| Step | Hyp | Ref
| Expression |
| 1 | | ssid 4006 |
. 2
⊢ 𝐴 ⊆ 𝐴 |
| 2 | | fsumcn.5 |
. . 3
⊢ (𝜑 → 𝐴 ∈ Fin) |
| 3 | | sseq1 4009 |
. . . . . 6
⊢ (𝑤 = ∅ → (𝑤 ⊆ 𝐴 ↔ ∅ ⊆ 𝐴)) |
| 4 | | sumeq1 15725 |
. . . . . . . 8
⊢ (𝑤 = ∅ → Σ𝑘 ∈ 𝑤 𝐵 = Σ𝑘 ∈ ∅ 𝐵) |
| 5 | 4 | mpteq2dv 5244 |
. . . . . . 7
⊢ (𝑤 = ∅ → (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝑤 𝐵) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ ∅ 𝐵)) |
| 6 | 5 | eleq1d 2826 |
. . . . . 6
⊢ (𝑤 = ∅ → ((𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝑤 𝐵) ∈ (𝐽 Cn 𝐾) ↔ (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ ∅ 𝐵) ∈ (𝐽 Cn 𝐾))) |
| 7 | 3, 6 | imbi12d 344 |
. . . . 5
⊢ (𝑤 = ∅ → ((𝑤 ⊆ 𝐴 → (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝑤 𝐵) ∈ (𝐽 Cn 𝐾)) ↔ (∅ ⊆ 𝐴 → (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ ∅ 𝐵) ∈ (𝐽 Cn 𝐾)))) |
| 8 | 7 | imbi2d 340 |
. . . 4
⊢ (𝑤 = ∅ → ((𝜑 → (𝑤 ⊆ 𝐴 → (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝑤 𝐵) ∈ (𝐽 Cn 𝐾))) ↔ (𝜑 → (∅ ⊆ 𝐴 → (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ ∅ 𝐵) ∈ (𝐽 Cn 𝐾))))) |
| 9 | | sseq1 4009 |
. . . . . 6
⊢ (𝑤 = 𝑦 → (𝑤 ⊆ 𝐴 ↔ 𝑦 ⊆ 𝐴)) |
| 10 | | sumeq1 15725 |
. . . . . . . 8
⊢ (𝑤 = 𝑦 → Σ𝑘 ∈ 𝑤 𝐵 = Σ𝑘 ∈ 𝑦 𝐵) |
| 11 | 10 | mpteq2dv 5244 |
. . . . . . 7
⊢ (𝑤 = 𝑦 → (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝑤 𝐵) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝑦 𝐵)) |
| 12 | 11 | eleq1d 2826 |
. . . . . 6
⊢ (𝑤 = 𝑦 → ((𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝑤 𝐵) ∈ (𝐽 Cn 𝐾) ↔ (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝑦 𝐵) ∈ (𝐽 Cn 𝐾))) |
| 13 | 9, 12 | imbi12d 344 |
. . . . 5
⊢ (𝑤 = 𝑦 → ((𝑤 ⊆ 𝐴 → (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝑤 𝐵) ∈ (𝐽 Cn 𝐾)) ↔ (𝑦 ⊆ 𝐴 → (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝑦 𝐵) ∈ (𝐽 Cn 𝐾)))) |
| 14 | 13 | imbi2d 340 |
. . . 4
⊢ (𝑤 = 𝑦 → ((𝜑 → (𝑤 ⊆ 𝐴 → (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝑤 𝐵) ∈ (𝐽 Cn 𝐾))) ↔ (𝜑 → (𝑦 ⊆ 𝐴 → (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝑦 𝐵) ∈ (𝐽 Cn 𝐾))))) |
| 15 | | sseq1 4009 |
. . . . . 6
⊢ (𝑤 = (𝑦 ∪ {𝑧}) → (𝑤 ⊆ 𝐴 ↔ (𝑦 ∪ {𝑧}) ⊆ 𝐴)) |
| 16 | | sumeq1 15725 |
. . . . . . . 8
⊢ (𝑤 = (𝑦 ∪ {𝑧}) → Σ𝑘 ∈ 𝑤 𝐵 = Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) |
| 17 | 16 | mpteq2dv 5244 |
. . . . . . 7
⊢ (𝑤 = (𝑦 ∪ {𝑧}) → (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝑤 𝐵) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)) |
| 18 | 17 | eleq1d 2826 |
. . . . . 6
⊢ (𝑤 = (𝑦 ∪ {𝑧}) → ((𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝑤 𝐵) ∈ (𝐽 Cn 𝐾) ↔ (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) ∈ (𝐽 Cn 𝐾))) |
| 19 | 15, 18 | imbi12d 344 |
. . . . 5
