MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvmptfsum Structured version   Visualization version   GIF version

Theorem dvmptfsum 24137
Description: Function-builder for derivative, finite sums rule. (Contributed by Stefan O'Rear, 12-Nov-2014.)
Hypotheses
Ref Expression
dvmptfsum.j 𝐽 = (𝐾t 𝑆)
dvmptfsum.k 𝐾 = (TopOpen‘ℂfld)
dvmptfsum.s (𝜑𝑆 ∈ {ℝ, ℂ})
dvmptfsum.x (𝜑𝑋𝐽)
dvmptfsum.i (𝜑𝐼 ∈ Fin)
dvmptfsum.a ((𝜑𝑖𝐼𝑥𝑋) → 𝐴 ∈ ℂ)
dvmptfsum.b ((𝜑𝑖𝐼𝑥𝑋) → 𝐵 ∈ ℂ)
dvmptfsum.d ((𝜑𝑖𝐼) → (𝑆 D (𝑥𝑋𝐴)) = (𝑥𝑋𝐵))
Assertion
Ref Expression
dvmptfsum (𝜑 → (𝑆 D (𝑥𝑋 ↦ Σ𝑖𝐼 𝐴)) = (𝑥𝑋 ↦ Σ𝑖𝐼 𝐵))
Distinct variable groups:   𝑥,𝑖,𝐼   𝜑,𝑖,𝑥   𝑆,𝑖,𝑥   𝑖,𝑋,𝑥
Allowed substitution hints:   𝐴(𝑥,𝑖)   𝐵(𝑥,𝑖)   𝐽(𝑥,𝑖)   𝐾(𝑥,𝑖)

Proof of Theorem dvmptfsum
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssid 3848 . 2 𝐼𝐼
2 dvmptfsum.i . . 3 (𝜑𝐼 ∈ Fin)
3 sseq1 3851 . . . . . 6 (𝑎 = ∅ → (𝑎𝐼 ↔ ∅ ⊆ 𝐼))
4 sumeq1 14796 . . . . . . . . 9 (𝑎 = ∅ → Σ𝑖𝑎 𝐴 = Σ𝑖 ∈ ∅ 𝐴)
54mpteq2dv 4968 . . . . . . . 8 (𝑎 = ∅ → (𝑥𝑋 ↦ Σ𝑖𝑎 𝐴) = (𝑥𝑋 ↦ Σ𝑖 ∈ ∅ 𝐴))
65oveq2d 6921 . . . . . . 7 (𝑎 = ∅ → (𝑆 D (𝑥𝑋 ↦ Σ𝑖𝑎 𝐴)) = (𝑆 D (𝑥𝑋 ↦ Σ𝑖 ∈ ∅ 𝐴)))
7 sumeq1 14796 . . . . . . . 8 (𝑎 = ∅ → Σ𝑖𝑎 𝐵 = Σ𝑖 ∈ ∅ 𝐵)
87mpteq2dv 4968 . . . . . . 7 (𝑎 = ∅ → (𝑥𝑋 ↦ Σ𝑖𝑎 𝐵) = (𝑥𝑋 ↦ Σ𝑖 ∈ ∅ 𝐵))
96, 8eqeq12d 2840 . . . . . 6 (𝑎 = ∅ → ((𝑆 D (𝑥𝑋 ↦ Σ𝑖𝑎 𝐴)) = (𝑥𝑋 ↦ Σ𝑖𝑎 𝐵) ↔ (𝑆 D (𝑥𝑋 ↦ Σ𝑖 ∈ ∅ 𝐴)) = (𝑥𝑋 ↦ Σ𝑖 ∈ ∅ 𝐵)))
103, 9imbi12d 336 . . . . 5 (𝑎 = ∅ → ((𝑎𝐼 → (𝑆 D (𝑥𝑋 ↦ Σ𝑖𝑎 𝐴)) = (𝑥𝑋 ↦ Σ𝑖𝑎 𝐵)) ↔ (∅ ⊆ 𝐼 → (𝑆 D (𝑥𝑋 ↦ Σ𝑖 ∈ ∅ 𝐴)) = (𝑥𝑋 ↦ Σ𝑖 ∈ ∅ 𝐵))))
1110imbi2d 332 . . . 4 (𝑎 = ∅ → ((𝜑 → (𝑎𝐼 → (𝑆 D (𝑥𝑋 ↦ Σ𝑖𝑎 𝐴)) = (𝑥𝑋 ↦ Σ𝑖𝑎 𝐵))) ↔ (𝜑 → (∅ ⊆ 𝐼 → (𝑆 D (𝑥𝑋 ↦ Σ𝑖 ∈ ∅ 𝐴)) = (𝑥𝑋 ↦ Σ𝑖 ∈ ∅ 𝐵)))))
