MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvmptfsum Structured version   Visualization version   GIF version

Theorem dvmptfsum 26013
Description: Function-builder for derivative, finite sums rule. (Contributed by Stefan O'Rear, 12-Nov-2014.)
Hypotheses
Ref Expression
dvmptfsum.j 𝐽 = (𝐾t 𝑆)
dvmptfsum.k 𝐾 = (TopOpen‘ℂfld)
dvmptfsum.s (𝜑𝑆 ∈ {ℝ, ℂ})
dvmptfsum.x (𝜑𝑋𝐽)
dvmptfsum.i (𝜑𝐼 ∈ Fin)
dvmptfsum.a ((𝜑𝑖𝐼𝑥𝑋) → 𝐴 ∈ ℂ)
dvmptfsum.b ((𝜑𝑖𝐼𝑥𝑋) → 𝐵 ∈ ℂ)
dvmptfsum.d ((𝜑𝑖𝐼) → (𝑆 D (𝑥𝑋𝐴)) = (𝑥𝑋𝐵))
Assertion
Ref Expression
dvmptfsum (𝜑 → (𝑆 D (𝑥𝑋 ↦ Σ𝑖𝐼 𝐴)) = (𝑥𝑋 ↦ Σ𝑖𝐼 𝐵))
Distinct variable groups:   𝑥,𝑖,𝐼   𝜑,𝑖,𝑥   𝑆,𝑖,𝑥   𝑖,𝑋,𝑥
Allowed substitution hints:   𝐴(𝑥,𝑖)   𝐵(𝑥,𝑖)   𝐽(𝑥,𝑖)   𝐾(𝑥,𝑖)

Proof of Theorem dvmptfsum
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssid 4006 . 2 𝐼𝐼
2 dvmptfsum.i . . 3 (𝜑𝐼 ∈ Fin)
3 sseq1 4009 . . . . . 6 (𝑎 = ∅ → (𝑎𝐼 ↔ ∅ ⊆ 𝐼))
4 sumeq1 15725 . . . . . . . . 9 (𝑎 = ∅ → Σ𝑖𝑎 𝐴 = Σ𝑖 ∈ ∅ 𝐴)
54mpteq2dv 5244 . . . . . . . 8 (𝑎 = ∅ → (𝑥𝑋 ↦ Σ𝑖𝑎 𝐴) = (𝑥𝑋 ↦ Σ𝑖 ∈ ∅ 𝐴))
65oveq2d 7447 . . . . . . 7 (𝑎 = ∅ → (𝑆 D (𝑥𝑋 ↦ Σ𝑖𝑎 𝐴)) = (𝑆 D (𝑥𝑋 ↦ Σ𝑖 ∈ ∅ 𝐴)))
7 sumeq1 15725 . . . . . . . 8 (𝑎 = ∅ → Σ𝑖𝑎 𝐵 = Σ𝑖 ∈ ∅ 𝐵)
87mpteq2dv 5244 . . . . . . 7 (𝑎 = ∅ → (𝑥𝑋 ↦ Σ𝑖𝑎 𝐵) = (𝑥𝑋 ↦ Σ𝑖 ∈ ∅ 𝐵))
96, 8eqeq12d 2753 . . . . . 6 (𝑎 = ∅ → ((𝑆 D (𝑥𝑋 ↦ Σ𝑖𝑎 𝐴)) = (𝑥𝑋 ↦ Σ𝑖𝑎 𝐵) ↔ (𝑆 D (𝑥𝑋 ↦ Σ𝑖 ∈ ∅ 𝐴)) = (𝑥𝑋 ↦ Σ𝑖 ∈ ∅ 𝐵)))
103, 9imbi12d 344 . . . . 5 (𝑎 = ∅ → ((𝑎𝐼 → (𝑆 D (𝑥𝑋 ↦ Σ𝑖𝑎 𝐴)) = (𝑥𝑋 ↦ Σ𝑖𝑎 𝐵)) ↔ (∅ ⊆ 𝐼 → (𝑆 D (𝑥𝑋 ↦ Σ𝑖 ∈ ∅ 𝐴)) = (𝑥𝑋 ↦ Σ𝑖 ∈ ∅ 𝐵))))
1110imbi2d 340 . . . 4 (𝑎 = ∅ → ((𝜑 → (𝑎𝐼 → (𝑆 D (𝑥𝑋 ↦ Σ𝑖𝑎 𝐴)) = (𝑥𝑋 ↦ Σ𝑖𝑎 𝐵))) ↔ (𝜑 → (∅ ⊆ 𝐼 → (𝑆 D (𝑥𝑋 ↦ Σ𝑖 ∈ ∅ 𝐴)) = (𝑥𝑋 ↦ Σ𝑖 ∈ ∅ 𝐵)))))
12 sseq1 4009 . . . . . 6 (𝑎 = 𝑏 → (𝑎𝐼𝑏𝐼))
13 sumeq1 15725 . . . . . . . . 9 (𝑎 = 𝑏 → Σ𝑖𝑎 𝐴 = Σ𝑖𝑏 𝐴)
1413mpteq2dv 5244 . . . . . . . 8 (𝑎 = 𝑏 → (𝑥𝑋 ↦ Σ𝑖𝑎 𝐴) = (𝑥𝑋 ↦ Σ𝑖𝑏 𝐴))
1514oveq2d 7447 . . . . . . 7 (𝑎 = 𝑏 → (𝑆 D (𝑥𝑋 ↦ Σ𝑖𝑎 𝐴)) = (𝑆 D (𝑥𝑋 ↦ Σ𝑖𝑏 𝐴)))
16 sumeq1 15725 . . . . . . . 8 (𝑎 = 𝑏 → Σ𝑖𝑎 𝐵 = Σ𝑖𝑏 𝐵)
1716mpteq2dv 5244 . . . . . . 7 (𝑎 = 𝑏 → (𝑥𝑋 ↦ Σ𝑖𝑎 𝐵) = (𝑥𝑋 ↦ Σ𝑖𝑏 𝐵))
1815, 17eqeq12d 2753 . . . . . 6 (𝑎 = 𝑏 → ((𝑆 D (𝑥𝑋 ↦ Σ𝑖𝑎 𝐴)) = (𝑥𝑋 ↦ Σ𝑖𝑎 𝐵) ↔ (𝑆 D (𝑥𝑋 ↦ Σ𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑖𝑏 𝐵)))
1912, 18imbi12d 344 . . . . 5 (𝑎 = 𝑏 → ((𝑎𝐼 → (𝑆 D (𝑥𝑋 ↦ Σ𝑖𝑎 𝐴)) = (𝑥𝑋 ↦ Σ𝑖𝑎 𝐵)) ↔ (𝑏𝐼 → (𝑆 D (𝑥𝑋 ↦ Σ𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑖𝑏 𝐵))))
2019imbi2d 340 . . . 4 (𝑎 = 𝑏 → ((𝜑 → (𝑎𝐼 → (𝑆 D (𝑥𝑋 ↦ Σ𝑖𝑎 𝐴)) = (𝑥𝑋 ↦ Σ𝑖𝑎 𝐵))) ↔ (𝜑 → (𝑏𝐼 → (𝑆 D (𝑥𝑋 ↦ Σ𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑖𝑏 𝐵)))))
21 sseq1 4009 . . . . . 6 (𝑎 = (𝑏 ∪ {𝑐}) → (𝑎𝐼 ↔ (𝑏 ∪ {𝑐}) ⊆ 𝐼))
22 sumeq1 15725 . . . . . . . . 9 (𝑎 = (𝑏 ∪ {𝑐}) → Σ𝑖𝑎 𝐴 = Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐴)
2322mpteq2dv 5244 . . . . . . . 8 (𝑎 = (𝑏 ∪ {𝑐}) → (𝑥𝑋 ↦ Σ𝑖𝑎 𝐴) = (𝑥𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐴))
2423oveq2d 7447 . . . . . . 7 (𝑎 = (𝑏 ∪ {𝑐}) → (𝑆 D (𝑥𝑋 ↦ Σ𝑖𝑎 𝐴)) = (𝑆 D (𝑥𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐴)))
25 sumeq1 15725 . . . . . . . 8 (𝑎 = (𝑏 ∪ {𝑐}) → Σ𝑖𝑎 𝐵 = Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐵)
2625mpteq2dv 5244 . . . . . . 7 (𝑎 = (𝑏 ∪ {𝑐}) → (𝑥𝑋 ↦ Σ𝑖𝑎 𝐵) = (𝑥𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐵))
2724, 26eqeq12d 2753 . . . . . 6 (𝑎 = (𝑏 ∪ {𝑐}) → ((𝑆 D (𝑥𝑋 ↦ Σ𝑖𝑎 𝐴)) = (𝑥𝑋 ↦ Σ𝑖𝑎 𝐵) ↔ (𝑆 D (𝑥𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐴)) = (𝑥𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐵)))
2821, 27imbi12d 344 . . . . 5 (𝑎 = (𝑏 ∪ {𝑐}) → ((𝑎𝐼 → (𝑆 D (𝑥𝑋 ↦ Σ𝑖𝑎 𝐴)) = (𝑥𝑋 ↦ Σ𝑖𝑎 𝐵)) ↔ ((𝑏 ∪ {𝑐}) ⊆ 𝐼 → (𝑆 D (𝑥𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐴)) = (𝑥𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐵))))