⊢ (𝑤 = (𝑦 ∪ {𝑧}) → ((𝑤 ⊆ 𝐴 → (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝑤 𝐵) ∈ (𝐽 Cn 𝐾)) ↔ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 → (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) ∈ (𝐽 Cn 𝐾)))) |
| 20 | 19 | imbi2d 340 |
. . . 4
⊢ (𝑤 = (𝑦 ∪ {𝑧}) → ((𝜑 → (𝑤 ⊆ 𝐴 → (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝑤 𝐵) ∈ (𝐽 Cn 𝐾))) ↔ (𝜑 → ((𝑦 ∪ {𝑧}) ⊆ 𝐴 → (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) ∈ (𝐽 Cn 𝐾))))) |
| 21 | | sseq1 4009 |
. . . . . 6
⊢ (𝑤 = 𝐴 → (𝑤 ⊆ 𝐴 ↔ 𝐴 ⊆ 𝐴)) |
| 22 | | sumeq1 15725 |
. . . . . . . 8
⊢ (𝑤 = 𝐴 → Σ𝑘 ∈ 𝑤 𝐵 = Σ𝑘 ∈ 𝐴 𝐵) |
| 23 | 22 | mpteq2dv 5244 |
. . . . . . 7
⊢ (𝑤 = 𝐴 → (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝑤 𝐵) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝐴 𝐵)) |
| 24 | 23 | eleq1d 2826 |
. . . . . 6
⊢ (𝑤 = 𝐴 → ((𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝑤 𝐵) ∈ (𝐽 Cn 𝐾) ↔ (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝐴 𝐵) ∈ (𝐽 Cn 𝐾))) |
| 25 | 21, 24 | imbi12d 344 |
. . . . 5
⊢ (𝑤 = 𝐴 → ((𝑤 ⊆ 𝐴 → (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝑤 𝐵) ∈ (𝐽 Cn 𝐾)) ↔ (𝐴 ⊆ 𝐴 → (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝐴 𝐵) ∈ (𝐽 Cn 𝐾)))) |
| 26 | 25 | imbi2d 340 |
. . . 4
⊢ (𝑤 = 𝐴 → ((𝜑 → (𝑤 ⊆ 𝐴 → (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝑤 𝐵) ∈ (𝐽 Cn 𝐾))) ↔ (𝜑 → (𝐴 ⊆ 𝐴 → (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝐴 𝐵) ∈ (𝐽 Cn 𝐾))))) |
| 27 | | sum0 15757 |
. . . . . . 7
⊢
Σ𝑘 ∈
∅ 𝐵 =
0 |
| 28 | 27 | mpteq2i 5247 |
. . . . . 6
⊢ (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ ∅ 𝐵) = (𝑥 ∈ 𝑋 ↦ 0) |
| 29 | | fsumcn.4 |
. . . . . . 7
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
| 30 | | fsumcn.3 |
. . . . . . . . 9
⊢ 𝐾 =
(TopOpen‘ℂfld) |
| 31 | 30 | cnfldtopon 24803 |
. . . . . . . 8
⊢ 𝐾 ∈
(TopOn‘ℂ) |
| 32 | 31 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → 𝐾 ∈
(TopOn‘ℂ)) |
| 33 | | 0cnd 11254 |
. . . . . . 7
⊢ (𝜑 → 0 ∈
ℂ) |
| 34 | 29, 32, 33 | cnmptc 23670 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 0) ∈ (𝐽 Cn 𝐾)) |
| 35 | 28, 34 | eqeltrid 2845 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ ∅ 𝐵) ∈ (𝐽 Cn 𝐾)) |
| 36 | 35 | a1d 25 |
. . . 4
⊢ (𝜑 → (∅ ⊆ 𝐴 → (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ ∅ 𝐵) ∈ (𝐽 Cn 𝐾))) |
| 37 | | ssun1 4178 |
. . . . . . . . . 10
⊢ 𝑦 ⊆ (𝑦 ∪ {𝑧}) |
| 38 | | sstr 3992 |
. . . . . . . . . 10
⊢ ((𝑦 ⊆ (𝑦 ∪ {𝑧}) ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴) → 𝑦 ⊆ 𝐴) |
| 39 | 37, 38 | mpan 690 |
. . . . . . . . 9
⊢ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 → 𝑦 ⊆ 𝐴) |
| 40 | 39 | imim1i 63 |
. . . . . . . 8
⊢ ((𝑦 ⊆ 𝐴 → (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝑦 𝐵) ∈ (𝐽 Cn 𝐾)) → ((𝑦 ∪ {𝑧}) ⊆ 𝐴 → (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝑦 𝐵) ∈ (𝐽 Cn 𝐾))) |