12 sseq1 3851 . . . . . 6 (𝑎 = 𝑏 → (𝑎𝐼𝑏𝐼))
13 sumeq1 14796 . . . . . . . . 9 (𝑎 = 𝑏 → Σ𝑖𝑎 𝐴 = Σ𝑖𝑏 𝐴)
1413mpteq2dv 4968 . . . . . . . 8 (𝑎 = 𝑏 → (𝑥𝑋 ↦ Σ𝑖𝑎 𝐴) = (𝑥𝑋 ↦ Σ𝑖𝑏 𝐴))
1514oveq2d 6921 . . . . . . 7 (𝑎 = 𝑏 → (𝑆 D (𝑥𝑋 ↦ Σ𝑖𝑎 𝐴)) = (𝑆 D (𝑥𝑋 ↦ Σ𝑖𝑏 𝐴)))
16 sumeq1 14796 . . . . . . . 8 (𝑎 = 𝑏 → Σ𝑖𝑎 𝐵 = Σ𝑖𝑏 𝐵)
1716mpteq2dv 4968 . . . . . . 7 (𝑎 = 𝑏 → (𝑥𝑋 ↦ Σ𝑖𝑎 𝐵) = (𝑥𝑋 ↦ Σ𝑖𝑏 𝐵))
1815, 17eqeq12d 2840 . . . . . 6 (𝑎 = 𝑏 → ((𝑆 D (𝑥𝑋 ↦ Σ𝑖𝑎 𝐴)) = (𝑥𝑋 ↦ Σ𝑖𝑎 𝐵) ↔ (𝑆 D (𝑥𝑋 ↦ Σ𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑖𝑏 𝐵)))
1912, 18imbi12d 336 . . . . 5 (𝑎 = 𝑏 → ((𝑎𝐼 → (𝑆 D (𝑥𝑋 ↦ Σ𝑖𝑎 𝐴)) = (𝑥𝑋 ↦ Σ𝑖𝑎 𝐵)) ↔ (𝑏𝐼 → (𝑆 D (𝑥𝑋 ↦ Σ𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑖𝑏 𝐵))))
2019imbi2d 332 . . . 4 (𝑎 = 𝑏 → ((𝜑 → (𝑎𝐼 → (𝑆 D (𝑥𝑋 ↦ Σ𝑖𝑎 𝐴)) = (𝑥𝑋 ↦ Σ𝑖𝑎 𝐵))) ↔ (𝜑 → (𝑏𝐼 → (𝑆 D (𝑥𝑋 ↦ Σ𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑖𝑏 𝐵)))))
21 sseq1 3851 . . . . . 6 (𝑎 = (𝑏 ∪ {𝑐}) → (𝑎𝐼 ↔ (𝑏 ∪ {𝑐}) ⊆ 𝐼))
22 sumeq1 14796 . . . . . . . . 9 (𝑎 = (𝑏 ∪ {𝑐}) → Σ𝑖𝑎 𝐴 = Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐴)
2322mpteq2dv 4968 . . . . . . . 8 (𝑎 = (𝑏 ∪ {𝑐}) → (𝑥𝑋 ↦ Σ𝑖𝑎 𝐴) = (𝑥𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐴))
2423oveq2d 6921 . . . . . . 7 (𝑎 = (𝑏 ∪ {𝑐}) → (𝑆 D (𝑥𝑋 ↦ Σ𝑖𝑎 𝐴)) = (𝑆 D (𝑥𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐴)))
25 sumeq1 14796 . . . . . . . 8 (𝑎 = (𝑏 ∪ {𝑐}) → Σ𝑖𝑎 𝐵 = Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐵)
2625mpteq2dv 4968 . . . . . . 7 (𝑎 = (𝑏 ∪ {𝑐}) → (𝑥𝑋 ↦ Σ𝑖𝑎 𝐵) = (𝑥𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐵))
