MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumcn Structured version   Visualization version   GIF version

Theorem fsumcn 24761
Description: A finite sum of functions to complex numbers from a common topological space is continuous. The class expression for 𝐵 normally contains free variables 𝑘 and 𝑥 to index it. (Contributed by NM, 8-Aug-2007.) (Revised by Mario Carneiro, 23-Aug-2014.)
Hypotheses
Ref Expression
fsumcn.3 𝐾 = (TopOpen‘ℂfld)
fsumcn.4 (𝜑𝐽 ∈ (TopOn‘𝑋))
fsumcn.5 (𝜑𝐴 ∈ Fin)
fsumcn.6 ((𝜑𝑘𝐴) → (𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐾))
Assertion
Ref Expression
fsumcn (𝜑 → (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵) ∈ (𝐽 Cn 𝐾))
Distinct variable groups:   𝑥,𝑘,𝐴   𝑘,𝐽,𝑥   𝜑,𝑘,𝑥   𝑘,𝐾,𝑥   𝑘,𝑋,𝑥
Allowed substitution hints:   𝐵(𝑥,𝑘)

Proof of Theorem fsumcn
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssid 3969 . 2 𝐴𝐴
2 fsumcn.5 . . 3 (𝜑𝐴 ∈ Fin)
3 sseq1 3972 . . . . . 6 (𝑤 = ∅ → (𝑤𝐴 ↔ ∅ ⊆ 𝐴))
4 sumeq1 15655 . . . . . . . 8 (𝑤 = ∅ → Σ𝑘𝑤 𝐵 = Σ𝑘 ∈ ∅ 𝐵)
54mpteq2dv 5201 . . . . . . 7 (𝑤 = ∅ → (𝑥𝑋 ↦ Σ𝑘𝑤 𝐵) = (𝑥𝑋 ↦ Σ𝑘 ∈ ∅ 𝐵))
65eleq1d 2813 . . . . . 6 (𝑤 = ∅ → ((𝑥𝑋 ↦ Σ𝑘𝑤 𝐵) ∈ (𝐽 Cn 𝐾) ↔ (𝑥𝑋 ↦ Σ𝑘 ∈ ∅ 𝐵) ∈ (𝐽 Cn 𝐾)))
73, 6imbi12d 344 . . . . 5 (𝑤 = ∅ → ((𝑤𝐴 → (𝑥𝑋 ↦ Σ𝑘𝑤 𝐵) ∈ (𝐽 Cn 𝐾)) ↔ (∅ ⊆ 𝐴 → (𝑥𝑋 ↦ Σ𝑘 ∈ ∅ 𝐵) ∈ (𝐽 Cn 𝐾))))
87imbi2d 340 . . . 4 (𝑤 = ∅ → ((𝜑 → (𝑤𝐴 → (𝑥𝑋 ↦ Σ𝑘𝑤 𝐵) ∈ (𝐽 Cn 𝐾))) ↔ (𝜑 → (∅ ⊆ 𝐴 → (𝑥𝑋 ↦ Σ𝑘 ∈ ∅ 𝐵) ∈ (𝐽 Cn 𝐾)))))
9 sseq1 3972 . . . . . 6 (𝑤 = 𝑦 → (𝑤𝐴𝑦𝐴))
10 sumeq1 15655 . . . . . . . 8 (𝑤 = 𝑦 → Σ𝑘𝑤 𝐵 = Σ𝑘𝑦 𝐵)
1110mpteq2dv 5201 . . . . . . 7 (𝑤 = 𝑦 → (𝑥𝑋 ↦ Σ𝑘𝑤 𝐵) = (𝑥𝑋 ↦ Σ𝑘𝑦 𝐵))
1211eleq1d 2813 . . . . . 6 (𝑤 = 𝑦 → ((𝑥𝑋 ↦ Σ𝑘𝑤 𝐵) ∈ (𝐽 Cn 𝐾) ↔ (𝑥𝑋 ↦ Σ𝑘𝑦 𝐵) ∈ (𝐽 Cn 𝐾)))
139, 12imbi12d 344 . . . . 5 (𝑤 = 𝑦 → ((𝑤𝐴 → (𝑥𝑋 ↦ Σ𝑘𝑤 𝐵) ∈ (𝐽 Cn 𝐾)) ↔ (𝑦𝐴 → (𝑥𝑋 ↦ Σ𝑘𝑦 𝐵) ∈ (𝐽 Cn 𝐾))))
1413imbi2d 340 . . . 4 (𝑤 = 𝑦 → ((𝜑 → (𝑤𝐴 → (𝑥𝑋 ↦ Σ𝑘𝑤 𝐵) ∈ (𝐽 Cn 𝐾))) ↔ (𝜑 → (𝑦𝐴 → (𝑥𝑋 ↦ Σ𝑘𝑦 𝐵) ∈ (𝐽 Cn 𝐾)))))
15 sseq1 3972 . . . . . 6 (𝑤 = (𝑦 ∪ {𝑧}) → (𝑤𝐴 ↔ (𝑦 ∪ {𝑧}) ⊆ 𝐴))
16 sumeq1 15655 . . . . . . . 8 (𝑤 = (𝑦 ∪ {𝑧}) → Σ𝑘𝑤 𝐵 = Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)
1716mpteq2dv 5201 . . . . . . 7 (𝑤 = (𝑦 ∪ {𝑧}) → (𝑥𝑋 ↦ Σ𝑘𝑤 𝐵) = (𝑥𝑋 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵))