| 41 | | simplr 769 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ ¬ 𝑧 ∈ 𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ 𝑥 ∈ 𝑋)) → ¬ 𝑧 ∈ 𝑦) |
| 42 | | disjsn 4711 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑦 ∩ {𝑧}) = ∅ ↔ ¬ 𝑧 ∈ 𝑦) |
| 43 | 41, 42 | sylibr 234 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ ¬ 𝑧 ∈ 𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ 𝑥 ∈ 𝑋)) → (𝑦 ∩ {𝑧}) = ∅) |
| 44 | | eqidd 2738 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ ¬ 𝑧 ∈ 𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ 𝑥 ∈ 𝑋)) → (𝑦 ∪ {𝑧}) = (𝑦 ∪ {𝑧})) |
| 45 | 2 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ ¬ 𝑧 ∈ 𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ 𝑥 ∈ 𝑋)) → 𝐴 ∈ Fin) |
| 46 | | simprl 771 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ ¬ 𝑧 ∈ 𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ 𝑥 ∈ 𝑋)) → (𝑦 ∪ {𝑧}) ⊆ 𝐴) |
| 47 | 45, 46 | ssfid 9301 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ ¬ 𝑧 ∈ 𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ 𝑥 ∈ 𝑋)) → (𝑦 ∪ {𝑧}) ∈ Fin) |
| 48 | | simplll 775 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ ¬ 𝑧 ∈ 𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ 𝑥 ∈ 𝑋)) ∧ 𝑘 ∈ (𝑦 ∪ {𝑧})) → 𝜑) |
| 49 | 46 | sselda 3983 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ ¬ 𝑧 ∈ 𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ 𝑥 ∈ 𝑋)) ∧ 𝑘 ∈ (𝑦 ∪ {𝑧})) → 𝑘 ∈ 𝐴) |
| 50 | | simplrr 778 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ ¬ 𝑧 ∈ 𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ 𝑥 ∈ 𝑋)) ∧ 𝑘 ∈ (𝑦 ∪ {𝑧})) → 𝑥 ∈ 𝑋) |
| 51 | 29 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐽 ∈ (TopOn‘𝑋)) |
| 52 | 31 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐾 ∈
(TopOn‘ℂ)) |
| 53 | | fsumcn.6 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝐽 Cn 𝐾)) |
| 54 | | cnf2 23257 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘ℂ) ∧ (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝐽 Cn 𝐾)) → (𝑥 ∈ 𝑋 ↦ 𝐵):𝑋⟶ℂ) |
| 55 | 51, 52, 53, 54 | syl3anc 1373 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝑥 ∈ 𝑋 ↦ 𝐵):𝑋⟶ℂ) |
| 56 | | eqid 2737 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑥 ∈ 𝑋 ↦ 𝐵) = (𝑥 ∈ 𝑋 ↦ 𝐵) |
| 57 | 56 | fmpt 7130 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(∀𝑥 ∈
𝑋 𝐵 ∈ ℂ ↔ (𝑥 ∈ 𝑋 ↦ 𝐵):𝑋⟶ℂ) |
| 58 | 55, 57 | sylibr 234 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → ∀𝑥 ∈ 𝑋 𝐵 ∈ ℂ) |
| 59 | | rsp 3247 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(∀𝑥 ∈
𝑋 𝐵 ∈ ℂ → (𝑥 ∈ 𝑋 → 𝐵 ∈ ℂ)) |
| 60 | 58, 59 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝑥 ∈ 𝑋 → 𝐵 ∈ ℂ)) |
| 61 | 60 | imp 406 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐴) ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ ℂ) |