2928imbi2d 340 . . . 4 (𝑎 = (𝑏 ∪ {𝑐}) → ((𝜑 → (𝑎𝐼 → (𝑆 D (𝑥𝑋 ↦ Σ𝑖𝑎 𝐴)) = (𝑥𝑋 ↦ Σ𝑖𝑎 𝐵))) ↔ (𝜑 → ((𝑏 ∪ {𝑐}) ⊆ 𝐼 → (𝑆 D (𝑥𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐴)) = (𝑥𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐵)))))
30 sseq1 4009 . . . . . 6 (𝑎 = 𝐼 → (𝑎𝐼𝐼𝐼))
31 sumeq1 15725 . . . . . . . . 9 (𝑎 = 𝐼 → Σ𝑖𝑎 𝐴 = Σ𝑖𝐼 𝐴)
3231mpteq2dv 5244 . . . . . . . 8 (𝑎 = 𝐼 → (𝑥𝑋 ↦ Σ𝑖𝑎 𝐴) = (𝑥𝑋 ↦ Σ𝑖𝐼 𝐴))
3332oveq2d 7447 . . . . . . 7 (𝑎 = 𝐼 → (𝑆 D (𝑥𝑋 ↦ Σ𝑖𝑎 𝐴)) = (𝑆 D (𝑥𝑋 ↦ Σ𝑖𝐼 𝐴)))
34 sumeq1 15725 . . . . . . . 8 (𝑎 = 𝐼 → Σ𝑖𝑎 𝐵 = Σ𝑖𝐼 𝐵)
3534mpteq2dv 5244 . . . . . . 7 (𝑎 = 𝐼 → (𝑥𝑋 ↦ Σ𝑖𝑎 𝐵) = (𝑥𝑋 ↦ Σ𝑖𝐼 𝐵))
3633, 35eqeq12d 2753 . . . . . 6 (𝑎 = 𝐼 → ((𝑆 D (𝑥𝑋 ↦ Σ𝑖𝑎 𝐴)) = (𝑥𝑋 ↦ Σ𝑖𝑎 𝐵) ↔ (𝑆 D (𝑥𝑋 ↦ Σ𝑖𝐼 𝐴)) = (𝑥𝑋 ↦ Σ𝑖𝐼 𝐵)))
3730, 36imbi12d 344 . . . . 5 (𝑎 = 𝐼 → ((𝑎𝐼 → (𝑆 D (𝑥𝑋 ↦ Σ𝑖𝑎 𝐴)) = (𝑥𝑋 ↦ Σ𝑖𝑎 𝐵)) ↔ (𝐼𝐼 → (𝑆 D (𝑥𝑋 ↦ Σ𝑖𝐼 𝐴)) = (𝑥𝑋 ↦ Σ𝑖𝐼 𝐵))))
3837imbi2d 340 . . . 4 (𝑎 = 𝐼 → ((𝜑 → (𝑎𝐼 → (𝑆 D (𝑥𝑋 ↦ Σ𝑖𝑎 𝐴)) = (𝑥𝑋 ↦ Σ𝑖𝑎 𝐵))) ↔ (𝜑 → (𝐼𝐼 → (𝑆 D (𝑥𝑋 ↦ Σ𝑖𝐼 𝐴)) = (𝑥𝑋 ↦ Σ𝑖𝐼 𝐵)))))
39 dvmptfsum.s . . . . . . 7 (𝜑𝑆 ∈ {ℝ, ℂ})
40 0cnd 11254 . . . . . . 7 ((𝜑𝑥𝑆) → 0 ∈ ℂ)
41 0cnd 11254 . . . . . . . 8 (𝜑 → 0 ∈ ℂ)
4239, 41dvmptc 25996 . . . . . . 7 (𝜑 → (𝑆 D (𝑥𝑆 ↦ 0)) = (𝑥𝑆 ↦ 0))
43 dvmptfsum.j . . . . . . . . 9 𝐽 = (𝐾t 𝑆)
44 dvmptfsum.k . . . . . . . . . . 11 𝐾 = (TopOpen‘ℂfld)
4544cnfldtopon 24803 . . . . . . . . . 10 𝐾 ∈ (TopOn‘ℂ)
46 recnprss 25939 . . . . . . . . . . 11 (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ)
4739, 46syl 17 . . . . . . . . . 10 (𝜑𝑆 ⊆ ℂ)
48 resttopon 23169 . . . . . . . . . 10 ((𝐾 ∈ (TopOn‘ℂ) ∧ 𝑆 ⊆ ℂ) → (𝐾t 𝑆) ∈ (TopOn‘𝑆))
4945, 47, 48sylancr 587 . . . . . . . . 9 (𝜑 → (𝐾t 𝑆) ∈ (TopOn‘𝑆))
5043, 49eqeltrid 2845 . . . . . . . 8 (𝜑𝐽 ∈ (TopOn‘𝑆))
51 dvmptfsum.x . . . . . . . 8 (𝜑𝑋𝐽)
52 toponss 22933 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑆) ∧ 𝑋𝐽) → 𝑋𝑆)
5350, 51, 52syl2anc 584 . . . . . . 7 (𝜑𝑋𝑆)
5439, 40, 40, 42, 53, 43, 44, 51dvmptres 26001 . . . . . 6 (𝜑 → (𝑆 D (𝑥𝑋 ↦ 0)) = (𝑥𝑋 ↦ 0))
55 sum0 15757 . . . . . . . 8 Σ𝑖 ∈ ∅ 𝐴 = 0
5655mpteq2i 5247 . . . . . . 7 (𝑥𝑋 ↦ Σ𝑖 ∈ ∅ 𝐴) = (𝑥𝑋 ↦ 0)
5756oveq2i 7442 . . . . . 6 (𝑆 D (𝑥𝑋 ↦ Σ𝑖 ∈ ∅ 𝐴)) = (𝑆 D (𝑥𝑋 ↦ 0))
58 sum0 15757 . . . . . . 7 Σ𝑖 ∈ ∅ 𝐵 = 0
5958mpteq2i 5247 . . . . . 6 (𝑥𝑋 ↦ Σ𝑖 ∈ ∅ 𝐵) = (𝑥𝑋 ↦ 0)
6054, 57, 593eqtr4g 2802 . . . . 5 (𝜑 → (𝑆 D (𝑥𝑋 ↦ Σ𝑖 ∈ ∅ 𝐴)) = (𝑥𝑋 ↦ Σ𝑖 ∈ ∅ 𝐵))
6160a1d 25 . . . 4 (𝜑 → (∅ ⊆ 𝐼 → (𝑆 D (𝑥𝑋 ↦ Σ𝑖 ∈ ∅ 𝐴)) = (𝑥𝑋 ↦ Σ𝑖 ∈ ∅ 𝐵)))
62 ssun1 4178 . . . . . . . . . 10 𝑏 ⊆ (𝑏 ∪ {𝑐})
63 sstr 3992 . . . . . . . . . 10 ((𝑏 ⊆ (𝑏 ∪ {𝑐}) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) → 𝑏𝐼)
6462, 63mpan 690 . . . . . . . . 9 ((𝑏 ∪ {𝑐}) ⊆ 𝐼𝑏𝐼)
6564imim1i 63 . . . . . . . 8 ((𝑏𝐼 → (𝑆 D (𝑥𝑋 ↦ Σ𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑖𝑏 𝐵)) → ((𝑏 ∪ {𝑐}) ⊆ 𝐼 → (𝑆 D (𝑥𝑋 ↦ Σ𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑖𝑏 𝐵)))
66 simpll 767 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ 𝑐𝑏) ∧ ((𝑏 ∪ {𝑐}) ⊆ 𝐼 ∧ (𝑆 D (𝑥𝑋 ↦ Σ𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑖𝑏 𝐵))) → 𝜑)
6766, 39syl 17 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ 𝑐𝑏) ∧ ((𝑏 ∪ {𝑐}) ⊆ 𝐼 ∧ (𝑆 D (𝑥𝑋 ↦ Σ𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑖𝑏 𝐵))) → 𝑆 ∈ {ℝ, ℂ})
682ad3antrrr 730 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ ¬ 𝑐𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑎𝑋) → 𝐼 ∈ Fin)
6964ad2antlr 727 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ ¬ 𝑐𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑎𝑋) → 𝑏𝐼)