1817eleq1d 2813 . . . . . 6 (𝑤 = (𝑦 ∪ {𝑧}) → ((𝑥𝑋 ↦ Σ𝑘𝑤 𝐵) ∈ (𝐽 Cn 𝐾) ↔ (𝑥𝑋 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) ∈ (𝐽 Cn 𝐾)))
1915, 18imbi12d 344 . . . . 5 (𝑤 = (𝑦 ∪ {𝑧}) → ((𝑤𝐴 → (𝑥𝑋 ↦ Σ𝑘𝑤 𝐵) ∈ (𝐽 Cn 𝐾)) ↔ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 → (𝑥𝑋 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) ∈ (𝐽 Cn 𝐾))))
2019imbi2d 340 . . . 4 (𝑤 = (𝑦 ∪ {𝑧}) → ((𝜑 → (𝑤𝐴 → (𝑥𝑋 ↦ Σ𝑘𝑤 𝐵) ∈ (𝐽 Cn 𝐾))) ↔ (𝜑 → ((𝑦 ∪ {𝑧}) ⊆ 𝐴 → (𝑥𝑋 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) ∈ (𝐽 Cn 𝐾)))))
21 sseq1 3972 . . . . . 6 (𝑤 = 𝐴 → (𝑤𝐴𝐴𝐴))
22 sumeq1 15655 . . . . . . . 8 (𝑤 = 𝐴 → Σ𝑘𝑤 𝐵 = Σ𝑘𝐴 𝐵)
2322mpteq2dv 5201 . . . . . . 7 (𝑤 = 𝐴 → (𝑥𝑋 ↦ Σ𝑘𝑤 𝐵) = (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵))
2423eleq1d 2813 . . . . . 6 (𝑤 = 𝐴 → ((𝑥𝑋 ↦ Σ𝑘𝑤 𝐵) ∈ (𝐽 Cn 𝐾) ↔ (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵) ∈ (𝐽 Cn 𝐾)))
2521, 24imbi12d 344 . . . . 5 (𝑤 = 𝐴 → ((𝑤𝐴 → (𝑥𝑋 ↦ Σ𝑘𝑤 𝐵) ∈ (𝐽 Cn 𝐾)) ↔ (𝐴𝐴 → (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵) ∈ (𝐽 Cn 𝐾))))
2625imbi2d 340 . . . 4 (𝑤 = 𝐴 → ((𝜑 → (𝑤𝐴 → (𝑥𝑋 ↦ Σ𝑘𝑤 𝐵) ∈ (𝐽 Cn 𝐾))) ↔ (𝜑 → (𝐴𝐴 → (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵) ∈ (𝐽 Cn 𝐾)))))
27 sum0 15687 . . . . . . 7 Σ𝑘 ∈ ∅ 𝐵 = 0
2827mpteq2i 5203 . . . . . 6 (𝑥𝑋 ↦ Σ𝑘 ∈ ∅ 𝐵) = (𝑥𝑋 ↦ 0)
29 fsumcn.4 . . . . . . 7 (𝜑𝐽 ∈ (TopOn‘𝑋))
30 fsumcn.3 . . . . . . . . 9 𝐾 = (TopOpen‘ℂfld)
3130cnfldtopon 24670 . . . . . . . 8 𝐾 ∈ (TopOn‘ℂ)
3231a1i 11 . . . . . . 7 (𝜑𝐾 ∈ (TopOn‘ℂ))
33 0cnd 11167 . . . . . . 7 (𝜑 → 0 ∈ ℂ)
3429, 32, 33cnmptc 23549 . . . . . 6 (𝜑 → (𝑥𝑋 ↦ 0) ∈ (𝐽 Cn 𝐾))
3528, 34eqeltrid 2832 . . . . 5 (𝜑 → (𝑥𝑋 ↦ Σ𝑘 ∈ ∅ 𝐵) ∈ (𝐽 Cn 𝐾))
3635a1d 25 . . . 4 (𝜑 → (∅ ⊆ 𝐴 → (𝑥𝑋 ↦ Σ𝑘 ∈ ∅ 𝐵) ∈ (𝐽 Cn 𝐾)))
37 ssun1 4141 . . . . . . . . . 10 𝑦 ⊆ (𝑦 ∪ {𝑧})
38 sstr 3955 . . . . . . . . . 10 ((𝑦 ⊆ (𝑦 ∪ {𝑧}) ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴) → 𝑦𝐴)
3937, 38mpan 690 . . . . . . . . 9 ((𝑦 ∪ {𝑧}) ⊆ 𝐴𝑦𝐴)
4039imim1i 63 . . . . . . . 8 ((𝑦𝐴 → (𝑥𝑋 ↦ Σ𝑘𝑦 𝐵) ∈ (𝐽 Cn 𝐾)) → ((𝑦 ∪ {𝑧}) ⊆ 𝐴 → (𝑥𝑋 ↦ Σ𝑘𝑦 𝐵) ∈ (𝐽 Cn 𝐾)))
41 simplr 768 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴𝑥𝑋)) → ¬ 𝑧𝑦)
42 disjsn 4675 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∩ {𝑧}) = ∅ ↔ ¬ 𝑧𝑦)
4341, 42sylibr 234 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴𝑥𝑋)) → (𝑦 ∩ {𝑧}) = ∅)