| 62 | 48, 49, 50, 61 | syl21anc 838 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ ¬ 𝑧 ∈ 𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ 𝑥 ∈ 𝑋)) ∧ 𝑘 ∈ (𝑦 ∪ {𝑧})) → 𝐵 ∈ ℂ) |
| 63 | 43, 44, 47, 62 | fsumsplit 15777 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ ¬ 𝑧 ∈ 𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ 𝑥 ∈ 𝑋)) → Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 = (Σ𝑘 ∈ 𝑦 𝐵 + Σ𝑘 ∈ {𝑧}𝐵)) |
| 64 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ ¬ 𝑧 ∈ 𝑦) ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴) → (𝑦 ∪ {𝑧}) ⊆ 𝐴) |
| 65 | 64 | unssbd 4194 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ ¬ 𝑧 ∈ 𝑦) ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴) → {𝑧} ⊆ 𝐴) |
| 66 | | vex 3484 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 𝑧 ∈ V |
| 67 | 66 | snss 4785 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑧 ∈ 𝐴 ↔ {𝑧} ⊆ 𝐴) |
| 68 | 65, 67 | sylibr 234 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ ¬ 𝑧 ∈ 𝑦) ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴) → 𝑧 ∈ 𝐴) |
| 69 | 68 | adantrr 717 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ ¬ 𝑧 ∈ 𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ 𝑥 ∈ 𝑋)) → 𝑧 ∈ 𝐴) |
| 70 | 60 | impancom 451 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝑘 ∈ 𝐴 → 𝐵 ∈ ℂ)) |
| 71 | 70 | ralrimiv 3145 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ∀𝑘 ∈ 𝐴 𝐵 ∈ ℂ) |
| 72 | 71 | ad2ant2rl 749 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ ¬ 𝑧 ∈ 𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ 𝑥 ∈ 𝑋)) → ∀𝑘 ∈ 𝐴 𝐵 ∈ ℂ) |
| 73 | | nfcsb1v 3923 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
Ⅎ𝑘⦋𝑧 / 𝑘⦌𝐵 |
| 74 | 73 | nfel1 2922 |
. . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑘⦋𝑧 / 𝑘⦌𝐵 ∈ ℂ |
| 75 | | csbeq1a 3913 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑘 = 𝑧 → 𝐵 = ⦋𝑧 / 𝑘⦌𝐵) |
| 76 | 75 | eleq1d 2826 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 = 𝑧 → (𝐵 ∈ ℂ ↔ ⦋𝑧 / 𝑘⦌𝐵 ∈ ℂ)) |
| 77 | 74, 76 | rspc 3610 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑧 ∈ 𝐴 → (∀𝑘 ∈ 𝐴 𝐵 ∈ ℂ → ⦋𝑧 / 𝑘⦌𝐵 ∈ ℂ)) |
| 78 | 69, 72, 77 | sylc 65 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ ¬ 𝑧 ∈ 𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ 𝑥 ∈ 𝑋)) → ⦋𝑧 / 𝑘⦌𝐵 ∈ ℂ) |
| 79 | | sumsns 15786 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑧 ∈ 𝐴 ∧ ⦋𝑧 / 𝑘⦌𝐵 ∈ ℂ) → Σ𝑘 ∈ {𝑧}𝐵 = ⦋𝑧 / 𝑘⦌𝐵) |
| 80 | 69, 78, 79 | syl2anc 584 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ ¬ 𝑧 ∈ 𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ 𝑥 ∈ 𝑋)) → Σ𝑘 ∈ {𝑧}𝐵 = ⦋𝑧 / 𝑘⦌𝐵) |
| 81 | 80 | oveq2d 7447 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ ¬ 𝑧 ∈ 𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ 𝑥 ∈ 𝑋)) → (Σ𝑘 ∈ 𝑦 𝐵 + Σ𝑘 ∈ {𝑧}𝐵) = (Σ𝑘 ∈ 𝑦 𝐵 + ⦋𝑧 / 𝑘⦌𝐵)) |
