Step | Hyp | Ref
| Expression |
1 | | ssid 3943 |
. 2
⊢ 𝐼 ⊆ 𝐼 |
2 | | dvmptfsum.i |
. . 3
⊢ (𝜑 → 𝐼 ∈ Fin) |
3 | | sseq1 3946 |
. . . . . 6
⊢ (𝑎 = ∅ → (𝑎 ⊆ 𝐼 ↔ ∅ ⊆ 𝐼)) |
4 | | sumeq1 15400 |
. . . . . . . . 9
⊢ (𝑎 = ∅ → Σ𝑖 ∈ 𝑎 𝐴 = Σ𝑖 ∈ ∅ 𝐴) |
5 | 4 | mpteq2dv 5176 |
. . . . . . . 8
⊢ (𝑎 = ∅ → (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑎 𝐴) = (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ ∅ 𝐴)) |
6 | 5 | oveq2d 7291 |
. . . . . . 7
⊢ (𝑎 = ∅ → (𝑆 D (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑎 𝐴)) = (𝑆 D (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ ∅ 𝐴))) |
7 | | sumeq1 15400 |
. . . . . . . 8
⊢ (𝑎 = ∅ → Σ𝑖 ∈ 𝑎 𝐵 = Σ𝑖 ∈ ∅ 𝐵) |
8 | 7 | mpteq2dv 5176 |
. . . . . . 7
⊢ (𝑎 = ∅ → (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑎 𝐵) = (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ ∅ 𝐵)) |
9 | 6, 8 | eqeq12d 2754 |
. . . . . 6
⊢ (𝑎 = ∅ → ((𝑆 D (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑎 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑎 𝐵) ↔ (𝑆 D (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ ∅ 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ ∅ 𝐵))) |
10 | 3, 9 | imbi12d 345 |
. . . . 5
⊢ (𝑎 = ∅ → ((𝑎 ⊆ 𝐼 → (𝑆 D (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑎 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑎 𝐵)) ↔ (∅ ⊆ 𝐼 → (𝑆 D (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ ∅ 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ ∅ 𝐵)))) |
11 | 10 | imbi2d 341 |
. . . 4
⊢ (𝑎 = ∅ → ((𝜑 → (𝑎 ⊆ 𝐼 → (𝑆 D (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑎 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑎 𝐵))) ↔ (𝜑 → (∅ ⊆ 𝐼 → (𝑆 D (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ ∅ 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ ∅ 𝐵))))) |
12 | | sseq1 3946 |
. . . . . 6
⊢ (𝑎 = 𝑏 → (𝑎 ⊆ 𝐼 ↔ 𝑏 ⊆ 𝐼)) |
13 | | sumeq1 15400 |
. . . . . . . . 9
⊢ (𝑎 = 𝑏 → Σ𝑖 ∈ 𝑎 𝐴 = Σ𝑖 ∈ 𝑏 𝐴) |
14 | 13 | mpteq2dv 5176 |
. . . . . . . 8
⊢ (𝑎 = 𝑏 → (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑎 𝐴) = (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑏 𝐴)) |
15 | 14 | oveq2d 7291 |
. . . . . . 7
⊢ (𝑎 = 𝑏 → (𝑆 D (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑎 𝐴)) = (𝑆 D (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑏 𝐴))) |
16 | | sumeq1 15400 |
. . . . . . . 8
⊢ (𝑎 = 𝑏 → Σ𝑖 ∈ 𝑎 𝐵 = Σ𝑖 ∈ 𝑏 𝐵) |
17 | 16 | mpteq2dv 5176 |
. . . . . . 7
⊢ (𝑎 = 𝑏 → (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑎 𝐵) = (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑏 𝐵)) |
18 | 15, 17 | eqeq12d 2754 |
. . . . . 6
⊢ (𝑎 = 𝑏 → ((𝑆 D (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑎 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑎 𝐵) ↔ (𝑆 D (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑏 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑏 𝐵))) |
19 | 12, 18 | imbi12d 345 |
. . . . 5
⊢ (𝑎 = 𝑏 → ((𝑎 ⊆ 𝐼 → (𝑆 D (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑎 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑎 𝐵)) ↔ (𝑏 ⊆ 𝐼 → (𝑆 D (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑏 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑏 𝐵)))) |
20 | 19 | imbi2d 341 |
. . . 4
⊢ (𝑎 = 𝑏 → ((𝜑 → (𝑎 ⊆ 𝐼 → (𝑆 D (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑎 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑎 𝐵))) ↔ (𝜑 → (𝑏 ⊆ 𝐼 → (𝑆 D (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑏 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑏 𝐵))))) |
21 | | sseq1 3946 |
. . . . . 6
⊢ (𝑎 = (𝑏 ∪ {𝑐}) → (𝑎 ⊆ 𝐼 ↔ (𝑏 ∪ {𝑐}) ⊆ 𝐼)) |
22 | | sumeq1 15400 |
. . . . . . . . 9
⊢ (𝑎 = (𝑏 ∪ {𝑐}) → Σ𝑖 ∈ 𝑎 𝐴 = Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐴) |
23 | 22 | mpteq2dv 5176 |
. . . . . . . 8
⊢ (𝑎 = (𝑏 ∪ {𝑐}) → (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑎 𝐴) = (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐴)) |
24 | 23 | oveq2d 7291 |
. . . . . . 7
⊢ (𝑎 = (𝑏 ∪ {𝑐}) → (𝑆 D (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑎 𝐴)) = (𝑆 D (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐴))) |
25 | | sumeq1 15400 |
. . . . . . . 8
⊢ (𝑎 = (𝑏 ∪ {𝑐}) → Σ𝑖 ∈ 𝑎 𝐵 = Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐵) |
26 | 25 | mpteq2dv 5176 |
. . . . . . 7