44 eqidd 2730 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴𝑥𝑋)) → (𝑦 ∪ {𝑧}) = (𝑦 ∪ {𝑧}))
452ad2antrr 726 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴𝑥𝑋)) → 𝐴 ∈ Fin)
46 simprl 770 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴𝑥𝑋)) → (𝑦 ∪ {𝑧}) ⊆ 𝐴)
4745, 46ssfid 9212 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴𝑥𝑋)) → (𝑦 ∪ {𝑧}) ∈ Fin)
48 simplll 774 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴𝑥𝑋)) ∧ 𝑘 ∈ (𝑦 ∪ {𝑧})) → 𝜑)
4946sselda 3946 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴𝑥𝑋)) ∧ 𝑘 ∈ (𝑦 ∪ {𝑧})) → 𝑘𝐴)
50 simplrr 777 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴𝑥𝑋)) ∧ 𝑘 ∈ (𝑦 ∪ {𝑧})) → 𝑥𝑋)
5129adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑘𝐴) → 𝐽 ∈ (TopOn‘𝑋))
5231a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑘𝐴) → 𝐾 ∈ (TopOn‘ℂ))
53 fsumcn.6 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑘𝐴) → (𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐾))
54 cnf2 23136 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘ℂ) ∧ (𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐾)) → (𝑥𝑋𝐵):𝑋⟶ℂ)
5551, 52, 53, 54syl3anc 1373 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑘𝐴) → (𝑥𝑋𝐵):𝑋⟶ℂ)
56 eqid 2729 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥𝑋𝐵) = (𝑥𝑋𝐵)
5756fmpt 7082 . . . . . . . . . . . . . . . . . . . . 21 (∀𝑥𝑋 𝐵 ∈ ℂ ↔ (𝑥𝑋𝐵):𝑋⟶ℂ)
5855, 57sylibr 234 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑘𝐴) → ∀𝑥𝑋 𝐵 ∈ ℂ)
59 rsp 3225 . . . . . . . . . . . . . . . . . . . 20 (∀𝑥𝑋 𝐵 ∈ ℂ → (𝑥𝑋𝐵 ∈ ℂ))
6058, 59syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘𝐴) → (𝑥𝑋𝐵 ∈ ℂ))
6160imp 406 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑘𝐴) ∧ 𝑥𝑋) → 𝐵 ∈ ℂ)
6248, 49, 50, 61syl21anc 837 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴𝑥𝑋)) ∧ 𝑘 ∈ (𝑦 ∪ {𝑧})) → 𝐵 ∈ ℂ)
6343, 44, 47, 62fsumsplit 15707 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴𝑥𝑋)) → Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 = (Σ𝑘𝑦 𝐵 + Σ𝑘 ∈ {𝑧}𝐵))
64 simpr 484 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ ¬ 𝑧𝑦) ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴) → (𝑦 ∪ {𝑧}) ⊆ 𝐴)