| 82 | 63, 81 | eqtrd 2777 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ ¬ 𝑧 ∈ 𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ 𝑥 ∈ 𝑋)) → Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 = (Σ𝑘 ∈ 𝑦 𝐵 + ⦋𝑧 / 𝑘⦌𝐵)) |
| 83 | 82 | anassrs 467 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ ¬ 𝑧 ∈ 𝑦) ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴) ∧ 𝑥 ∈ 𝑋) → Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 = (Σ𝑘 ∈ 𝑦 𝐵 + ⦋𝑧 / 𝑘⦌𝐵)) |
| 84 | 83 | mpteq2dva 5242 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ ¬ 𝑧 ∈ 𝑦) ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴) → (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) = (𝑥 ∈ 𝑋 ↦ (Σ𝑘 ∈ 𝑦 𝐵 + ⦋𝑧 / 𝑘⦌𝐵))) |
| 85 | 84 | adantrr 717 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ ¬ 𝑧 ∈ 𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝑦 𝐵) ∈ (𝐽 Cn 𝐾))) → (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) = (𝑥 ∈ 𝑋 ↦ (Σ𝑘 ∈ 𝑦 𝐵 + ⦋𝑧 / 𝑘⦌𝐵))) |
| 86 | | nfcv 2905 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑤(Σ𝑘 ∈ 𝑦 𝐵 + ⦋𝑧 / 𝑘⦌𝐵) |
| 87 | | nfcv 2905 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑥𝑦 |
| 88 | | nfcsb1v 3923 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑥⦋𝑤 / 𝑥⦌𝐵 |
| 89 | 87, 88 | nfsum 15727 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑥Σ𝑘 ∈ 𝑦 ⦋𝑤 / 𝑥⦌𝐵 |
| 90 | | nfcv 2905 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑥
+ |
| 91 | | nfcv 2905 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑥𝑧 |
| 92 | 91, 88 | nfcsbw 3925 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑥⦋𝑧 / 𝑘⦌⦋𝑤 / 𝑥⦌𝐵 |
| 93 | 89, 90, 92 | nfov 7461 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑥(Σ𝑘 ∈ 𝑦 ⦋𝑤 / 𝑥⦌𝐵 + ⦋𝑧 / 𝑘⦌⦋𝑤 / 𝑥⦌𝐵) |
| 94 | | csbeq1a 3913 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑤 → 𝐵 = ⦋𝑤 / 𝑥⦌𝐵) |
| 95 | 94 | sumeq2sdv 15739 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑤 → Σ𝑘 ∈ 𝑦 𝐵 = Σ𝑘 ∈ 𝑦 ⦋𝑤 / 𝑥⦌𝐵) |
| 96 | 94 | csbeq2dv 3906 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑤 → ⦋𝑧 / 𝑘⦌𝐵 = ⦋𝑧 / 𝑘⦌⦋𝑤 / 𝑥⦌𝐵) |
| 97 | 95, 96 | oveq12d 7449 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑤 → (Σ𝑘 ∈ 𝑦 𝐵 + ⦋𝑧 / 𝑘⦌𝐵) = (Σ𝑘 ∈ 𝑦 ⦋𝑤 / 𝑥⦌𝐵 + ⦋𝑧 / 𝑘⦌⦋𝑤 / 𝑥⦌𝐵)) |
| 98 | 86, 93, 97 | cbvmpt 5253 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ 𝑋 ↦ (Σ𝑘 ∈ 𝑦 𝐵 + ⦋𝑧 / 𝑘⦌𝐵)) = (𝑤 ∈ 𝑋 ↦ (Σ𝑘 ∈ 𝑦 ⦋𝑤 / 𝑥⦌𝐵 + ⦋𝑧 / 𝑘⦌⦋𝑤 / 𝑥⦌𝐵)) |
| 99 | 85, 98 | eqtrdi 2793 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ¬ 𝑧 ∈ 𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝑦 𝐵) ∈ (𝐽 Cn 𝐾))) → (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) = (𝑤 ∈ 𝑋 ↦ (Σ𝑘 ∈ 𝑦 ⦋𝑤 / 𝑥⦌𝐵 + ⦋𝑧 / 𝑘⦌⦋𝑤 / 𝑥⦌𝐵))) |