⊢ (𝑎 = (𝑏 ∪ {𝑐}) → (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑎 𝐵) = (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐵)) |
27 | 24, 26 | eqeq12d 2754 |
. . . . . 6
⊢ (𝑎 = (𝑏 ∪ {𝑐}) → ((𝑆 D (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑎 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑎 𝐵) ↔ (𝑆 D (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐵))) |
28 | 21, 27 | imbi12d 345 |
. . . . 5
⊢ (𝑎 = (𝑏 ∪ {𝑐}) → ((𝑎 ⊆ 𝐼 → (𝑆 D (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑎 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑎 𝐵)) ↔ ((𝑏 ∪ {𝑐}) ⊆ 𝐼 → (𝑆 D (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐵)))) |
29 | 28 | imbi2d 341 |
. . . 4
⊢ (𝑎 = (𝑏 ∪ {𝑐}) → ((𝜑 → (𝑎 ⊆ 𝐼 → (𝑆 D (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑎 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑎 𝐵))) ↔ (𝜑 → ((𝑏 ∪ {𝑐}) ⊆ 𝐼 → (𝑆 D (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐵))))) |
30 | | sseq1 3946 |
. . . . . 6
⊢ (𝑎 = 𝐼 → (𝑎 ⊆ 𝐼 ↔ 𝐼 ⊆ 𝐼)) |
31 | | sumeq1 15400 |
. . . . . . . . 9
⊢ (𝑎 = 𝐼 → Σ𝑖 ∈ 𝑎 𝐴 = Σ𝑖 ∈ 𝐼 𝐴) |
32 | 31 | mpteq2dv 5176 |
. . . . . . . 8
⊢ (𝑎 = 𝐼 → (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑎 𝐴) = (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝐼 𝐴)) |
33 | 32 | oveq2d 7291 |
. . . . . . 7
⊢ (𝑎 = 𝐼 → (𝑆 D (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑎 𝐴)) = (𝑆 D (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝐼 𝐴))) |
34 | | sumeq1 15400 |
. . . . . . . 8
⊢ (𝑎 = 𝐼 → Σ𝑖 ∈ 𝑎 𝐵 = Σ𝑖 ∈ 𝐼 𝐵) |
35 | 34 | mpteq2dv 5176 |
. . . . . . 7
⊢ (𝑎 = 𝐼 → (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑎 𝐵) = (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝐼 𝐵)) |
36 | 33, 35 | eqeq12d 2754 |
. . . . . 6
⊢ (𝑎 = 𝐼 → ((𝑆 D (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑎 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑎 𝐵) ↔ (𝑆 D (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝐼 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝐼 𝐵))) |
37 | 30, 36 | imbi12d 345 |
. . . . 5
⊢ (𝑎 = 𝐼 → ((𝑎 ⊆ 𝐼 → (𝑆 D (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑎 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑎 𝐵)) ↔ (𝐼 ⊆ 𝐼 → (𝑆 D (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝐼 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝐼 𝐵)))) |
38 | 37 | imbi2d 341 |
. . . 4
⊢ (𝑎 = 𝐼 → ((𝜑 → (𝑎 ⊆ 𝐼 → (𝑆 D (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑎 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑎 𝐵))) ↔ (𝜑 → (𝐼 ⊆ 𝐼 → (𝑆 D (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝐼 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝐼 𝐵))))) |
39 | | dvmptfsum.s |
. . . . . . 7
⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) |
40 | | 0cnd 10968 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 0 ∈ ℂ) |
41 | | 0cnd 10968 |
. . . . . . . 8
⊢ (𝜑 → 0 ∈
ℂ) |
42 | 39, 41 | dvmptc 25122 |
. . . . . . 7
⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑆 ↦ 0)) = (𝑥 ∈ 𝑆 ↦ 0)) |
43 | | dvmptfsum.j |
. . . . . . . . 9
⊢ 𝐽 = (𝐾 ↾t 𝑆) |
44 | | dvmptfsum.k |
. . . . . . . . . . 11
⊢ 𝐾 =
(TopOpen‘ℂfld) |
45 | 44 | cnfldtopon 23946 |
. . . . . . . . . 10
⊢ 𝐾 ∈
(TopOn‘ℂ) |
46 | | recnprss 25068 |
. . . . . . . . . . 11
⊢ (𝑆 ∈ {ℝ, ℂ}
→ 𝑆 ⊆
ℂ) |
47 | 39, 46 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑆 ⊆ ℂ) |
48 | | resttopon 22312 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ (TopOn‘ℂ)
∧ 𝑆 ⊆ ℂ)
→ (𝐾
↾t 𝑆)
∈ (TopOn‘𝑆)) |
49 | 45, 47, 48 | sylancr 587 |
. . . . . . . . 9
⊢ (𝜑 → (𝐾 ↾t 𝑆) ∈ (TopOn‘𝑆)) |
50 | 43, 49 | eqeltrid 2843 |
. . . . . . . 8
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑆)) |
51 | | dvmptfsum.x |
. . . . . . . 8
⊢ (𝜑 → 𝑋 ∈ 𝐽) |
52 | | toponss 22076 |
. . . . . . . 8
⊢ ((𝐽 ∈ (TopOn‘𝑆) ∧ 𝑋 ∈ 𝐽) → 𝑋 ⊆ 𝑆) |
53 | 50, 51, 52 | syl2anc 584 |
. . . . . . 7
⊢ (𝜑 → 𝑋 ⊆ 𝑆) |
54 | 39, 40, 40, 42, 53, 43, 44, 51 | dvmptres 25127 |
. . . . . 6
⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ 0)) = (𝑥 ∈ 𝑋 ↦ 0)) |
55 | | sum0 15433 |
. . . . . . . 8
⊢
Σ𝑖 ∈
∅ 𝐴 =
0 |
56 | 55 | mpteq2i 5179 |
. . . . . . 7
⊢ (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ ∅ 𝐴) = (𝑥 ∈ 𝑋 ↦ 0) |
57 | 56 | oveq2i 7286 |
. . . . . 6