6564unssbd 4157 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ ¬ 𝑧𝑦) ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴) → {𝑧} ⊆ 𝐴)
66 vex 3451 . . . . . . . . . . . . . . . . . . . . 21 𝑧 ∈ V
6766snss 4749 . . . . . . . . . . . . . . . . . . . 20 (𝑧𝐴 ↔ {𝑧} ⊆ 𝐴)
6865, 67sylibr 234 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ ¬ 𝑧𝑦) ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴) → 𝑧𝐴)
6968adantrr 717 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴𝑥𝑋)) → 𝑧𝐴)
7060impancom 451 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥𝑋) → (𝑘𝐴𝐵 ∈ ℂ))
7170ralrimiv 3124 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥𝑋) → ∀𝑘𝐴 𝐵 ∈ ℂ)
7271ad2ant2rl 749 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴𝑥𝑋)) → ∀𝑘𝐴 𝐵 ∈ ℂ)
73 nfcsb1v 3886 . . . . . . . . . . . . . . . . . . . . 21 𝑘𝑧 / 𝑘𝐵
7473nfel1 2908 . . . . . . . . . . . . . . . . . . . 20 𝑘𝑧 / 𝑘𝐵 ∈ ℂ
75 csbeq1a 3876 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 = 𝑧𝐵 = 𝑧 / 𝑘𝐵)
7675eleq1d 2813 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 𝑧 → (𝐵 ∈ ℂ ↔ 𝑧 / 𝑘𝐵 ∈ ℂ))
7774, 76rspc 3576 . . . . . . . . . . . . . . . . . . 19 (𝑧𝐴 → (∀𝑘𝐴 𝐵 ∈ ℂ → 𝑧 / 𝑘𝐵 ∈ ℂ))
7869, 72, 77sylc 65 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴𝑥𝑋)) → 𝑧 / 𝑘𝐵 ∈ ℂ)
79 sumsns 15716 . . . . . . . . . . . . . . . . . 18 ((𝑧𝐴𝑧 / 𝑘𝐵 ∈ ℂ) → Σ𝑘 ∈ {𝑧}𝐵 = 𝑧 / 𝑘𝐵)
8069, 78, 79syl2anc 584 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴𝑥𝑋)) → Σ𝑘 ∈ {𝑧}𝐵 = 𝑧 / 𝑘𝐵)
8180oveq2d 7403 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴𝑥𝑋)) → (Σ𝑘𝑦 𝐵 + Σ𝑘 ∈ {𝑧}𝐵) = (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵))
8263, 81eqtrd 2764 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴𝑥𝑋)) → Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 = (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵))
8382anassrs 467 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ¬ 𝑧𝑦) ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴) ∧ 𝑥𝑋) → Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 = (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵))
8483mpteq2dva 5200 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ 𝑧𝑦) ∧ (𝑦 ∪ {𝑧}) ⊆ 𝐴) → (𝑥𝑋 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) = (𝑥𝑋 ↦ (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵)))