2724, 26eqeq12d 2840 . . . . . 6 (𝑎 = (𝑏 ∪ {𝑐}) → ((𝑆 D (𝑥𝑋 ↦ Σ𝑖𝑎 𝐴)) = (𝑥𝑋 ↦ Σ𝑖𝑎 𝐵) ↔ (𝑆 D (𝑥𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐴)) = (𝑥𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐵)))
2821, 27imbi12d 336 . . . . 5 (𝑎 = (𝑏 ∪ {𝑐}) → ((𝑎𝐼 → (𝑆 D (𝑥𝑋 ↦ Σ𝑖𝑎 𝐴)) = (𝑥𝑋 ↦ Σ𝑖𝑎 𝐵)) ↔ ((𝑏 ∪ {𝑐}) ⊆ 𝐼 → (𝑆 D (𝑥𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐴)) = (𝑥𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐵))))
2928imbi2d 332 . . . 4 (𝑎 = (𝑏 ∪ {𝑐}) → ((𝜑 → (𝑎𝐼 → (𝑆 D (𝑥𝑋 ↦ Σ𝑖𝑎 𝐴)) = (𝑥𝑋 ↦ Σ𝑖𝑎 𝐵))) ↔ (𝜑 → ((𝑏 ∪ {𝑐}) ⊆ 𝐼 → (𝑆 D (𝑥𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐴)) = (𝑥𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐵)))))
30 sseq1 3851 . . . . . 6 (𝑎 = 𝐼 → (𝑎𝐼𝐼𝐼))
31 sumeq1 14796 . . . . . . . . 9 (𝑎 = 𝐼 → Σ𝑖𝑎 𝐴 = Σ𝑖𝐼 𝐴)
3231mpteq2dv 4968 . . . . . . . 8 (𝑎 = 𝐼 → (𝑥𝑋 ↦ Σ𝑖𝑎 𝐴) = (𝑥𝑋 ↦ Σ𝑖𝐼 𝐴))
3332oveq2d 6921 . . . . . . 7 (𝑎 = 𝐼 → (𝑆 D (𝑥𝑋 ↦ Σ𝑖𝑎 𝐴)) = (𝑆 D (𝑥𝑋 ↦ Σ𝑖𝐼 𝐴)))
34 sumeq1 14796 . . . . . . . 8 (𝑎 = 𝐼 → Σ𝑖𝑎 𝐵 = Σ𝑖𝐼 𝐵)
3534mpteq2dv 4968 . . . . . . 7 (𝑎 = 𝐼 → (𝑥𝑋 ↦ Σ𝑖𝑎 𝐵) = (𝑥𝑋 ↦ Σ𝑖𝐼 𝐵))
3633, 35eqeq12d 2840 . . . . . 6 (𝑎 = 𝐼 → ((𝑆 D (𝑥𝑋 ↦ Σ𝑖𝑎 𝐴)) = (𝑥𝑋 ↦ Σ𝑖𝑎 𝐵) ↔ (𝑆 D (𝑥𝑋 ↦ Σ𝑖𝐼 𝐴)) = (𝑥𝑋 ↦ Σ𝑖𝐼 𝐵)))
3730, 36imbi12d 336 . . . . 5 (𝑎 = 𝐼 → ((𝑎𝐼 → (𝑆 D (𝑥𝑋 ↦ Σ𝑖𝑎 𝐴)) = (𝑥𝑋 ↦ Σ𝑖𝑎 𝐵)) ↔ (𝐼𝐼 → (𝑆 D (𝑥𝑋 ↦ Σ𝑖𝐼 𝐴)) = (𝑥𝑋 ↦ Σ𝑖𝐼 𝐵))))
3837imbi2d 332 . . . 4 (𝑎 = 𝐼 → ((𝜑 → (𝑎𝐼 → (𝑆 D (𝑥𝑋 ↦ Σ𝑖𝑎 𝐴)) = (𝑥𝑋 ↦ Σ𝑖𝑎 𝐵))) ↔ (𝜑 → (𝐼𝐼 → (𝑆 D (𝑥𝑋 ↦ Σ𝑖𝐼 𝐴)) = (𝑥𝑋 ↦ Σ𝑖𝐼 𝐵)))))
39 dvmptfsum.s . . . . . . 7 (𝜑𝑆 ∈ {ℝ, ℂ})
40 0cnd 10349 . . . . . . 7 ((𝜑𝑥𝑆) → 0 ∈ ℂ)
41 0cnd 10349 . . . . . . . 8 (𝜑 → 0 ∈ ℂ)
4239, 41dvmptc 24120 . . . . . . 7 (𝜑 → (𝑆 D (𝑥𝑆 ↦ 0)) = (𝑥𝑆 ↦ 0))
43 dvmptfsum.j . . . . . . . . 9 𝐽 = (𝐾t 𝑆)
44 dvmptfsum.k . . . . . . . . . . 11 𝐾 = (TopOpen‘ℂfld)