7068, 69ssfid 9301 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ¬ 𝑐𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑎𝑋) → 𝑏 ∈ Fin)
71 simp-4l 783 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ ¬ 𝑐𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑎𝑋) ∧ 𝑖𝑏) → 𝜑)
7269sselda 3983 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ ¬ 𝑐𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑎𝑋) ∧ 𝑖𝑏) → 𝑖𝐼)
73 simplr 769 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ ¬ 𝑐𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑎𝑋) ∧ 𝑖𝑏) → 𝑎𝑋)
74 nfv 1914 . . . . . . . . . . . . . . . . 17 𝑥(𝜑𝑖𝐼𝑎𝑋)
75 nfcsb1v 3923 . . . . . . . . . . . . . . . . . 18 𝑥𝑎 / 𝑥𝐴
7675nfel1 2922 . . . . . . . . . . . . . . . . 17 𝑥𝑎 / 𝑥𝐴 ∈ ℂ
7774, 76nfim 1896 . . . . . . . . . . . . . . . 16 𝑥((𝜑𝑖𝐼𝑎𝑋) → 𝑎 / 𝑥𝐴 ∈ ℂ)
78 eleq1w 2824 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑎 → (𝑥𝑋𝑎𝑋))
79783anbi3d 1444 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑎 → ((𝜑𝑖𝐼𝑥𝑋) ↔ (𝜑𝑖𝐼𝑎𝑋)))
80 csbeq1a 3913 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑎𝐴 = 𝑎 / 𝑥𝐴)
8180eleq1d 2826 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑎 → (𝐴 ∈ ℂ ↔ 𝑎 / 𝑥𝐴 ∈ ℂ))
8279, 81imbi12d 344 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑎 → (((𝜑𝑖𝐼𝑥𝑋) → 𝐴 ∈ ℂ) ↔ ((𝜑𝑖𝐼𝑎𝑋) → 𝑎 / 𝑥𝐴 ∈ ℂ)))
83 dvmptfsum.a . . . . . . . . . . . . . . . 16 ((𝜑𝑖𝐼𝑥𝑋) → 𝐴 ∈ ℂ)
8477, 82, 83chvarfv 2240 . . . . . . . . . . . . . . 15 ((𝜑𝑖𝐼𝑎𝑋) → 𝑎 / 𝑥𝐴 ∈ ℂ)
8571, 72, 73, 84syl3anc 1373 . . . . . . . . . . . . . 14 (((((𝜑 ∧ ¬ 𝑐𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑎𝑋) ∧ 𝑖𝑏) → 𝑎 / 𝑥𝐴 ∈ ℂ)
8670, 85fsumcl 15769 . . . . . . . . . . . . 13 ((((𝜑 ∧ ¬ 𝑐𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑎𝑋) → Σ𝑖𝑏 𝑎 / 𝑥𝐴 ∈ ℂ)
8786adantlrr 721 . . . . . . . . . . . 12 ((((𝜑 ∧ ¬ 𝑐𝑏) ∧ ((𝑏 ∪ {𝑐}) ⊆ 𝐼 ∧ (𝑆 D (𝑥𝑋 ↦ Σ𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑖𝑏 𝐵))) ∧ 𝑎𝑋) → Σ𝑖𝑏 𝑎 / 𝑥𝐴 ∈ ℂ)
88 sumex 15724 . . . . . . . . . . . . 13 Σ𝑖𝑏 𝑎 / 𝑥𝐵 ∈ V
8988a1i 11 . . . . . . . . . . . 12 ((((𝜑 ∧ ¬ 𝑐𝑏) ∧ ((𝑏 ∪ {𝑐}) ⊆ 𝐼 ∧ (𝑆 D (𝑥𝑋 ↦ Σ𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑖𝑏 𝐵))) ∧ 𝑎𝑋) → Σ𝑖𝑏 𝑎 / 𝑥𝐵 ∈ V)
90 nfcv 2905 . . . . . . . . . . . . . . . . 17 𝑎Σ𝑖𝑏 𝐴
91 nfcv 2905 . . . . . . . . . . . . . . . . . 18 𝑥𝑏
9291, 75nfsum 15727 . . . . . . . . . . . . . . . . 17 𝑥Σ𝑖𝑏 𝑎 / 𝑥𝐴
9380sumeq2sdv 15739 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑎 → Σ𝑖𝑏 𝐴 = Σ𝑖𝑏 𝑎 / 𝑥𝐴)
9490, 92, 93cbvmpt 5253 . . . . . . . . . . . . . . . 16 (𝑥𝑋 ↦ Σ𝑖𝑏 𝐴) = (𝑎𝑋 ↦ Σ𝑖𝑏 𝑎 / 𝑥𝐴)
9594oveq2i 7442 . . . . . . . . . . . . . . 15 (𝑆 D (𝑥𝑋 ↦ Σ𝑖𝑏 𝐴)) = (𝑆 D (𝑎𝑋 ↦ Σ𝑖𝑏 𝑎 / 𝑥𝐴))
96 nfcv 2905 . . . . . . . . . . . . . . . 16 𝑎Σ𝑖𝑏 𝐵
97 nfcsb1v 3923 . . . . . . . . . . . . . . . . 17 𝑥𝑎 / 𝑥𝐵
9891, 97nfsum 15727 . . . . . . . . . . . . . . . 16 𝑥Σ𝑖𝑏 𝑎 / 𝑥𝐵
99 csbeq1a 3913 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑎𝐵 = 𝑎 / 𝑥𝐵)
10099sumeq2sdv 15739 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑎 → Σ𝑖𝑏 𝐵 = Σ𝑖𝑏 𝑎 / 𝑥𝐵)
10196, 98, 100cbvmpt 5253 . . . . . . . . . . . . . . 15 (𝑥𝑋 ↦ Σ𝑖𝑏 𝐵) = (𝑎𝑋 ↦ Σ𝑖𝑏 𝑎 / 𝑥𝐵)
10295, 101eqeq12i 2755 . . . . . . . . . . . . . 14 ((𝑆 D (𝑥𝑋 ↦ Σ𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑖𝑏 𝐵) ↔ (𝑆 D (𝑎𝑋 ↦ Σ𝑖𝑏 𝑎 / 𝑥𝐴)) = (𝑎𝑋 ↦ Σ𝑖𝑏 𝑎 / 𝑥𝐵))
103102biimpi 216 . . . . . . . . . . . . 13 ((𝑆 D (𝑥𝑋 ↦ Σ𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑖𝑏 𝐵) → (𝑆 D (𝑎𝑋 ↦ Σ𝑖𝑏 𝑎 / 𝑥𝐴)) = (𝑎𝑋 ↦ Σ𝑖𝑏 𝑎 / 𝑥𝐵))
104103ad2antll 729 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ 𝑐𝑏) ∧ ((𝑏 ∪ {𝑐}) ⊆ 𝐼 ∧ (𝑆 D (𝑥𝑋 ↦ Σ𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑖𝑏 𝐵))) → (𝑆 D (𝑎𝑋 ↦ Σ𝑖𝑏 𝑎 / 𝑥𝐴)) = (𝑎𝑋 ↦ Σ𝑖𝑏 𝑎 / 𝑥𝐵))