⊢ (𝑆 D (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ ∅ 𝐴)) = (𝑆 D (𝑥 ∈ 𝑋 ↦ 0)) |
58 | | sum0 15433 |
. . . . . . 7
⊢
Σ𝑖 ∈
∅ 𝐵 =
0 |
59 | 58 | mpteq2i 5179 |
. . . . . 6
⊢ (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ ∅ 𝐵) = (𝑥 ∈ 𝑋 ↦ 0) |
60 | 54, 57, 59 | 3eqtr4g 2803 |
. . . . 5
⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ ∅ 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ ∅ 𝐵)) |
61 | 60 | a1d 25 |
. . . 4
⊢ (𝜑 → (∅ ⊆ 𝐼 → (𝑆 D (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ ∅ 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ ∅ 𝐵))) |
62 | | ssun1 4106 |
. . . . . . . . . 10
⊢ 𝑏 ⊆ (𝑏 ∪ {𝑐}) |
63 | | sstr 3929 |
. . . . . . . . . 10
⊢ ((𝑏 ⊆ (𝑏 ∪ {𝑐}) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) → 𝑏 ⊆ 𝐼) |
64 | 62, 63 | mpan 687 |
. . . . . . . . 9
⊢ ((𝑏 ∪ {𝑐}) ⊆ 𝐼 → 𝑏 ⊆ 𝐼) |
65 | 64 | imim1i 63 |
. . . . . . . 8
⊢ ((𝑏 ⊆ 𝐼 → (𝑆 D (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑏 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑏 𝐵)) → ((𝑏 ∪ {𝑐}) ⊆ 𝐼 → (𝑆 D (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑏 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑏 𝐵))) |
66 | | simpll 764 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ ¬ 𝑐 ∈ 𝑏) ∧ ((𝑏 ∪ {𝑐}) ⊆ 𝐼 ∧ (𝑆 D (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑏 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑏 𝐵))) → 𝜑) |
67 | 66, 39 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ ¬ 𝑐 ∈ 𝑏) ∧ ((𝑏 ∪ {𝑐}) ⊆ 𝐼 ∧ (𝑆 D (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑏 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑏 𝐵))) → 𝑆 ∈ {ℝ, ℂ}) |
68 | 2 | ad3antrrr 727 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑎 ∈ 𝑋) → 𝐼 ∈ Fin) |
69 | 64 | ad2antlr 724 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑎 ∈ 𝑋) → 𝑏 ⊆ 𝐼) |
70 | 68, 69 | ssfid 9042 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑎 ∈ 𝑋) → 𝑏 ∈ Fin) |
71 | | simp-4l 780 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ ¬
𝑐 ∈ 𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑎 ∈ 𝑋) ∧ 𝑖 ∈ 𝑏) → 𝜑) |
72 | 69 | sselda 3921 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ ¬
𝑐 ∈ 𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑎 ∈ 𝑋) ∧ 𝑖 ∈ 𝑏) → 𝑖 ∈ 𝐼) |
73 | | simplr 766 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ ¬
𝑐 ∈ 𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑎 ∈ 𝑋) ∧ 𝑖 ∈ 𝑏) → 𝑎 ∈ 𝑋) |
74 | | nfv 1917 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑥(𝜑 ∧ 𝑖 ∈ 𝐼 ∧ 𝑎 ∈ 𝑋) |
75 | | nfcsb1v 3857 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑥⦋𝑎 / 𝑥⦌𝐴 |
76 | 75 | nfel1 2923 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑥⦋𝑎 / 𝑥⦌𝐴 ∈ ℂ |
77 | 74, 76 | nfim 1899 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑥((𝜑 ∧ 𝑖 ∈ 𝐼 ∧ 𝑎 ∈ 𝑋) → ⦋𝑎 / 𝑥⦌𝐴 ∈ ℂ) |
78 | | eleq1w 2821 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 𝑎 → (𝑥 ∈ 𝑋 ↔ 𝑎 ∈ 𝑋)) |
79 | 78 | 3anbi3d 1441 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑎 → ((𝜑 ∧ 𝑖 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋) ↔ (𝜑 ∧ 𝑖 ∈ 𝐼 ∧ 𝑎 ∈ 𝑋))) |
80 | | csbeq1a 3846 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 𝑎 → 𝐴 = ⦋𝑎 / 𝑥⦌𝐴) |
81 | 80 | eleq1d 2823 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑎 → (𝐴 ∈ ℂ ↔ ⦋𝑎 / 𝑥⦌𝐴 ∈ ℂ)) |
82 | 79, 81 | imbi12d 345 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑎 → (((𝜑 ∧ 𝑖 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ ℂ) ↔ ((𝜑 ∧ 𝑖 ∈ 𝐼 ∧ 𝑎 ∈ 𝑋) → ⦋𝑎 / 𝑥⦌𝐴 ∈ ℂ))) |
83 | | dvmptfsum.a |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ ℂ) |
84 | 77, 82, 83 | chvarfv 2233 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼 ∧ 𝑎 ∈ 𝑋) → ⦋𝑎 / 𝑥⦌𝐴 ∈ ℂ) |
85 | 71, 72, 73, 84 | syl3anc 1370 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ ¬
𝑐 ∈ 𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑎 ∈ 𝑋) ∧ 𝑖 ∈ 𝑏) → ⦋𝑎 / 𝑥⦌𝐴 ∈ ℂ) |
86 | 70, 85 | fsumcl 15445 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑎 ∈ 𝑋) → Σ𝑖 ∈ 𝑏 ⦋𝑎 / 𝑥⦌𝐴 ∈ ℂ) |
87 | 86 | adantlrr 718 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑏) ∧ ((𝑏 ∪ {𝑐}) ⊆ 𝐼 ∧ (𝑆 D (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑏 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑏 𝐵))) ∧ 𝑎 ∈ 𝑋) → Σ𝑖 ∈ 𝑏 ⦋𝑎 / 𝑥⦌𝐴 ∈ ℂ) |
88 | | sumex 15399 |
. . . . . . . . . . . . 13
⊢
Σ𝑖 ∈