4544cnfldtopon 22956 . . . . . . . . . 10 𝐾 ∈ (TopOn‘ℂ)
46 recnprss 24067 . . . . . . . . . . 11 (𝑆 ∈ {ℝ, ℂ} → 𝑆 ⊆ ℂ)
4739, 46syl 17 . . . . . . . . . 10 (𝜑𝑆 ⊆ ℂ)
48 resttopon 21336 . . . . . . . . . 10 ((𝐾 ∈ (TopOn‘ℂ) ∧ 𝑆 ⊆ ℂ) → (𝐾t 𝑆) ∈ (TopOn‘𝑆))
4945, 47, 48sylancr 583 . . . . . . . . 9 (𝜑 → (𝐾t 𝑆) ∈ (TopOn‘𝑆))
5043, 49syl5eqel 2910 . . . . . . . 8 (𝜑𝐽 ∈ (TopOn‘𝑆))
51 dvmptfsum.x . . . . . . . 8 (𝜑𝑋𝐽)
52 toponss 21102 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑆) ∧ 𝑋𝐽) → 𝑋𝑆)
5350, 51, 52syl2anc 581 . . . . . . 7 (𝜑𝑋𝑆)
5439, 40, 40, 42, 53, 43, 44, 51dvmptres 24125 . . . . . 6 (𝜑 → (𝑆 D (𝑥𝑋 ↦ 0)) = (𝑥𝑋 ↦ 0))
55 sum0 14829 . . . . . . . 8 Σ𝑖 ∈ ∅ 𝐴 = 0
5655mpteq2i 4964 . . . . . . 7 (𝑥𝑋 ↦ Σ𝑖 ∈ ∅ 𝐴) = (𝑥𝑋 ↦ 0)
5756oveq2i 6916 . . . . . 6 (𝑆 D (𝑥𝑋 ↦ Σ𝑖 ∈ ∅ 𝐴)) = (𝑆 D (𝑥𝑋 ↦ 0))
58 sum0 14829 . . . . . . 7 Σ𝑖 ∈ ∅ 𝐵 = 0
5958mpteq2i 4964 . . . . . 6 (𝑥𝑋 ↦ Σ𝑖 ∈ ∅ 𝐵) = (𝑥𝑋 ↦ 0)
6054, 57, 593eqtr4g 2886 . . . . 5 (𝜑 → (𝑆 D (𝑥𝑋 ↦ Σ𝑖 ∈ ∅ 𝐴)) = (𝑥𝑋 ↦ Σ𝑖 ∈ ∅ 𝐵))
6160a1d 25 . . . 4 (𝜑 → (∅ ⊆ 𝐼 → (𝑆 D (𝑥𝑋 ↦ Σ𝑖 ∈ ∅ 𝐴)) = (𝑥𝑋 ↦ Σ𝑖 ∈ ∅ 𝐵)))
62 ssun1 4003 . . . . . . . . . 10 𝑏 ⊆ (𝑏 ∪ {𝑐})
63 sstr 3835 . . . . . . . . . 10 ((𝑏 ⊆ (𝑏 ∪ {𝑐}) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) → 𝑏𝐼)
6462, 63mpan 683 . . . . . . . . 9 ((𝑏 ∪ {𝑐}) ⊆ 𝐼𝑏𝐼)
6564imim1i 63 . . . . . . . 8 ((𝑏𝐼 → (𝑆 D (𝑥𝑋 ↦ Σ𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑖𝑏 𝐵)) → ((𝑏 ∪ {𝑐}) ⊆ 𝐼 → (𝑆 D (𝑥𝑋 ↦ Σ𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑖𝑏 𝐵)))
66 simpll 785 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ 𝑐𝑏) ∧ ((𝑏 ∪ {𝑐}) ⊆ 𝐼 ∧ (𝑆 D (𝑥𝑋 ↦ Σ𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑖𝑏 𝐵))) → 𝜑)