105 simplll 775 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ¬ 𝑐𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑎𝑋) → 𝜑)
106 ssun2 4179 . . . . . . . . . . . . . . . . 17 {𝑐} ⊆ (𝑏 ∪ {𝑐})
107 sstr 3992 . . . . . . . . . . . . . . . . 17 (({𝑐} ⊆ (𝑏 ∪ {𝑐}) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) → {𝑐} ⊆ 𝐼)
108106, 107mpan 690 . . . . . . . . . . . . . . . 16 ((𝑏 ∪ {𝑐}) ⊆ 𝐼 → {𝑐} ⊆ 𝐼)
109 vex 3484 . . . . . . . . . . . . . . . . 17 𝑐 ∈ V
110109snss 4785 . . . . . . . . . . . . . . . 16 (𝑐𝐼 ↔ {𝑐} ⊆ 𝐼)
111108, 110sylibr 234 . . . . . . . . . . . . . . 15 ((𝑏 ∪ {𝑐}) ⊆ 𝐼𝑐𝐼)
112111ad2antlr 727 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ¬ 𝑐𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑎𝑋) → 𝑐𝐼)
113 simpr 484 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ¬ 𝑐𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑎𝑋) → 𝑎𝑋)
114833expb 1121 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑖𝐼𝑥𝑋)) → 𝐴 ∈ ℂ)
115114ancom2s 650 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑥𝑋𝑖𝐼)) → 𝐴 ∈ ℂ)
116115ralrimivva 3202 . . . . . . . . . . . . . . 15 (𝜑 → ∀𝑥𝑋𝑖𝐼 𝐴 ∈ ℂ)
117 nfcsb1v 3923 . . . . . . . . . . . . . . . . . 18 𝑖𝑐 / 𝑖𝑎 / 𝑥𝐴
118117nfel1 2922 . . . . . . . . . . . . . . . . 17 𝑖𝑐 / 𝑖𝑎 / 𝑥𝐴 ∈ ℂ
119 csbeq1a 3913 . . . . . . . . . . . . . . . . . 18 (𝑖 = 𝑐𝑎 / 𝑥𝐴 = 𝑐 / 𝑖𝑎 / 𝑥𝐴)
120119eleq1d 2826 . . . . . . . . . . . . . . . . 17 (𝑖 = 𝑐 → (𝑎 / 𝑥𝐴 ∈ ℂ ↔ 𝑐 / 𝑖𝑎 / 𝑥𝐴 ∈ ℂ))
12176, 118, 81, 120rspc2 3631 . . . . . . . . . . . . . . . 16 ((𝑎𝑋𝑐𝐼) → (∀𝑥𝑋𝑖𝐼 𝐴 ∈ ℂ → 𝑐 / 𝑖𝑎 / 𝑥𝐴 ∈ ℂ))
122121ancoms 458 . . . . . . . . . . . . . . 15 ((𝑐𝐼𝑎𝑋) → (∀𝑥𝑋𝑖𝐼 𝐴 ∈ ℂ → 𝑐 / 𝑖𝑎 / 𝑥𝐴 ∈ ℂ))
123116, 122mpan9 506 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑐𝐼𝑎𝑋)) → 𝑐 / 𝑖𝑎 / 𝑥𝐴 ∈ ℂ)
124105, 112, 113, 123syl12anc 837 . . . . . . . . . . . . 13 ((((𝜑 ∧ ¬ 𝑐𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑎𝑋) → 𝑐 / 𝑖𝑎 / 𝑥𝐴 ∈ ℂ)
125124adantlrr 721 . . . . . . . . . . . 12 ((((𝜑 ∧ ¬ 𝑐𝑏) ∧ ((𝑏 ∪ {𝑐}) ⊆ 𝐼 ∧ (𝑆 D (𝑥𝑋 ↦ Σ𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑖𝑏 𝐵))) ∧ 𝑎𝑋) → 𝑐 / 𝑖𝑎 / 𝑥𝐴 ∈ ℂ)
126 dvmptfsum.b . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖𝐼𝑥𝑋) → 𝐵 ∈ ℂ)
1271263expb 1121 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑖𝐼𝑥𝑋)) → 𝐵 ∈ ℂ)
128127ancom2s 650 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑥𝑋𝑖𝐼)) → 𝐵 ∈ ℂ)
129128ralrimivva 3202 . . . . . . . . . . . . . . 15 (𝜑 → ∀𝑥𝑋𝑖𝐼 𝐵 ∈ ℂ)
13097nfel1 2922 . . . . . . . . . . . . . . . . 17 𝑥𝑎 / 𝑥𝐵 ∈ ℂ
131 nfcsb1v 3923 . . . . . . . . . . . . . . . . . 18 𝑖𝑐 / 𝑖𝑎 / 𝑥𝐵
132131nfel1 2922 . . . . . . . . . . . . . . . . 17 𝑖𝑐 / 𝑖𝑎 / 𝑥𝐵 ∈ ℂ
13399eleq1d 2826 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑎 → (𝐵 ∈ ℂ ↔ 𝑎 / 𝑥𝐵 ∈ ℂ))
134 csbeq1a 3913 . . . . . . . . . . . . . . . . . 18 (𝑖 = 𝑐𝑎 / 𝑥𝐵 = 𝑐 / 𝑖𝑎 / 𝑥𝐵)
135134eleq1d 2826 . . . . . . . . . . . . . . . . 17 (𝑖 = 𝑐 → (𝑎 / 𝑥𝐵 ∈ ℂ ↔ 𝑐 / 𝑖𝑎 / 𝑥𝐵 ∈ ℂ))
136130, 132, 133, 135rspc2 3631 . . . . . . . . . . . . . . . 16 ((𝑎𝑋𝑐𝐼) → (∀𝑥𝑋𝑖𝐼 𝐵 ∈ ℂ → 𝑐 / 𝑖𝑎 / 𝑥𝐵 ∈ ℂ))
137136ancoms 458 . . . . . . . . . . . . . . 15 ((𝑐𝐼𝑎𝑋) → (∀𝑥𝑋𝑖𝐼 𝐵 ∈ ℂ → 𝑐 / 𝑖𝑎 / 𝑥𝐵 ∈ ℂ))
138129, 137mpan9 506 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑐𝐼𝑎𝑋)) → 𝑐 / 𝑖𝑎 / 𝑥𝐵 ∈ ℂ)
139105, 112, 113, 138syl12anc 837 . . . . . . . . . . . . 13 ((((𝜑 ∧ ¬ 𝑐𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑎𝑋) → 𝑐 / 𝑖𝑎 / 𝑥𝐵 ∈ ℂ)
140139adantlrr 721 . . . . . . . . . . . 12 ((((𝜑 ∧ ¬ 𝑐𝑏) ∧ ((𝑏 ∪ {𝑐}) ⊆ 𝐼 ∧ (𝑆 D (𝑥𝑋 ↦ Σ𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑖𝑏 𝐵))) ∧ 𝑎𝑋) → 𝑐 / 𝑖𝑎 / 𝑥𝐵 ∈ ℂ)