8584adantrr 717 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ (𝑥𝑋 ↦ Σ𝑘𝑦 𝐵) ∈ (𝐽 Cn 𝐾))) → (𝑥𝑋 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) = (𝑥𝑋 ↦ (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵)))
86 nfcv 2891 . . . . . . . . . . . . 13 𝑤𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵)
87 nfcv 2891 . . . . . . . . . . . . . . 15 𝑥𝑦
88 nfcsb1v 3886 . . . . . . . . . . . . . . 15 𝑥𝑤 / 𝑥𝐵
8987, 88nfsum 15657 . . . . . . . . . . . . . 14 𝑥Σ𝑘𝑦 𝑤 / 𝑥𝐵
90 nfcv 2891 . . . . . . . . . . . . . 14 𝑥 +
91 nfcv 2891 . . . . . . . . . . . . . . 15 𝑥𝑧
9291, 88nfcsbw 3888 . . . . . . . . . . . . . 14 𝑥𝑧 / 𝑘𝑤 / 𝑥𝐵
9389, 90, 92nfov 7417 . . . . . . . . . . . . 13 𝑥𝑘𝑦 𝑤 / 𝑥𝐵 + 𝑧 / 𝑘𝑤 / 𝑥𝐵)
94 csbeq1a 3876 . . . . . . . . . . . . . . 15 (𝑥 = 𝑤𝐵 = 𝑤 / 𝑥𝐵)
9594sumeq2sdv 15669 . . . . . . . . . . . . . 14 (𝑥 = 𝑤 → Σ𝑘𝑦 𝐵 = Σ𝑘𝑦 𝑤 / 𝑥𝐵)
9694csbeq2dv 3869 . . . . . . . . . . . . . 14 (𝑥 = 𝑤𝑧 / 𝑘𝐵 = 𝑧 / 𝑘𝑤 / 𝑥𝐵)
9795, 96oveq12d 7405 . . . . . . . . . . . . 13 (𝑥 = 𝑤 → (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵) = (Σ𝑘𝑦 𝑤 / 𝑥𝐵 + 𝑧 / 𝑘𝑤 / 𝑥𝐵))
9886, 93, 97cbvmpt 5209 . . . . . . . . . . . 12 (𝑥𝑋 ↦ (Σ𝑘𝑦 𝐵 + 𝑧 / 𝑘𝐵)) = (𝑤𝑋 ↦ (Σ𝑘𝑦 𝑤 / 𝑥𝐵 + 𝑧 / 𝑘𝑤 / 𝑥𝐵))
9985, 98eqtrdi 2780 . . . . . . . . . . 11 (((𝜑 ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ (𝑥𝑋 ↦ Σ𝑘𝑦 𝐵) ∈ (𝐽 Cn 𝐾))) → (𝑥𝑋 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) = (𝑤𝑋 ↦ (Σ𝑘𝑦 𝑤 / 𝑥𝐵 + 𝑧 / 𝑘𝑤 / 𝑥𝐵)))
10029ad2antrr 726 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ (𝑥𝑋 ↦ Σ𝑘𝑦 𝐵) ∈ (𝐽 Cn 𝐾))) → 𝐽 ∈ (TopOn‘𝑋))
101 nfcv 2891 . . . . . . . . . . . . . 14 𝑤Σ𝑘𝑦 𝐵
102101, 89, 95cbvmpt 5209 . . . . . . . . . . . . 13 (𝑥𝑋 ↦ Σ𝑘𝑦 𝐵) = (𝑤𝑋 ↦ Σ𝑘𝑦 𝑤 / 𝑥𝐵)
103 simprr 772 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ (𝑥𝑋 ↦ Σ𝑘𝑦 𝐵) ∈ (𝐽 Cn 𝐾))) → (𝑥𝑋 ↦ Σ𝑘𝑦 𝐵) ∈ (𝐽 Cn 𝐾))
104102, 103eqeltrrid 2833 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ (𝑥𝑋 ↦ Σ𝑘𝑦 𝐵) ∈ (𝐽 Cn 𝐾))) → (𝑤𝑋 ↦ Σ𝑘𝑦 𝑤 / 𝑥𝐵) ∈ (𝐽 Cn 𝐾))
105 nfcv 2891 . . . . . . . . . . . . . 14 𝑤𝑧 / 𝑘𝐵
106105, 92, 96cbvmpt 5209 . . . . . . . . . . . . 13 (𝑥𝑋𝑧 / 𝑘𝐵) = (𝑤𝑋𝑧 / 𝑘𝑤 / 𝑥𝐵)
10768adantrr 717 . . . . . . . . . . . . . 14 (((𝜑 ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ (𝑥𝑋 ↦ Σ𝑘𝑦 𝐵) ∈ (𝐽 Cn 𝐾))) → 𝑧𝐴)