6766, 39syl 17 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ 𝑐𝑏) ∧ ((𝑏 ∪ {𝑐}) ⊆ 𝐼 ∧ (𝑆 D (𝑥𝑋 ↦ Σ𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑖𝑏 𝐵))) → 𝑆 ∈ {ℝ, ℂ})
682ad3antrrr 723 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ ¬ 𝑐𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑎𝑋) → 𝐼 ∈ Fin)
6964ad2antlr 720 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ ¬ 𝑐𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑎𝑋) → 𝑏𝐼)
70 ssfi 8449 . . . . . . . . . . . . . . 15 ((𝐼 ∈ Fin ∧ 𝑏𝐼) → 𝑏 ∈ Fin)
7168, 69, 70syl2anc 581 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ¬ 𝑐𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑎𝑋) → 𝑏 ∈ Fin)
72 simp-4l 803 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ ¬ 𝑐𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑎𝑋) ∧ 𝑖𝑏) → 𝜑)
7369sselda 3827 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ ¬ 𝑐𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑎𝑋) ∧ 𝑖𝑏) → 𝑖𝐼)
74 simplr 787 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ ¬ 𝑐𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑎𝑋) ∧ 𝑖𝑏) → 𝑎𝑋)
75 nfv 2015 . . . . . . . . . . . . . . . . 17 𝑥(𝜑𝑖𝐼𝑎𝑋)
76 nfcsb1v 3773 . . . . . . . . . . . . . . . . . 18 𝑥𝑎 / 𝑥𝐴
7776nfel1 2984 . . . . . . . . . . . . . . . . 17 𝑥𝑎 / 𝑥𝐴 ∈ ℂ
7875, 77nfim 2001 . . . . . . . . . . . . . . . 16 𝑥((𝜑𝑖𝐼𝑎𝑋) → 𝑎 / 𝑥𝐴 ∈ ℂ)
79 eleq1w 2889 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑎 → (𝑥𝑋𝑎𝑋))
80793anbi3d 1572 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑎 → ((𝜑𝑖𝐼𝑥𝑋) ↔ (𝜑𝑖𝐼𝑎𝑋)))
81 csbeq1a 3766 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑎𝐴 = 𝑎 / 𝑥𝐴)