𝑏 ⦋𝑎 / 𝑥⦌𝐵 ∈ V |
89 | 88 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑏) ∧ ((𝑏 ∪ {𝑐}) ⊆ 𝐼 ∧ (𝑆 D (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑏 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑏 𝐵))) ∧ 𝑎 ∈ 𝑋) → Σ𝑖 ∈ 𝑏 ⦋𝑎 / 𝑥⦌𝐵 ∈ V) |
90 | | nfcv 2907 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑎Σ𝑖 ∈ 𝑏 𝐴 |
91 | | nfcv 2907 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑥𝑏 |
92 | 91, 75 | nfsum 15402 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑥Σ𝑖 ∈ 𝑏 ⦋𝑎 / 𝑥⦌𝐴 |
93 | 80 | sumeq2sdv 15416 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑎 → Σ𝑖 ∈ 𝑏 𝐴 = Σ𝑖 ∈ 𝑏 ⦋𝑎 / 𝑥⦌𝐴) |
94 | 90, 92, 93 | cbvmpt 5185 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑏 𝐴) = (𝑎 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑏 ⦋𝑎 / 𝑥⦌𝐴) |
95 | 94 | oveq2i 7286 |
. . . . . . . . . . . . . . 15
⊢ (𝑆 D (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑏 𝐴)) = (𝑆 D (𝑎 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑏 ⦋𝑎 / 𝑥⦌𝐴)) |
96 | | nfcv 2907 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑎Σ𝑖 ∈ 𝑏 𝐵 |
97 | | nfcsb1v 3857 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑥⦋𝑎 / 𝑥⦌𝐵 |
98 | 91, 97 | nfsum 15402 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑥Σ𝑖 ∈ 𝑏 ⦋𝑎 / 𝑥⦌𝐵 |
99 | | csbeq1a 3846 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑎 → 𝐵 = ⦋𝑎 / 𝑥⦌𝐵) |
100 | 99 | sumeq2sdv 15416 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑎 → Σ𝑖 ∈ 𝑏 𝐵 = Σ𝑖 ∈ 𝑏 ⦋𝑎 / 𝑥⦌𝐵) |
101 | 96, 98, 100 | cbvmpt 5185 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑏 𝐵) = (𝑎 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑏 ⦋𝑎 / 𝑥⦌𝐵) |
102 | 95, 101 | eqeq12i 2756 |
. . . . . . . . . . . . . 14
⊢ ((𝑆 D (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑏 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑏 𝐵) ↔ (𝑆 D (𝑎 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑏 ⦋𝑎 / 𝑥⦌𝐴)) = (𝑎 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑏 ⦋𝑎 / 𝑥⦌𝐵)) |
103 | 102 | biimpi 215 |
. . . . . . . . . . . . 13
⊢ ((𝑆 D (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑏 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑏 𝐵) → (𝑆 D (𝑎 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑏 ⦋𝑎 / 𝑥⦌𝐴)) = (𝑎 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑏 ⦋𝑎 / 𝑥⦌𝐵)) |
104 | 103 | ad2antll 726 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ ¬ 𝑐 ∈ 𝑏) ∧ ((𝑏 ∪ {𝑐}) ⊆ 𝐼 ∧ (𝑆 D (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑏 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑏 𝐵))) → (𝑆 D (𝑎 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑏 ⦋𝑎 / 𝑥⦌𝐴)) = (𝑎 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑏 ⦋𝑎 / 𝑥⦌𝐵)) |
105 | | simplll 772 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑎 ∈ 𝑋) → 𝜑) |
106 | | ssun2 4107 |
. . . . . . . . . . . . . . . . 17
⊢ {𝑐} ⊆ (𝑏 ∪ {𝑐}) |
107 | | sstr 3929 |
. . . . . . . . . . . . . . . . 17
⊢ (({𝑐} ⊆ (𝑏 ∪ {𝑐}) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) → {𝑐} ⊆ 𝐼) |
108 | 106, 107 | mpan 687 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑏 ∪ {𝑐}) ⊆ 𝐼 → {𝑐} ⊆ 𝐼) |
109 | | vex 3436 |
. . . . . . . . . . . . . . . . 17
⊢ 𝑐 ∈ V |
110 | 109 | snss 4719 |
. . . . . . . . . . . . . . . 16
⊢ (𝑐 ∈ 𝐼 ↔ {𝑐} ⊆ 𝐼) |
111 | 108, 110 | sylibr 233 |
. . . . . . . . . . . . . . 15
⊢ ((𝑏 ∪ {𝑐}) ⊆ 𝐼 → 𝑐 ∈ 𝐼) |
112 | 111 | ad2antlr 724 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑎 ∈ 𝑋) → 𝑐 ∈ 𝐼) |
113 | | simpr 485 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑎 ∈ 𝑋) → 𝑎 ∈ 𝑋) |
114 | 83 | 3expb 1119 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑖 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋)) → 𝐴 ∈ ℂ) |
115 | 114 | ancom2s 647 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑖 ∈ 𝐼)) → 𝐴 ∈ ℂ) |
116 | 115 | ralrimivva 3123 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ∀𝑥 ∈ 𝑋 ∀𝑖 ∈ 𝐼 𝐴 ∈ ℂ) |
117 | | nfcsb1v 3857 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑖⦋𝑐 / 𝑖⦌⦋𝑎 / 𝑥⦌𝐴 |
118 | 117 | nfel1 2923 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑖⦋𝑐 / 𝑖⦌⦋𝑎 / 𝑥⦌𝐴 ∈ ℂ |
119 | | csbeq1a 3846 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑖 = 𝑐 → ⦋𝑎 / 𝑥⦌𝐴 = ⦋𝑐 / 𝑖⦌⦋𝑎 / 𝑥⦌𝐴) |