10853ralrimiva 3125 . . . . . . . . . . . . . . 15 (𝜑 → ∀𝑘𝐴 (𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐾))
109108ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑 ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ (𝑥𝑋 ↦ Σ𝑘𝑦 𝐵) ∈ (𝐽 Cn 𝐾))) → ∀𝑘𝐴 (𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐾))
110 nfcv 2891 . . . . . . . . . . . . . . . . 17 𝑘𝑋
111110, 73nfmpt 5205 . . . . . . . . . . . . . . . 16 𝑘(𝑥𝑋𝑧 / 𝑘𝐵)
112111nfel1 2908 . . . . . . . . . . . . . . 15 𝑘(𝑥𝑋𝑧 / 𝑘𝐵) ∈ (𝐽 Cn 𝐾)
11375mpteq2dv 5201 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑧 → (𝑥𝑋𝐵) = (𝑥𝑋𝑧 / 𝑘𝐵))
114113eleq1d 2813 . . . . . . . . . . . . . . 15 (𝑘 = 𝑧 → ((𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐾) ↔ (𝑥𝑋𝑧 / 𝑘𝐵) ∈ (𝐽 Cn 𝐾)))
115112, 114rspc 3576 . . . . . . . . . . . . . 14 (𝑧𝐴 → (∀𝑘𝐴 (𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐾) → (𝑥𝑋𝑧 / 𝑘𝐵) ∈ (𝐽 Cn 𝐾)))
116107, 109, 115sylc 65 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ (𝑥𝑋 ↦ Σ𝑘𝑦 𝐵) ∈ (𝐽 Cn 𝐾))) → (𝑥𝑋𝑧 / 𝑘𝐵) ∈ (𝐽 Cn 𝐾))
117106, 116eqeltrrid 2833 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ (𝑥𝑋 ↦ Σ𝑘𝑦 𝐵) ∈ (𝐽 Cn 𝐾))) → (𝑤𝑋𝑧 / 𝑘𝑤 / 𝑥𝐵) ∈ (𝐽 Cn 𝐾))
11830addcn 24754 . . . . . . . . . . . . 13 + ∈ ((𝐾 ×t 𝐾) Cn 𝐾)
119118a1i 11 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ (𝑥𝑋 ↦ Σ𝑘𝑦 𝐵) ∈ (𝐽 Cn 𝐾))) → + ∈ ((𝐾 ×t 𝐾) Cn 𝐾))
120100, 104, 117, 119cnmpt12f 23553 . . . . . . . . . . 11 (((𝜑 ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ (𝑥𝑋 ↦ Σ𝑘𝑦 𝐵) ∈ (𝐽 Cn 𝐾))) → (𝑤𝑋 ↦ (Σ𝑘𝑦 𝑤 / 𝑥𝐵 + 𝑧 / 𝑘𝑤 / 𝑥𝐵)) ∈ (𝐽 Cn 𝐾))
12199, 120eqeltrd 2828 . . . . . . . . . 10 (((𝜑 ∧ ¬ 𝑧𝑦) ∧ ((𝑦 ∪ {𝑧}) ⊆ 𝐴 ∧ (𝑥𝑋 ↦ Σ𝑘𝑦 𝐵) ∈ (𝐽 Cn 𝐾))) → (𝑥𝑋 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) ∈ (𝐽 Cn 𝐾))
122121exp32 420 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝑧𝑦) → ((𝑦 ∪ {𝑧}) ⊆ 𝐴 → ((𝑥𝑋 ↦ Σ𝑘𝑦 𝐵) ∈ (𝐽 Cn 𝐾) → (𝑥𝑋 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) ∈ (𝐽 Cn 𝐾))))
123122a2d 29 . . . . . . . 8 ((𝜑 ∧ ¬ 𝑧𝑦) → (((𝑦 ∪ {𝑧}) ⊆ 𝐴 → (𝑥𝑋 ↦ Σ𝑘𝑦 𝐵) ∈ (𝐽 Cn 𝐾)) → ((𝑦 ∪ {𝑧}) ⊆ 𝐴 → (𝑥𝑋 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) ∈ (𝐽 Cn 𝐾))))
12440, 123syl5 34 . . . . . . 7 ((𝜑 ∧ ¬ 𝑧𝑦) → ((𝑦𝐴 → (𝑥𝑋 ↦ Σ𝑘𝑦 𝐵) ∈ (𝐽 Cn 𝐾)) → ((𝑦 ∪ {𝑧}) ⊆ 𝐴 → (𝑥𝑋 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) ∈ (𝐽 Cn 𝐾))))