141111ad2antrl 728 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ 𝑐𝑏) ∧ ((𝑏 ∪ {𝑐}) ⊆ 𝐼 ∧ (𝑆 D (𝑥𝑋 ↦ Σ𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑖𝑏 𝐵))) → 𝑐𝐼)
142 nfv 1914 . . . . . . . . . . . . . . . 16 𝑖(𝜑𝑐𝐼)
143 nfcv 2905 . . . . . . . . . . . . . . . . . 18 𝑖𝑆
144 nfcv 2905 . . . . . . . . . . . . . . . . . 18 𝑖 D
145 nfcv 2905 . . . . . . . . . . . . . . . . . . 19 𝑖𝑋
146 nfcsb1v 3923 . . . . . . . . . . . . . . . . . . 19 𝑖𝑐 / 𝑖𝐴
147145, 146nfmpt 5249 . . . . . . . . . . . . . . . . . 18 𝑖(𝑥𝑋𝑐 / 𝑖𝐴)
148143, 144, 147nfov 7461 . . . . . . . . . . . . . . . . 17 𝑖(𝑆 D (𝑥𝑋𝑐 / 𝑖𝐴))
149 nfcsb1v 3923 . . . . . . . . . . . . . . . . . 18 𝑖𝑐 / 𝑖𝐵
150145, 149nfmpt 5249 . . . . . . . . . . . . . . . . 17 𝑖(𝑥𝑋𝑐 / 𝑖𝐵)
151148, 150nfeq 2919 . . . . . . . . . . . . . . . 16 𝑖(𝑆 D (𝑥𝑋𝑐 / 𝑖𝐴)) = (𝑥𝑋𝑐 / 𝑖𝐵)
152142, 151nfim 1896 . . . . . . . . . . . . . . 15 𝑖((𝜑𝑐𝐼) → (𝑆 D (𝑥𝑋𝑐 / 𝑖𝐴)) = (𝑥𝑋𝑐 / 𝑖𝐵))
153 eleq1w 2824 . . . . . . . . . . . . . . . . 17 (𝑖 = 𝑐 → (𝑖𝐼𝑐𝐼))
154153anbi2d 630 . . . . . . . . . . . . . . . 16 (𝑖 = 𝑐 → ((𝜑𝑖𝐼) ↔ (𝜑𝑐𝐼)))
155 csbeq1a 3913 . . . . . . . . . . . . . . . . . . 19 (𝑖 = 𝑐𝐴 = 𝑐 / 𝑖𝐴)
156155mpteq2dv 5244 . . . . . . . . . . . . . . . . . 18 (𝑖 = 𝑐 → (𝑥𝑋𝐴) = (𝑥𝑋𝑐 / 𝑖𝐴))
157156oveq2d 7447 . . . . . . . . . . . . . . . . 17 (𝑖 = 𝑐 → (𝑆 D (𝑥𝑋𝐴)) = (𝑆 D (𝑥𝑋𝑐 / 𝑖𝐴)))
158 csbeq1a 3913 . . . . . . . . . . . . . . . . . 18 (𝑖 = 𝑐𝐵 = 𝑐 / 𝑖𝐵)
159158mpteq2dv 5244 . . . . . . . . . . . . . . . . 17 (𝑖 = 𝑐 → (𝑥𝑋𝐵) = (𝑥𝑋𝑐 / 𝑖𝐵))
160157, 159eqeq12d 2753 . . . . . . . . . . . . . . . 16 (𝑖 = 𝑐 → ((𝑆 D (𝑥𝑋𝐴)) = (𝑥𝑋𝐵) ↔ (𝑆 D (𝑥𝑋𝑐 / 𝑖𝐴)) = (𝑥𝑋𝑐 / 𝑖𝐵)))
161154, 160imbi12d 344 . . . . . . . . . . . . . . 15 (𝑖 = 𝑐 → (((𝜑𝑖𝐼) → (𝑆 D (𝑥𝑋𝐴)) = (𝑥𝑋𝐵)) ↔ ((𝜑𝑐𝐼) → (𝑆 D (𝑥𝑋𝑐 / 𝑖𝐴)) = (𝑥𝑋𝑐 / 𝑖𝐵))))
162 dvmptfsum.d . . . . . . . . . . . . . . 15 ((𝜑𝑖𝐼) → (𝑆 D (𝑥𝑋𝐴)) = (𝑥𝑋𝐵))
163152, 161, 162chvarfv 2240 . . . . . . . . . . . . . 14 ((𝜑𝑐𝐼) → (𝑆 D (𝑥𝑋𝑐 / 𝑖𝐴)) = (𝑥𝑋𝑐 / 𝑖𝐵))
164 nfcv 2905 . . . . . . . . . . . . . . . 16 𝑎𝑐 / 𝑖𝐴
165 nfcv 2905 . . . . . . . . . . . . . . . . 17 𝑥𝑐
166165, 75nfcsbw 3925 . . . . . . . . . . . . . . . 16 𝑥𝑐 / 𝑖𝑎 / 𝑥𝐴
16780csbeq2dv 3906 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑎𝑐 / 𝑖𝐴 = 𝑐 / 𝑖𝑎 / 𝑥𝐴)
168164, 166, 167cbvmpt 5253 . . . . . . . . . . . . . . 15 (𝑥𝑋𝑐 / 𝑖𝐴) = (𝑎𝑋𝑐 / 𝑖𝑎 / 𝑥𝐴)
169168oveq2i 7442 . . . . . . . . . . . . . 14 (𝑆 D (𝑥𝑋𝑐 / 𝑖𝐴)) = (𝑆 D (𝑎𝑋𝑐 / 𝑖𝑎 / 𝑥𝐴))
170 nfcv 2905 . . . . . . . . . . . . . . 15 𝑎𝑐 / 𝑖𝐵
171165, 97nfcsbw 3925 . . . . . . . . . . . . . . 15 𝑥𝑐 / 𝑖𝑎 / 𝑥𝐵
17299csbeq2dv 3906 . . . . . . . . . . . . . . 15 (𝑥 = 𝑎𝑐 / 𝑖𝐵 = 𝑐 / 𝑖𝑎 / 𝑥𝐵)
173170, 171, 172cbvmpt 5253 . . . . . . . . . . . . . 14 (𝑥𝑋𝑐 / 𝑖𝐵) = (𝑎𝑋𝑐 / 𝑖𝑎 / 𝑥𝐵)
174163, 169, 1733eqtr3g 2800 . . . . . . . . . . . . 13 ((𝜑𝑐𝐼) → (𝑆 D (𝑎𝑋𝑐 / 𝑖𝑎 / 𝑥𝐴)) = (𝑎𝑋𝑐 / 𝑖𝑎 / 𝑥𝐵))
17566, 141, 174syl2anc 584 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ 𝑐𝑏) ∧ ((𝑏 ∪ {𝑐}) ⊆ 𝐼 ∧ (𝑆 D (𝑥𝑋 ↦ Σ𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑖𝑏 𝐵))) → (𝑆 D (𝑎𝑋𝑐 / 𝑖𝑎 / 𝑥𝐴)) = (𝑎𝑋𝑐 / 𝑖𝑎 / 𝑥𝐵))
17667, 87, 89, 104, 125, 140, 175dvmptadd 25998 . . . . . . . . . . 11 (((𝜑 ∧ ¬ 𝑐𝑏) ∧ ((𝑏 ∪ {𝑐}) ⊆ 𝐼 ∧ (𝑆 D (𝑥𝑋 ↦ Σ𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑖𝑏 𝐵))) → (𝑆 D (𝑎𝑋 ↦ (Σ𝑖𝑏 𝑎 / 𝑥𝐴 + 𝑐 / 𝑖𝑎 / 𝑥𝐴))) = (𝑎𝑋 ↦ (Σ𝑖𝑏 𝑎 / 𝑥𝐵 + 𝑐 / 𝑖𝑎 / 𝑥𝐵)))
177 nfcv 2905 . . . . . . . . . . . . . . 15 𝑎Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐴
178 nfcv 2905 . . . . . . . . . . . . . . . 16 𝑥(𝑏 ∪ {𝑐})