120 | 119 | eleq1d 2823 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑖 = 𝑐 → (⦋𝑎 / 𝑥⦌𝐴 ∈ ℂ ↔ ⦋𝑐 / 𝑖⦌⦋𝑎 / 𝑥⦌𝐴 ∈ ℂ)) |
121 | 76, 118, 81, 120 | rspc2 3568 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑎 ∈ 𝑋 ∧ 𝑐 ∈ 𝐼) → (∀𝑥 ∈ 𝑋 ∀𝑖 ∈ 𝐼 𝐴 ∈ ℂ → ⦋𝑐 / 𝑖⦌⦋𝑎 / 𝑥⦌𝐴 ∈ ℂ)) |
122 | 121 | ancoms 459 |
. . . . . . . . . . . . . . 15
⊢ ((𝑐 ∈ 𝐼 ∧ 𝑎 ∈ 𝑋) → (∀𝑥 ∈ 𝑋 ∀𝑖 ∈ 𝐼 𝐴 ∈ ℂ → ⦋𝑐 / 𝑖⦌⦋𝑎 / 𝑥⦌𝐴 ∈ ℂ)) |
123 | 116, 122 | mpan9 507 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑐 ∈ 𝐼 ∧ 𝑎 ∈ 𝑋)) → ⦋𝑐 / 𝑖⦌⦋𝑎 / 𝑥⦌𝐴 ∈ ℂ) |
124 | 105, 112,
113, 123 | syl12anc 834 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑎 ∈ 𝑋) → ⦋𝑐 / 𝑖⦌⦋𝑎 / 𝑥⦌𝐴 ∈ ℂ) |
125 | 124 | adantlrr 718 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑏) ∧ ((𝑏 ∪ {𝑐}) ⊆ 𝐼 ∧ (𝑆 D (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑏 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑏 𝐵))) ∧ 𝑎 ∈ 𝑋) → ⦋𝑐 / 𝑖⦌⦋𝑎 / 𝑥⦌𝐴 ∈ ℂ) |
126 | | dvmptfsum.b |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ ℂ) |
127 | 126 | 3expb 1119 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑖 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋)) → 𝐵 ∈ ℂ) |
128 | 127 | ancom2s 647 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑖 ∈ 𝐼)) → 𝐵 ∈ ℂ) |
129 | 128 | ralrimivva 3123 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ∀𝑥 ∈ 𝑋 ∀𝑖 ∈ 𝐼 𝐵 ∈ ℂ) |
130 | 97 | nfel1 2923 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑥⦋𝑎 / 𝑥⦌𝐵 ∈ ℂ |
131 | | nfcsb1v 3857 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑖⦋𝑐 / 𝑖⦌⦋𝑎 / 𝑥⦌𝐵 |
132 | 131 | nfel1 2923 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑖⦋𝑐 / 𝑖⦌⦋𝑎 / 𝑥⦌𝐵 ∈ ℂ |
133 | 99 | eleq1d 2823 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑎 → (𝐵 ∈ ℂ ↔ ⦋𝑎 / 𝑥⦌𝐵 ∈ ℂ)) |
134 | | csbeq1a 3846 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑖 = 𝑐 → ⦋𝑎 / 𝑥⦌𝐵 = ⦋𝑐 / 𝑖⦌⦋𝑎 / 𝑥⦌𝐵) |
135 | 134 | eleq1d 2823 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑖 = 𝑐 → (⦋𝑎 / 𝑥⦌𝐵 ∈ ℂ ↔ ⦋𝑐 / 𝑖⦌⦋𝑎 / 𝑥⦌𝐵 ∈ ℂ)) |
136 | 130, 132,
133, 135 | rspc2 3568 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑎 ∈ 𝑋 ∧ 𝑐 ∈ 𝐼) → (∀𝑥 ∈ 𝑋 ∀𝑖 ∈ 𝐼 𝐵 ∈ ℂ → ⦋𝑐 / 𝑖⦌⦋𝑎 / 𝑥⦌𝐵 ∈ ℂ)) |
137 | 136 | ancoms 459 |
. . . . . . . . . . . . . . 15
⊢ ((𝑐 ∈ 𝐼 ∧ 𝑎 ∈ 𝑋) → (∀𝑥 ∈ 𝑋 ∀𝑖 ∈ 𝐼 𝐵 ∈ ℂ → ⦋𝑐 / 𝑖⦌⦋𝑎 / 𝑥⦌𝐵 ∈ ℂ)) |
138 | 129, 137 | mpan9 507 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑐 ∈ 𝐼 ∧ 𝑎 ∈ 𝑋)) → ⦋𝑐 / 𝑖⦌⦋𝑎 / 𝑥⦌𝐵 ∈ ℂ) |
139 | 105, 112,
113, 138 | syl12anc 834 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑎 ∈ 𝑋) → ⦋𝑐 / 𝑖⦌⦋𝑎 / 𝑥⦌𝐵 ∈ ℂ) |
140 | 139 | adantlrr 718 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑏) ∧ ((𝑏 ∪ {𝑐}) ⊆ 𝐼 ∧ (𝑆 D (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑏 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑏 𝐵))) ∧ 𝑎 ∈ 𝑋) → ⦋𝑐 / 𝑖⦌⦋𝑎 / 𝑥⦌𝐵 ∈ ℂ) |
141 | 111 | ad2antrl 725 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ ¬ 𝑐 ∈ 𝑏) ∧ ((𝑏 ∪ {𝑐}) ⊆ 𝐼 ∧ (𝑆 D (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑏 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑏 𝐵))) → 𝑐 ∈ 𝐼) |
142 | | nfv 1917 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑖(𝜑 ∧ 𝑐 ∈ 𝐼) |
143 | | nfcv 2907 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑖𝑆 |
144 | | nfcv 2907 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑖
D |
145 | | nfcv 2907 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑖𝑋 |
146 | | nfcsb1v 3857 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑖⦋𝑐 / 𝑖⦌𝐴 |
147 | 145, 146 | nfmpt 5181 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑖(𝑥 ∈ 𝑋 ↦ ⦋𝑐 / 𝑖⦌𝐴) |
148 | 143, 144,
147 | nfov 7305 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑖(𝑆 D (𝑥 ∈ 𝑋 ↦ ⦋𝑐 / 𝑖⦌𝐴)) |
149 | | nfcsb1v 3857 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑖⦋𝑐 / 𝑖⦌𝐵 |
150 | 145, 149 | nfmpt 5181 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑖(𝑥 ∈ 𝑋 ↦ ⦋𝑐 / 𝑖⦌𝐵) |
151 | 148, 150 | nfeq 2920 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑖(𝑆 D (𝑥 ∈ 𝑋 ↦ ⦋𝑐 / 𝑖⦌𝐴)) = (𝑥 ∈ 𝑋 ↦ ⦋𝑐 / 𝑖⦌𝐵) |
152 | 142, 151 | nfim 1899 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑖((𝜑 ∧ 𝑐 ∈ 𝐼) → (𝑆 D (𝑥 ∈ 𝑋 ↦ ⦋𝑐 / 𝑖⦌𝐴)) = (𝑥 ∈ 𝑋 ↦ ⦋𝑐 / 𝑖⦌𝐵)) |
153 | | eleq1w 2821 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑖 = 𝑐 → (𝑖 ∈ 𝐼 ↔ 𝑐 ∈ 𝐼)) |
154 | 153 | anbi2d 629 |
. . . . . . . . . . . . . . . 16
⊢ (𝑖 = 𝑐 → ((𝜑 ∧ 𝑖 ∈ 𝐼) ↔ (𝜑 ∧ 𝑐 ∈ 𝐼))) |