| 100 | 29 | ad2antrr 726 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ ¬ 𝑧 ∈ 𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝑦 𝐵) ∈ (𝐽 Cn 𝐾))) → 𝐽 ∈ (TopOn‘𝑋)) |
| 101 | | nfcv 2905 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑤Σ𝑘 ∈ 𝑦 𝐵 |
| 102 | 101, 89, 95 | cbvmpt 5253 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝑦 𝐵) = (𝑤 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝑦 ⦋𝑤 / 𝑥⦌𝐵) |
| 103 | | simprr 773 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ ¬ 𝑧 ∈ 𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝑦 𝐵) ∈ (𝐽 Cn 𝐾))) → (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝑦 𝐵) ∈ (𝐽 Cn 𝐾)) |
| 104 | 102, 103 | eqeltrrid 2846 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ ¬ 𝑧 ∈ 𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝑦 𝐵) ∈ (𝐽 Cn 𝐾))) → (𝑤 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝑦 ⦋𝑤 / 𝑥⦌𝐵) ∈ (𝐽 Cn 𝐾)) |
| 105 | | nfcv 2905 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑤⦋𝑧 / 𝑘⦌𝐵 |
| 106 | 105, 92, 96 | cbvmpt 5253 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ 𝑋 ↦ ⦋𝑧 / 𝑘⦌𝐵) = (𝑤 ∈ 𝑋 ↦ ⦋𝑧 / 𝑘⦌⦋𝑤 / 𝑥⦌𝐵) |
| 107 | 68 | adantrr 717 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ ¬ 𝑧 ∈ 𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝑦 𝐵) ∈ (𝐽 Cn 𝐾))) → 𝑧 ∈ 𝐴) |
| 108 | 53 | ralrimiva 3146 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ∀𝑘 ∈ 𝐴 (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝐽 Cn 𝐾)) |
| 109 | 108 | ad2antrr 726 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ ¬ 𝑧 ∈ 𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝑦 𝐵) ∈ (𝐽 Cn 𝐾))) → ∀𝑘 ∈ 𝐴 (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝐽 Cn 𝐾)) |
| 110 | | nfcv 2905 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑘𝑋 |
| 111 | 110, 73 | nfmpt 5249 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑘(𝑥 ∈ 𝑋 ↦ ⦋𝑧 / 𝑘⦌𝐵) |
| 112 | 111 | nfel1 2922 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑘(𝑥 ∈ 𝑋 ↦ ⦋𝑧 / 𝑘⦌𝐵) ∈ (𝐽 Cn 𝐾) |
| 113 | 75 | mpteq2dv 5244 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = 𝑧 → (𝑥 ∈ 𝑋 ↦ 𝐵) = (𝑥 ∈ 𝑋 ↦ ⦋𝑧 / 𝑘⦌𝐵)) |
| 114 | 113 | eleq1d 2826 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 𝑧 → ((𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝐽 Cn 𝐾) ↔ (𝑥 ∈ 𝑋 ↦ ⦋𝑧 / 𝑘⦌𝐵) ∈ (𝐽 Cn 𝐾))) |
| 115 | 112, 114 | rspc 3610 |
. . . . . . . . . . . . . 14
⊢ (𝑧 ∈ 𝐴 → (∀𝑘 ∈ 𝐴 (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝐽 Cn 𝐾) → (𝑥 ∈ 𝑋 ↦ ⦋𝑧 / 𝑘⦌𝐵) ∈ (𝐽 Cn 𝐾))) |
| 116 | 107, 109,
115 | sylc 65 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ ¬ 𝑧 ∈ 𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝑦 𝐵) ∈ (𝐽 Cn 𝐾))) → (𝑥 ∈ 𝑋 ↦ ⦋𝑧 / 𝑘⦌𝐵) ∈ (𝐽 Cn 𝐾)) |
| 117 | 106, 116 | eqeltrrid 2846 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ ¬ 𝑧 ∈ 𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝑦 𝐵) ∈ (𝐽 Cn 𝐾))) → (𝑤 ∈ 𝑋 ↦ ⦋𝑧 / 𝑘⦌⦋𝑤 / 𝑥⦌𝐵) ∈ (𝐽 Cn 𝐾)) |