179178, 75nfsum 15727 . . . . . . . . . . . . . . 15 𝑥Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝑎 / 𝑥𝐴
18080sumeq2sdv 15739 . . . . . . . . . . . . . . 15 (𝑥 = 𝑎 → Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐴 = Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝑎 / 𝑥𝐴)
181177, 179, 180cbvmpt 5253 . . . . . . . . . . . . . 14 (𝑥𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐴) = (𝑎𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝑎 / 𝑥𝐴)
182 simpllr 776 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ ¬ 𝑐𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑎𝑋) → ¬ 𝑐𝑏)
183 disjsn 4711 . . . . . . . . . . . . . . . . . 18 ((𝑏 ∩ {𝑐}) = ∅ ↔ ¬ 𝑐𝑏)
184182, 183sylibr 234 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ ¬ 𝑐𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑎𝑋) → (𝑏 ∩ {𝑐}) = ∅)
185 eqidd 2738 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ ¬ 𝑐𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑎𝑋) → (𝑏 ∪ {𝑐}) = (𝑏 ∪ {𝑐}))
186 simplr 769 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ ¬ 𝑐𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑎𝑋) → (𝑏 ∪ {𝑐}) ⊆ 𝐼)
18768, 186ssfid 9301 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ ¬ 𝑐𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑎𝑋) → (𝑏 ∪ {𝑐}) ∈ Fin)
188 simp-4l 783 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ ¬ 𝑐𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑎𝑋) ∧ 𝑖 ∈ (𝑏 ∪ {𝑐})) → 𝜑)
189186sselda 3983 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ ¬ 𝑐𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑎𝑋) ∧ 𝑖 ∈ (𝑏 ∪ {𝑐})) → 𝑖𝐼)
190 simplr 769 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ ¬ 𝑐𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑎𝑋) ∧ 𝑖 ∈ (𝑏 ∪ {𝑐})) → 𝑎𝑋)
191188, 189, 190, 84syl3anc 1373 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ ¬ 𝑐𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑎𝑋) ∧ 𝑖 ∈ (𝑏 ∪ {𝑐})) → 𝑎 / 𝑥𝐴 ∈ ℂ)
192184, 185, 187, 191fsumsplit 15777 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ ¬ 𝑐𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑎𝑋) → Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝑎 / 𝑥𝐴 = (Σ𝑖𝑏 𝑎 / 𝑥𝐴 + Σ𝑖 ∈ {𝑐}𝑎 / 𝑥𝐴))
193 sumsns 15786 . . . . . . . . . . . . . . . . . 18 ((𝑐 ∈ V ∧ 𝑐 / 𝑖𝑎 / 𝑥𝐴 ∈ ℂ) → Σ𝑖 ∈ {𝑐}𝑎 / 𝑥𝐴 = 𝑐 / 𝑖𝑎 / 𝑥𝐴)
194109, 124, 193sylancr 587 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ ¬ 𝑐𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑎𝑋) → Σ𝑖 ∈ {𝑐}𝑎 / 𝑥𝐴 = 𝑐 / 𝑖𝑎 / 𝑥𝐴)
195194oveq2d 7447 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ ¬ 𝑐𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑎𝑋) → (Σ𝑖𝑏 𝑎 / 𝑥𝐴 + Σ𝑖 ∈ {𝑐}𝑎 / 𝑥𝐴) = (Σ𝑖𝑏 𝑎 / 𝑥𝐴 + 𝑐 / 𝑖𝑎 / 𝑥𝐴))
196192, 195eqtrd 2777 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ ¬ 𝑐𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑎𝑋) → Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝑎 / 𝑥𝐴 = (Σ𝑖𝑏 𝑎 / 𝑥𝐴 + 𝑐 / 𝑖𝑎 / 𝑥𝐴))
197196mpteq2dva 5242 . . . . . . . . . . . . . 14 (((𝜑 ∧ ¬ 𝑐𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) → (𝑎𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝑎 / 𝑥𝐴) = (𝑎𝑋 ↦ (Σ𝑖𝑏 𝑎 / 𝑥𝐴 + 𝑐 / 𝑖𝑎 / 𝑥𝐴)))
198181, 197eqtrid 2789 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ 𝑐𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) → (𝑥𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐴) = (𝑎𝑋 ↦ (Σ𝑖𝑏 𝑎 / 𝑥𝐴 + 𝑐 / 𝑖𝑎 / 𝑥𝐴)))
199198adantrr 717 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ 𝑐𝑏) ∧ ((𝑏 ∪ {𝑐}) ⊆ 𝐼 ∧ (𝑆 D (𝑥𝑋 ↦ Σ𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑖𝑏 𝐵))) → (𝑥𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐴) = (𝑎𝑋 ↦ (Σ𝑖𝑏 𝑎 / 𝑥𝐴 + 𝑐 / 𝑖𝑎 / 𝑥𝐴)))