155 | | csbeq1a 3846 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑖 = 𝑐 → 𝐴 = ⦋𝑐 / 𝑖⦌𝐴) |
156 | 155 | mpteq2dv 5176 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑖 = 𝑐 → (𝑥 ∈ 𝑋 ↦ 𝐴) = (𝑥 ∈ 𝑋 ↦ ⦋𝑐 / 𝑖⦌𝐴)) |
157 | 156 | oveq2d 7291 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑖 = 𝑐 → (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) = (𝑆 D (𝑥 ∈ 𝑋 ↦ ⦋𝑐 / 𝑖⦌𝐴))) |
158 | | csbeq1a 3846 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑖 = 𝑐 → 𝐵 = ⦋𝑐 / 𝑖⦌𝐵) |
159 | 158 | mpteq2dv 5176 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑖 = 𝑐 → (𝑥 ∈ 𝑋 ↦ 𝐵) = (𝑥 ∈ 𝑋 ↦ ⦋𝑐 / 𝑖⦌𝐵)) |
160 | 157, 159 | eqeq12d 2754 |
. . . . . . . . . . . . . . . 16
⊢ (𝑖 = 𝑐 → ((𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) = (𝑥 ∈ 𝑋 ↦ 𝐵) ↔ (𝑆 D (𝑥 ∈ 𝑋 ↦ ⦋𝑐 / 𝑖⦌𝐴)) = (𝑥 ∈ 𝑋 ↦ ⦋𝑐 / 𝑖⦌𝐵))) |
161 | 154, 160 | imbi12d 345 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 = 𝑐 → (((𝜑 ∧ 𝑖 ∈ 𝐼) → (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) = (𝑥 ∈ 𝑋 ↦ 𝐵)) ↔ ((𝜑 ∧ 𝑐 ∈ 𝐼) → (𝑆 D (𝑥 ∈ 𝑋 ↦ ⦋𝑐 / 𝑖⦌𝐴)) = (𝑥 ∈ 𝑋 ↦ ⦋𝑐 / 𝑖⦌𝐵)))) |
162 | | dvmptfsum.d |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) = (𝑥 ∈ 𝑋 ↦ 𝐵)) |
163 | 152, 161,
162 | chvarfv 2233 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐼) → (𝑆 D (𝑥 ∈ 𝑋 ↦ ⦋𝑐 / 𝑖⦌𝐴)) = (𝑥 ∈ 𝑋 ↦ ⦋𝑐 / 𝑖⦌𝐵)) |
164 | | nfcv 2907 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑎⦋𝑐 / 𝑖⦌𝐴 |
165 | | nfcv 2907 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑥𝑐 |
166 | 165, 75 | nfcsbw 3859 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑥⦋𝑐 / 𝑖⦌⦋𝑎 / 𝑥⦌𝐴 |
167 | 80 | csbeq2dv 3839 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑎 → ⦋𝑐 / 𝑖⦌𝐴 = ⦋𝑐 / 𝑖⦌⦋𝑎 / 𝑥⦌𝐴) |
168 | 164, 166,
167 | cbvmpt 5185 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ 𝑋 ↦ ⦋𝑐 / 𝑖⦌𝐴) = (𝑎 ∈ 𝑋 ↦ ⦋𝑐 / 𝑖⦌⦋𝑎 / 𝑥⦌𝐴) |
169 | 168 | oveq2i 7286 |
. . . . . . . . . . . . . 14
⊢ (𝑆 D (𝑥 ∈ 𝑋 ↦ ⦋𝑐 / 𝑖⦌𝐴)) = (𝑆 D (𝑎 ∈ 𝑋 ↦ ⦋𝑐 / 𝑖⦌⦋𝑎 / 𝑥⦌𝐴)) |
170 | | nfcv 2907 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑎⦋𝑐 / 𝑖⦌𝐵 |
171 | 165, 97 | nfcsbw 3859 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑥⦋𝑐 / 𝑖⦌⦋𝑎 / 𝑥⦌𝐵 |
172 | 99 | csbeq2dv 3839 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑎 → ⦋𝑐 / 𝑖⦌𝐵 = ⦋𝑐 / 𝑖⦌⦋𝑎 / 𝑥⦌𝐵) |
173 | 170, 171,
172 | cbvmpt 5185 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ 𝑋 ↦ ⦋𝑐 / 𝑖⦌𝐵) = (𝑎 ∈ 𝑋 ↦ ⦋𝑐 / 𝑖⦌⦋𝑎 / 𝑥⦌𝐵) |
174 | 163, 169,
173 | 3eqtr3g 2801 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐼) → (𝑆 D (𝑎 ∈ 𝑋 ↦ ⦋𝑐 / 𝑖⦌⦋𝑎 / 𝑥⦌𝐴)) = (𝑎 ∈ 𝑋 ↦ ⦋𝑐 / 𝑖⦌⦋𝑎 / 𝑥⦌𝐵)) |
175 | 66, 141, 174 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ ¬ 𝑐 ∈ 𝑏) ∧ ((𝑏 ∪ {𝑐}) ⊆ 𝐼 ∧ (𝑆 D (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑏 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑏 𝐵))) → (𝑆 D (𝑎 ∈ 𝑋 ↦ ⦋𝑐 / 𝑖⦌⦋𝑎 / 𝑥⦌𝐴)) = (𝑎 ∈ 𝑋 ↦ ⦋𝑐 / 𝑖⦌⦋𝑎 / 𝑥⦌𝐵)) |
176 | 67, 87, 89, 104, 125, 140, 175 | dvmptadd 25124 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ¬ 𝑐 ∈ 𝑏) ∧ ((𝑏 ∪ {𝑐}) ⊆ 𝐼 ∧ (𝑆 D (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑏 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑏 𝐵))) → (𝑆 D (𝑎 ∈ 𝑋 ↦ (Σ𝑖 ∈ 𝑏 ⦋𝑎 / 𝑥⦌𝐴 + ⦋𝑐 / 𝑖⦌⦋𝑎 / 𝑥⦌𝐴))) = (𝑎 ∈ 𝑋 ↦ (Σ𝑖 ∈ 𝑏 ⦋𝑎 / 𝑥⦌𝐵 + ⦋𝑐 / 𝑖⦌⦋𝑎 / 𝑥⦌𝐵))) |
177 | | nfcv 2907 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑎Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐴 |
178 | | nfcv 2907 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑥(𝑏 ∪ {𝑐}) |
179 | 178, 75 | nfsum 15402 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑥Σ𝑖 ∈ (𝑏 ∪ {𝑐})⦋𝑎 / 𝑥⦌𝐴 |
180 | 80 | sumeq2sdv 15416 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑎 → Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐴 = Σ𝑖 ∈ (𝑏 ∪ {𝑐})⦋𝑎 / 𝑥⦌𝐴) |
181 | 177, 179,
180 | cbvmpt 5185 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐴) = (𝑎 ∈ 𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})⦋𝑎 / 𝑥⦌𝐴) |
182 | | simpllr 773 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑎 ∈ 𝑋) → ¬ 𝑐 ∈ 𝑏) |
183 | | disjsn 4647 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑏 ∩ {𝑐}) = ∅ ↔ ¬ 𝑐 ∈ 𝑏) |
184 | 182, 183 | sylibr 233 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑎 ∈ 𝑋) → (𝑏 ∩ {𝑐}) = ∅) |
185 | | eqidd 2739 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑎 ∈ 𝑋) → (𝑏 ∪ {𝑐}) = (𝑏 ∪ {𝑐})) |
