 469 . . . . 5 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → (𝜑 → ((𝑦𝐴 → (𝑥𝑋 ↦ Σ𝑘𝑦 𝐵) ∈ (𝐽 Cn 𝐾)) → ((𝑦 ∪ {𝑧}) ⊆ 𝐴 → (𝑥𝑋 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) ∈ (𝐽 Cn 𝐾)))))
128127a2d 29 . . . 4 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → ((𝜑 → (𝑦𝐴 → (𝑥𝑋 ↦ Σ𝑘𝑦 𝐵) ∈ (𝐽 Cn 𝐾))) → (𝜑 → ((𝑦 ∪ {𝑧}) ⊆ 𝐴 → (𝑥𝑋 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) ∈ (𝐽 Cn 𝐾)))))
1298, 14, 20, 26, 36, 128findcard2s 8440 . . 3 (𝐴 ∈ Fin → (𝜑 → (𝐴𝐴 → (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵) ∈ (𝐽 Cn 𝐾))))
1302, 129mpcom 38 . 2 (𝜑 → (𝐴𝐴 → (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵) ∈ (𝐽 Cn 𝐾)))
1311, 130mpi 20 1 (𝜑 → (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵) ∈ (𝐽 Cn 𝐾))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1637  wcel 2156  wral 3096  csb 3728  cun 3767  cin 3768  wss 3769  c0 4116  {csn 4370  cmpt 4923  wf 6097  cfv 6101  (class class class)co 6874  Fincfn 8192  cc 10219  0cc0 10221   + caddc 10224  Σcsu 14639  TopOpenctopn 16287  fldccnfld 19954  TopOnctopon 20928   Cn ccn 21242   ×t ctx 21577
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2068  ax-7 2104  ax-8 2158  ax-9 2165  ax-10 2185  ax-11 2201  ax-12 2214  ax-13 2420  ax-ext 2784  ax-rep 4964  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5096  ax-un 7179  ax-inf2 8785  ax-cnex 10277  ax-resscn 10278  ax-1cn 10279  ax-icn 10280  ax-addcl 10281  ax-addrcl 10282  ax-mulcl 10283  ax-mulrcl 10284  ax-mulcom 10285  ax-addass 10286  ax-mulass 10287  ax-distr 10288  ax-i2m1 10289  ax-1ne0 10290  ax-1rid 10291  ax-rnegex 10292  ax-rrecex 10293  ax-cnre 10294  ax-pre-lttri 10295  ax-pre-lttrn 10296  ax-pre-ltadd 10297  ax-pre-mulgt0 10298  ax-pre-sup 10299  ax-addf 10300
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-fal 1651  df-ex 1860  df-nf 1864  df-sb 2061  df-eu 2634  df-mo 2635  df-clab 2793  df-cleq 2799  df-clel 2802  df-nfc 2937  df-ne 2979  df-nel 3082  df-ral 3101  df-rex 3102  df-reu 3103  df-rmo 3104  df-rab 3105  df-v 3393  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4117  df-if 4280  df-pw 4353  df-sn 4371  df-pr 4373  df-tp 4375  df-op 4377  df-uni 4631  df-int 4670  df-iun 4714  df-iin 4715  df-br 4845  df-opab 4907  df-mpt 4924  df-tr 4947  df-id 5219  df-eprel 5224  df-po 5232  df-so 5233  df-fr 5270  df-se 5271  df-we 5272  df-xp 5317  df-rel 5318  df-cnv 5319  df-co 5320  df-dm 5321  df-rn 5322  df-res 5323  df-ima 5324  df-pred 5893  df-ord 5939  df-on 5940  df-lim 5941  df-suc 5942  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-isom 6110  df-riota 6835  df-ov 6877  df-oprab 6878  df-mpt2 6879  df-of 7127  df-om 7296  df-1st 7398  df-2nd 7399  df-supp 7530  df-wrecs 7642  df-recs 7704  df-rdg 7742  df-1o 7796  df-2o 7797  df-oadd 7800  df-er 7979  df-map 8094  df-ixp 8146  df-en 8193  df-dom 8194  df-sdom 8195  df-fin 8196  df-fsupp 8515  df-fi 8556  df-sup 8587  df-inf 8588  df-oi 8654  df-card 9048  df-cda 9275  df-pnf 10361  df-mnf 10362  df-xr 10363  df-ltxr 10364  df-le 10365  df-sub 10553  df-neg 10554  df-div 10970  df-nn 11306  df-2 11364  df-3 11365  df-4 11366  df-5 11367  df-6 11368  df-7 11369  df-8 11370  df-9 11371  df-n0 11560  df-z 11644  df-dec 11760  df-uz 11905  df-q 12008  df-rp 12047  df-xneg 12162  df-xadd 12163  df-xmul 12164  df-icc 12400  df-fz 12550  df-fzo 12690  df-seq 13025  df-exp 13084  df-hash 13338  df-cj 14062  df-re 14063  df-im 14064  df-sqrt 14198  df-abs 14199  df-clim 14442  df-sum 14640  df-struct 16070  df-ndx 16071  df-slot 16072  df-base 16074  df-sets 16075  df-ress 16076  df-plusg 16166  df-mulr 16167  df-starv 16168  df-sca 16169  df-vsca 16170  df-ip 16171  df-tset 16172  df-ple 16173  df-ds 16175  df-unif 16176  df-hom 16177  df-cco 16178  df-rest 16288  df-topn 16289  df-0g 16307  df-gsum 16308  df-topgen 16309  df-pt 16310  df-prds 16313  df-xrs 16367  df-qtop 16372  df-imas 16373  df-xps 16375  df-mre 16451  df-mrc 16452  df-acs 16454  df-mgm 17447  df-sgrp 17489  df-mnd 17500  df-submnd 17541  df-mulg 17746  df-cntz 17951  df-cmn 18396  df-psmet 19946  df-xmet 19947  df-met 19948  df-bl 19949  df-mopn 19950  df-cnfld 19955  df-top 20912  df-topon 20929  df-topsp 20951  df-bases 20964  df-cn 21245  df-cnp 21246  df-tx 21579  df-hmeo 21772  df-xms 22338  df-ms 22339  df-tms 22340
This theorem is referenced by:  fsum2cn  22887  lebnumlem2  22974  plycn  24231  psercn2  24391  knoppcnlem11  32810  fsumcnf  39674
  Copyright terms: Public domain W3C validator