200199oveq2d 7447 . . . . . . . . . . 11 (((𝜑 ∧ ¬ 𝑐𝑏) ∧ ((𝑏 ∪ {𝑐}) ⊆ 𝐼 ∧ (𝑆 D (𝑥𝑋 ↦ Σ𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑖𝑏 𝐵))) → (𝑆 D (𝑥𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐴)) = (𝑆 D (𝑎𝑋 ↦ (Σ𝑖𝑏 𝑎 / 𝑥𝐴 + 𝑐 / 𝑖𝑎 / 𝑥𝐴))))
201 nfcv 2905 . . . . . . . . . . . . . 14 𝑎Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐵
202178, 97nfsum 15727 . . . . . . . . . . . . . 14 𝑥Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝑎 / 𝑥𝐵
20399sumeq2sdv 15739 . . . . . . . . . . . . . 14 (𝑥 = 𝑎 → Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐵 = Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝑎 / 𝑥𝐵)
204201, 202, 203cbvmpt 5253 . . . . . . . . . . . . 13 (𝑥𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐵) = (𝑎𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝑎 / 𝑥𝐵)
20574, 130nfim 1896 . . . . . . . . . . . . . . . . . 18 𝑥((𝜑𝑖𝐼𝑎𝑋) → 𝑎 / 𝑥𝐵 ∈ ℂ)
20679, 133imbi12d 344 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑎 → (((𝜑𝑖𝐼𝑥𝑋) → 𝐵 ∈ ℂ) ↔ ((𝜑𝑖𝐼𝑎𝑋) → 𝑎 / 𝑥𝐵 ∈ ℂ)))
207205, 206, 126chvarfv 2240 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖𝐼𝑎𝑋) → 𝑎 / 𝑥𝐵 ∈ ℂ)
208188, 189, 190, 207syl3anc 1373 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ ¬ 𝑐𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑎𝑋) ∧ 𝑖 ∈ (𝑏 ∪ {𝑐})) → 𝑎 / 𝑥𝐵 ∈ ℂ)
209184, 185, 187, 208fsumsplit 15777 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ ¬ 𝑐𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑎𝑋) → Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝑎 / 𝑥𝐵 = (Σ𝑖𝑏 𝑎 / 𝑥𝐵 + Σ𝑖 ∈ {𝑐}𝑎 / 𝑥𝐵))
210 sumsns 15786 . . . . . . . . . . . . . . . . 17 ((𝑐 ∈ V ∧ 𝑐 / 𝑖𝑎 / 𝑥𝐵 ∈ ℂ) → Σ𝑖 ∈ {𝑐}𝑎 / 𝑥𝐵 = 𝑐 / 𝑖𝑎 / 𝑥𝐵)
211109, 139, 210sylancr 587 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ ¬ 𝑐𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑎𝑋) → Σ𝑖 ∈ {𝑐}𝑎 / 𝑥𝐵 = 𝑐 / 𝑖𝑎 / 𝑥𝐵)
212211oveq2d 7447 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ ¬ 𝑐𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑎𝑋) → (Σ𝑖𝑏 𝑎 / 𝑥𝐵 + Σ𝑖 ∈ {𝑐}𝑎 / 𝑥𝐵) = (Σ𝑖𝑏 𝑎 / 𝑥𝐵 + 𝑐 / 𝑖𝑎 / 𝑥𝐵))
213209, 212eqtrd 2777 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ¬ 𝑐𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑎𝑋) → Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝑎 / 𝑥𝐵 = (Σ𝑖𝑏 𝑎 / 𝑥𝐵 + 𝑐 / 𝑖𝑎 / 𝑥𝐵))
214213mpteq2dva 5242 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ 𝑐𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) → (𝑎𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝑎 / 𝑥𝐵) = (𝑎𝑋 ↦ (Σ𝑖𝑏 𝑎 / 𝑥𝐵 + 𝑐 / 𝑖𝑎 / 𝑥𝐵)))
215204, 214eqtrid 2789 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ 𝑐𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) → (𝑥𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐵) = (𝑎𝑋 ↦ (Σ𝑖𝑏 𝑎 / 𝑥𝐵 + 𝑐 / 𝑖𝑎 / 𝑥𝐵)))
216215adantrr 717 . . . . . . . . . . 11 (((𝜑 ∧ ¬ 𝑐𝑏) ∧ ((𝑏 ∪ {𝑐}) ⊆ 𝐼 ∧ (𝑆 D (𝑥𝑋 ↦ Σ𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑖𝑏 𝐵))) → (𝑥𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐵) = (𝑎𝑋 ↦ (Σ𝑖𝑏 𝑎 / 𝑥𝐵 + 𝑐 / 𝑖𝑎 / 𝑥𝐵)))
217176, 200, 2163eqtr4d 2787 . . . . . . . . . 10 (((𝜑 ∧ ¬ 𝑐𝑏) ∧ ((𝑏 ∪ {𝑐}) ⊆ 𝐼 ∧ (𝑆 D (𝑥𝑋 ↦ Σ𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑖𝑏 𝐵))) → (𝑆 D (𝑥𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐴)) = (𝑥𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐵))