186 | | simplr 766 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑎 ∈ 𝑋) → (𝑏 ∪ {𝑐}) ⊆ 𝐼) |
187 | 68, 186 | ssfid 9042 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑎 ∈ 𝑋) → (𝑏 ∪ {𝑐}) ∈ Fin) |
188 | | simp-4l 780 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ ¬
𝑐 ∈ 𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑎 ∈ 𝑋) ∧ 𝑖 ∈ (𝑏 ∪ {𝑐})) → 𝜑) |
189 | 186 | sselda 3921 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ ¬
𝑐 ∈ 𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑎 ∈ 𝑋) ∧ 𝑖 ∈ (𝑏 ∪ {𝑐})) → 𝑖 ∈ 𝐼) |
190 | | simplr 766 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ ¬
𝑐 ∈ 𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑎 ∈ 𝑋) ∧ 𝑖 ∈ (𝑏 ∪ {𝑐})) → 𝑎 ∈ 𝑋) |
191 | 188, 189,
190, 84 | syl3anc 1370 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ ¬
𝑐 ∈ 𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑎 ∈ 𝑋) ∧ 𝑖 ∈ (𝑏 ∪ {𝑐})) → ⦋𝑎 / 𝑥⦌𝐴 ∈ ℂ) |
192 | 184, 185,
187, 191 | fsumsplit 15453 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑎 ∈ 𝑋) → Σ𝑖 ∈ (𝑏 ∪ {𝑐})⦋𝑎 / 𝑥⦌𝐴 = (Σ𝑖 ∈ 𝑏 ⦋𝑎 / 𝑥⦌𝐴 + Σ𝑖 ∈ {𝑐}⦋𝑎 / 𝑥⦌𝐴)) |
193 | | sumsns 15462 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑐 ∈ V ∧
⦋𝑐 / 𝑖⦌⦋𝑎 / 𝑥⦌𝐴 ∈ ℂ) → Σ𝑖 ∈ {𝑐}⦋𝑎 / 𝑥⦌𝐴 = ⦋𝑐 / 𝑖⦌⦋𝑎 / 𝑥⦌𝐴) |
194 | 109, 124,
193 | sylancr 587 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑎 ∈ 𝑋) → Σ𝑖 ∈ {𝑐}⦋𝑎 / 𝑥⦌𝐴 = ⦋𝑐 / 𝑖⦌⦋𝑎 / 𝑥⦌𝐴) |
195 | 194 | oveq2d 7291 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑎 ∈ 𝑋) → (Σ𝑖 ∈ 𝑏 ⦋𝑎 / 𝑥⦌𝐴 + Σ𝑖 ∈ {𝑐}⦋𝑎 / 𝑥⦌𝐴) = (Σ𝑖 ∈ 𝑏 ⦋𝑎 / 𝑥⦌𝐴 + ⦋𝑐 / 𝑖⦌⦋𝑎 / 𝑥⦌𝐴)) |
196 | 192, 195 | eqtrd 2778 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑎 ∈ 𝑋) → Σ𝑖 ∈ (𝑏 ∪ {𝑐})⦋𝑎 / 𝑥⦌𝐴 = (Σ𝑖 ∈ 𝑏 ⦋𝑎 / 𝑥⦌𝐴 + ⦋𝑐 / 𝑖⦌⦋𝑎 / 𝑥⦌𝐴)) |
197 | 196 | mpteq2dva 5174 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ ¬ 𝑐 ∈ 𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) → (𝑎 ∈ 𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})⦋𝑎 / 𝑥⦌𝐴) = (𝑎 ∈ 𝑋 ↦ (Σ𝑖 ∈ 𝑏 ⦋𝑎 / 𝑥⦌𝐴 + ⦋𝑐 / 𝑖⦌⦋𝑎 / 𝑥⦌𝐴))) |
198 | 181, 197 | eqtrid 2790 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ ¬ 𝑐 ∈ 𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) → (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐴) = (𝑎 ∈ 𝑋 ↦ (Σ𝑖 ∈ 𝑏 ⦋𝑎 / 𝑥⦌𝐴 + ⦋𝑐 / 𝑖⦌⦋𝑎 / 𝑥⦌𝐴))) |
199 | 198 | adantrr 714 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ ¬ 𝑐 ∈ 𝑏) ∧ ((𝑏 ∪ {𝑐}) ⊆ 𝐼 ∧ (𝑆 D (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑏 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑏 𝐵))) → (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐴) = (𝑎 ∈ 𝑋 ↦ (Σ𝑖 ∈ 𝑏 ⦋𝑎 / 𝑥⦌𝐴 + ⦋𝑐 / 𝑖⦌⦋𝑎 / 𝑥⦌𝐴))) |
200 | 199 | oveq2d 7291 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ¬ 𝑐 ∈ 𝑏) ∧ ((𝑏 ∪ {𝑐}) ⊆ 𝐼 ∧ (𝑆 D (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑏 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑏 𝐵))) → (𝑆 D (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐴)) = (𝑆 D (𝑎 ∈ 𝑋 ↦ (Σ𝑖 ∈ 𝑏 ⦋𝑎 / 𝑥⦌𝐴 + ⦋𝑐 / 𝑖⦌⦋𝑎 / 𝑥⦌𝐴)))) |
201 | | nfcv 2907 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑎Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐵 |
202 | 178, 97 | nfsum 15402 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑥Σ𝑖 ∈ (𝑏 ∪ {𝑐})⦋𝑎 / 𝑥⦌𝐵 |
203 | 99 | sumeq2sdv 15416 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑎 → Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐵 = Σ𝑖 ∈ (𝑏 ∪ {𝑐})⦋𝑎 / 𝑥⦌𝐵) |
204 | 201, 202,
203 | cbvmpt 5185 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐵) = (𝑎 ∈ 𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})⦋𝑎 / 𝑥⦌𝐵) |
205 | 74, 130 | nfim 1899 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑥((𝜑 ∧ 𝑖 ∈ 𝐼 ∧ 𝑎 ∈ 𝑋) → ⦋𝑎 / 𝑥⦌𝐵 ∈ ℂ) |
206 | 79, 133 | imbi12d 345 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 𝑎 → (((𝜑 ∧ 𝑖 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ ℂ) ↔ ((𝜑 ∧ 𝑖 ∈ 𝐼 ∧ 𝑎 ∈ 𝑋) → ⦋𝑎 / 𝑥⦌𝐵 ∈ ℂ))) |
207 | 205, 206,
126 | chvarfv 2233 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼 ∧ 𝑎 ∈ 𝑋) → ⦋𝑎 / 𝑥⦌𝐵 ∈ ℂ) |
208 | 188, 189,
190, 207 | syl3anc 1370 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ ¬
𝑐 ∈ 𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑎 ∈ 𝑋) ∧ 𝑖 ∈ (𝑏 ∪ {𝑐})) → ⦋𝑎 / 𝑥⦌𝐵 ∈ ℂ) |
209 | 184, 185,
187, 208 | fsumsplit 15453 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑎 ∈ 𝑋) → Σ𝑖 ∈ (𝑏 ∪ {𝑐})⦋𝑎 / 𝑥⦌𝐵 = (Σ𝑖 ∈ 𝑏 ⦋𝑎 / 𝑥⦌𝐵 + Σ𝑖 ∈ {𝑐}⦋𝑎 / 𝑥⦌𝐵)) |