125124expcom 413 . . . . . 6 𝑧𝑦 → (𝜑 → ((𝑦𝐴 → (𝑥𝑋 ↦ Σ𝑘𝑦 𝐵) ∈ (𝐽 Cn 𝐾)) → ((𝑦 ∪ {𝑧}) ⊆ 𝐴 → (𝑥𝑋 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) ∈ (𝐽 Cn 𝐾)))))
126125adantl 481 . . . . 5 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → (𝜑 → ((𝑦𝐴 → (𝑥𝑋 ↦ Σ𝑘𝑦 𝐵) ∈ (𝐽 Cn 𝐾)) → ((𝑦 ∪ {𝑧}) ⊆ 𝐴 → (𝑥𝑋 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) ∈ (𝐽 Cn 𝐾)))))
127126a2d 29 . . . 4 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → ((𝜑 → (𝑦𝐴 → (𝑥𝑋 ↦ Σ𝑘𝑦 𝐵) ∈ (𝐽 Cn 𝐾))) → (𝜑 → ((𝑦 ∪ {𝑧}) ⊆ 𝐴 → (𝑥𝑋 ↦ Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵) ∈ (𝐽 Cn 𝐾)))))
1288, 14, 20, 26, 36, 127findcard2s 9129 . . 3 (𝐴 ∈ Fin → (𝜑 → (𝐴𝐴 → (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵) ∈ (𝐽 Cn 𝐾))))
1292, 128mpcom 38 . 2 (𝜑 → (𝐴𝐴 → (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵) ∈ (𝐽 Cn 𝐾)))
1301, 129mpi 20 1 (𝜑 → (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵) ∈ (𝐽 Cn 𝐾))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  csb 3862  cun 3912  cin 3913  wss 3914  c0 4296  {csn 4589  cmpt 5188  wf 6507  cfv 6511  (class class class)co 7387  Fincfn 8918  cc 11066  0cc0 11068   + caddc 11071  Σcsu 15652  TopOpenctopn 17384  fldccnfld 21264  TopOnctopon 22797   Cn ccn 23111   ×t ctx 23447
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-icc 13313  df-fz 13469  df-fzo 13616  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-clim 15454  df-sum 15653  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-rest 17385  df-topn 17386  df-0g 17404  df-gsum 17405  df-topgen 17406  df-pt 17407  df-prds 17410  df-xrs 17465  df-qtop 17470  df-imas 17471  df-xps 17473  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-mulg 19000  df-cntz 19249  df-cmn 19712  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-cnfld 21265  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-cn 23114  df-cnp 23115  df-tx 23449  df-hmeo 23642  df-xms 24208  df-ms 24209  df-tms 24210
This theorem is referenced by:  fsum2cn  24762  lebnumlem2  24861  plycn  26166  plycnOLD  26167  psercn2  26332  psercn2OLD  26333  knoppcnlem11  36491  fsumcnf  45015
  Copyright terms: Public domain W3C validator