218217exp32 420 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝑐𝑏) → ((𝑏 ∪ {𝑐}) ⊆ 𝐼 → ((𝑆 D (𝑥𝑋 ↦ Σ𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑖𝑏 𝐵) → (𝑆 D (𝑥𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐴)) = (𝑥𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐵))))
219218a2d 29 . . . . . . . 8 ((𝜑 ∧ ¬ 𝑐𝑏) → (((𝑏 ∪ {𝑐}) ⊆ 𝐼 → (𝑆 D (𝑥𝑋 ↦ Σ𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑖𝑏 𝐵)) → ((𝑏 ∪ {𝑐}) ⊆ 𝐼 → (𝑆 D (𝑥𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐴)) = (𝑥𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐵))))
22065, 219syl5 34 . . . . . . 7 ((𝜑 ∧ ¬ 𝑐𝑏) → ((𝑏𝐼 → (𝑆 D (𝑥𝑋 ↦ Σ𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑖𝑏 𝐵)) → ((𝑏 ∪ {𝑐}) ⊆ 𝐼 → (𝑆 D (𝑥𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐴)) = (𝑥𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐵))))
221220expcom 413 . . . . . 6 𝑐𝑏 → (𝜑 → ((𝑏𝐼 → (𝑆 D (𝑥𝑋 ↦ Σ𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑖𝑏 𝐵)) → ((𝑏 ∪ {𝑐}) ⊆ 𝐼 → (𝑆 D (𝑥𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐴)) = (𝑥𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐵)))))
222221adantl 481 . . . . 5 ((𝑏 ∈ Fin ∧ ¬ 𝑐𝑏) → (𝜑 → ((𝑏𝐼 → (𝑆 D (𝑥𝑋 ↦ Σ𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑖𝑏 𝐵)) → ((𝑏 ∪ {𝑐}) ⊆ 𝐼 → (𝑆 D (𝑥𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐴)) = (𝑥𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐵)))))
223222a2d 29 . . . 4 ((𝑏 ∈ Fin ∧ ¬ 𝑐𝑏) → ((𝜑 → (𝑏𝐼 → (𝑆 D (𝑥𝑋 ↦ Σ𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑖𝑏 𝐵))) → (𝜑 → ((𝑏 ∪ {𝑐}) ⊆ 𝐼 → (𝑆 D (𝑥𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐴)) = (𝑥𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐵)))))
22411, 20, 29, 38, 61, 223findcard2s 9205 . . 3 (𝐼 ∈ Fin → (𝜑 → (𝐼𝐼 → (𝑆 D (𝑥𝑋 ↦ Σ𝑖𝐼 𝐴)) = (𝑥𝑋 ↦ Σ𝑖𝐼 𝐵))))
2252, 224mpcom 38 . 2 (𝜑 → (𝐼𝐼 → (𝑆 D (𝑥𝑋 ↦ Σ𝑖𝐼 𝐴)) = (𝑥𝑋 ↦ Σ𝑖𝐼 𝐵)))
2261, 225mpi 20 1 (𝜑 → (𝑆 D (𝑥𝑋 ↦ Σ𝑖𝐼 𝐴)) = (𝑥𝑋 ↦ Σ𝑖𝐼 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1087   = wceq 1540  wcel 2108  wral 3061  Vcvv 3480  csb 3899  cun 3949  cin 3950  wss 3951  c0 4333  {csn 4626  {cpr 4628  cmpt 5225  cfv 6561  (class class class)co 7431  Fincfn 8985  cc 11153  cr 11154  0cc0 11155   + caddc 11158  Σcsu 15722  t crest 17465  TopOpenctopn 17466  fldccnfld 21364  TopOnctopon 22916   D cdv 25898
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-map 8868  df-pm 8869  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-fi 9451  df-sup 9482  df-inf 9483  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-icc 13394  df-fz 13548  df-fzo 13695  df-seq 14043  df-exp 14103  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-clim 15524  df-sum 15723  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17467  df-topn 17468  df-0g 17486  df-gsum 17487  df-topgen 17488  df-pt 17489  df-prds 17492  df-xrs 17547  df-qtop 17552  df-imas 17553  df-xps 17555  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-submnd 18797  df-mulg 19086  df-cntz 19335  df-cmn 19800  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-fbas 21361  df-fg 21362  df-cnfld 21365  df-top 22900  df-topon 22917  df-topsp 22939  df-bases 22953  df-cld 23027  df-ntr 23028  df-cls 23029  df-nei 23106  df-lp 23144  df-perf 23145  df-cn 23235  df-cnp 23236  df-haus 23323  df-tx 23570  df-hmeo 23763  df-fil 23854  df-fm 23946  df-flim 23947  df-flf 23948  df-xms 24330  df-ms 24331  df-tms 24332  df-cncf 24904  df-limc 25901  df-dv 25902
This theorem is referenced by:  dvply1  26325  dvtaylp  26412  pserdvlem2  26472  advlogexp  26697  dvnmul  45958  dirkeritg  46117  etransclem2  46251
  Copyright terms: Public domain W3C validator