210 | | sumsns 15462 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑐 ∈ V ∧
⦋𝑐 / 𝑖⦌⦋𝑎 / 𝑥⦌𝐵 ∈ ℂ) → Σ𝑖 ∈ {𝑐}⦋𝑎 / 𝑥⦌𝐵 = ⦋𝑐 / 𝑖⦌⦋𝑎 / 𝑥⦌𝐵) |
211 | 109, 139,
210 | sylancr 587 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑎 ∈ 𝑋) → Σ𝑖 ∈ {𝑐}⦋𝑎 / 𝑥⦌𝐵 = ⦋𝑐 / 𝑖⦌⦋𝑎 / 𝑥⦌𝐵) |
212 | 211 | oveq2d 7291 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑎 ∈ 𝑋) → (Σ𝑖 ∈ 𝑏 ⦋𝑎 / 𝑥⦌𝐵 + Σ𝑖 ∈ {𝑐}⦋𝑎 / 𝑥⦌𝐵) = (Σ𝑖 ∈ 𝑏 ⦋𝑎 / 𝑥⦌𝐵 + ⦋𝑐 / 𝑖⦌⦋𝑎 / 𝑥⦌𝐵)) |
213 | 209, 212 | eqtrd 2778 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ ¬ 𝑐 ∈ 𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑎 ∈ 𝑋) → Σ𝑖 ∈ (𝑏 ∪ {𝑐})⦋𝑎 / 𝑥⦌𝐵 = (Σ𝑖 ∈ 𝑏 ⦋𝑎 / 𝑥⦌𝐵 + ⦋𝑐 / 𝑖⦌⦋𝑎 / 𝑥⦌𝐵)) |
214 | 213 | mpteq2dva 5174 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ ¬ 𝑐 ∈ 𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) → (𝑎 ∈ 𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})⦋𝑎 / 𝑥⦌𝐵) = (𝑎 ∈ 𝑋 ↦ (Σ𝑖 ∈ 𝑏 ⦋𝑎 / 𝑥⦌𝐵 + ⦋𝑐 / 𝑖⦌⦋𝑎 / 𝑥⦌𝐵))) |
215 | 204, 214 | eqtrid 2790 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ ¬ 𝑐 ∈ 𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) → (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐵) = (𝑎 ∈ 𝑋 ↦ (Σ𝑖 ∈ 𝑏 ⦋𝑎 / 𝑥⦌𝐵 + ⦋𝑐 / 𝑖⦌⦋𝑎 / 𝑥⦌𝐵))) |
216 | 215 | adantrr 714 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ¬ 𝑐 ∈ 𝑏) ∧ ((𝑏 ∪ {𝑐}) ⊆ 𝐼 ∧ (𝑆 D (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑏 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑏 𝐵))) → (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐵) = (𝑎 ∈ 𝑋 ↦ (Σ𝑖 ∈ 𝑏 ⦋𝑎 / 𝑥⦌𝐵 + ⦋𝑐 / 𝑖⦌⦋𝑎 / 𝑥⦌𝐵))) |
217 | 176, 200,
216 | 3eqtr4d 2788 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ¬ 𝑐 ∈ 𝑏) ∧ ((𝑏 ∪ {𝑐}) ⊆ 𝐼 ∧ (𝑆 D (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑏 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑏 𝐵))) → (𝑆 D (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐵)) |
218 | 217 | exp32 421 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ¬ 𝑐 ∈ 𝑏) → ((𝑏 ∪ {𝑐}) ⊆ 𝐼 → ((𝑆 D (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑏 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑏 𝐵) → (𝑆 D (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐵)))) |
219 | 218 | a2d 29 |
. . . . . . . 8
⊢ ((𝜑 ∧ ¬ 𝑐 ∈ 𝑏) → (((𝑏 ∪ {𝑐}) ⊆ 𝐼 → (𝑆 D (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑏 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑏 𝐵)) → ((𝑏 ∪ {𝑐}) ⊆ 𝐼 → (𝑆 D (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐵)))) |
220 | 65, 219 | syl5 34 |
. . . . . . 7
⊢ ((𝜑 ∧ ¬ 𝑐 ∈ 𝑏) → ((𝑏 ⊆ 𝐼 → (𝑆 D (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑏 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑏 𝐵)) → ((𝑏 ∪ {𝑐}) ⊆ 𝐼 → (𝑆 D (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐵)))) |
221 | 220 | expcom 414 |
. . . . . 6
⊢ (¬
𝑐 ∈ 𝑏 → (𝜑 → ((𝑏 ⊆ 𝐼 → (𝑆 D (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑏 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑏 𝐵)) → ((𝑏 ∪ {𝑐}) ⊆ 𝐼 → (𝑆 D (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐵))))) |
222 | 221 | adantl 482 |
. . . . 5
⊢ ((𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏) → (𝜑 → ((𝑏 ⊆ 𝐼 → (𝑆 D (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑏 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑏 𝐵)) → ((𝑏 ∪ {𝑐}) ⊆ 𝐼 → (𝑆 D (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐵))))) |
223 | 222 | a2d 29 |
. . . 4
⊢ ((𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏) → ((𝜑 → (𝑏 ⊆ 𝐼 → (𝑆 D (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑏 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝑏 𝐵))) → (𝜑 → ((𝑏 ∪ {𝑐}) ⊆ 𝐼 → (𝑆 D (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐵))))) |
224 | 11, 20, 29, 38, 61, 223 | findcard2s 8948 |
. . 3
⊢ (𝐼 ∈ Fin → (𝜑 → (𝐼 ⊆ 𝐼 → (𝑆 D (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝐼 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝐼 𝐵)))) |
225 | 2, 224 | mpcom 38 |
. 2
⊢ (𝜑 → (𝐼 ⊆ 𝐼 → (𝑆 D (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝐼 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝐼 𝐵))) |
226 | 1, 225 | mpi 20 |
1
⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝐼 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑖 ∈ 𝐼 𝐵)) |