| 118 | 30 | addcn 24887 |
. . . . . . . . . . . . 13
⊢ + ∈
((𝐾 ×t
𝐾) Cn 𝐾) |
| 119 | 118 | a1i 11 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ ¬ 𝑧 ∈ 𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝑦 𝐵) ∈ (𝐽 Cn 𝐾))) → + ∈ ((𝐾 ×t 𝐾) Cn 𝐾)) |
| 120 | 100, 104,
117, 119 | cnmpt12f 23674 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ¬ 𝑧 ∈ 𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝑦 𝐵) ∈ (𝐽 Cn 𝐾))) → (𝑤 ∈ 𝑋 ↦ (Σ𝑘 ∈ 𝑦 ⦋𝑤 / 𝑥⦌𝐵 + ⦋𝑧 / 𝑘⦌⦋𝑤 / 𝑥⦌𝐵)) ∈ (𝐽 Cn 𝐾)) |
| 121 | 99, 120 | eqeltrd 2841 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ¬ 𝑧 ∈ 𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝑦 𝐵) ∈ (𝐽 Cn 𝐾))) → (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) ∈ (𝐽 Cn 𝐾)) |
| 122 | 121 | exp32 420 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ¬ 𝑧 ∈ 𝑦) → ((𝑦 ∪ {𝑧}) ⊆ 𝐴 → ((𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝑦 𝐵) ∈ (𝐽 Cn 𝐾) → (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) ∈ (𝐽 Cn 𝐾)))) |
| 123 | 122 | a2d 29 |
. . . . . . . 8
⊢ ((𝜑 ∧ ¬ 𝑧 ∈ 𝑦) → (((𝑦 ∪ {𝑧}) ⊆ 𝐴 → (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝑦 𝐵) ∈ (𝐽 Cn 𝐾)) → ((𝑦 ∪ {𝑧}) ⊆ 𝐴 → (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) ∈ (𝐽 Cn 𝐾)))) |
| 124 | 40, 123 | syl5 34 |
. . . . . . 7
⊢ ((𝜑 ∧ ¬ 𝑧 ∈ 𝑦) → ((𝑦 ⊆ 𝐴 → (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝑦 𝐵) ∈ (𝐽 Cn 𝐾)) → ((𝑦 ∪ {𝑧}) ⊆ 𝐴 → (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) ∈ (𝐽 Cn 𝐾)))) |
| 125 | 124 | expcom 413 |
. . . . . 6
⊢ (¬
𝑧 ∈ 𝑦 → (𝜑 → ((𝑦 ⊆ 𝐴 → (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝑦 𝐵) ∈ (𝐽 Cn 𝐾)) → ((𝑦 ∪ {𝑧}) ⊆ 𝐴 → (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) ∈ (𝐽 Cn 𝐾))))) |
| 126 | 125 | adantl 481 |
. . . . 5
⊢ ((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) → (𝜑 → ((𝑦 ⊆ 𝐴 → (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝑦 𝐵) ∈ (𝐽 Cn 𝐾)) → ((𝑦 ∪ {𝑧}) ⊆ 𝐴 → (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) ∈ (𝐽 Cn 𝐾))))) |
| 127 | 126 | a2d 29 |
. . . 4
⊢ ((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) → ((𝜑 → (𝑦 ⊆ 𝐴 → (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝑦 𝐵) ∈ (𝐽 Cn 𝐾))) → (𝜑 → ((𝑦 ∪ {𝑧}) ⊆ 𝐴 → (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) ∈ (𝐽 Cn 𝐾))))) |
| 128 | 8, 14, 20, 26, 36, 127 | findcard2s 9205 |
. . 3
⊢ (𝐴 ∈ Fin → (𝜑 → (𝐴 ⊆ 𝐴 → (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝐴 𝐵) ∈ (𝐽 Cn 𝐾)))) |
| 129 | 2, 128 | mpcom 38 |
. 2
⊢ (𝜑 → (𝐴 ⊆ 𝐴 → (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝐴 𝐵) ∈ (𝐽 Cn 𝐾))) |
| 130 | 1, 129 | mpi 20 |
1
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝐴 𝐵) ∈ (𝐽 Cn 𝐾)) |