8281eleq1d 2891 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑎 → (𝐴 ∈ ℂ ↔ 𝑎 / 𝑥𝐴 ∈ ℂ))
8380, 82imbi12d 336 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑎 → (((𝜑𝑖𝐼𝑥𝑋) → 𝐴 ∈ ℂ) ↔ ((𝜑𝑖𝐼𝑎𝑋) → 𝑎 / 𝑥𝐴 ∈ ℂ)))
84 dvmptfsum.a . . . . . . . . . . . . . . . 16 ((𝜑𝑖𝐼𝑥𝑋) → 𝐴 ∈ ℂ)
8578, 83, 84chvar 2416 . . . . . . . . . . . . . . 15 ((𝜑𝑖𝐼𝑎𝑋) → 𝑎 / 𝑥𝐴 ∈ ℂ)
8672, 73, 74, 85syl3anc 1496 . . . . . . . . . . . . . 14 (((((𝜑 ∧ ¬ 𝑐𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑎𝑋) ∧ 𝑖𝑏) → 𝑎 / 𝑥𝐴 ∈ ℂ)
8771, 86fsumcl 14841 . . . . . . . . . . . . 13 ((((𝜑 ∧ ¬ 𝑐𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑎𝑋) → Σ𝑖𝑏 𝑎 / 𝑥𝐴 ∈ ℂ)
8887adantlrr 714 . . . . . . . . . . . 12 ((((𝜑 ∧ ¬ 𝑐𝑏) ∧ ((𝑏 ∪ {𝑐}) ⊆ 𝐼 ∧ (𝑆 D (𝑥𝑋 ↦ Σ𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑖𝑏 𝐵))) ∧ 𝑎𝑋) → Σ𝑖𝑏 𝑎 / 𝑥𝐴 ∈ ℂ)
89 sumex 14795 . . . . . . . . . . . . 13 Σ𝑖𝑏 𝑎 / 𝑥𝐵 ∈ V
9089a1i 11 . . . . . . . . . . . 12 ((((𝜑 ∧ ¬ 𝑐𝑏) ∧ ((𝑏 ∪ {𝑐}) ⊆ 𝐼 ∧ (𝑆 D (𝑥𝑋 ↦ Σ𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑖𝑏 𝐵))) ∧ 𝑎𝑋) → Σ𝑖𝑏 𝑎 / 𝑥𝐵 ∈ V)
91 nfcv 2969 . . . . . . . . . . . . . . . . 17 𝑎Σ𝑖𝑏 𝐴
92 nfcv 2969 . . . . . . . . . . . . . . . . . 18 𝑥𝑏
9392, 76nfsum 14798 . . . . . . . . . . . . . . . . 17 𝑥Σ𝑖𝑏 𝑎 / 𝑥𝐴
9481sumeq2sdv 14812 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑎 → Σ𝑖𝑏 𝐴 = Σ𝑖𝑏 𝑎 / 𝑥𝐴)
9591, 93, 94cbvmpt 4972 . . . . . . . . . . . . . . . 16 (𝑥𝑋 ↦ Σ𝑖𝑏 𝐴) = (𝑎𝑋 ↦ Σ𝑖𝑏 𝑎 / 𝑥𝐴)
9695oveq2i 6916 . . . . . . . . . . . . . . 15 (𝑆 D (𝑥𝑋 ↦ Σ𝑖𝑏 𝐴)) = (𝑆 D (𝑎𝑋 ↦ Σ𝑖𝑏 𝑎 / 𝑥𝐴))
97 nfcv 2969 . . . . . . . . . . . . . . . 16 𝑎Σ𝑖𝑏 𝐵
98 nfcsb1v 3773 . . . . . . . . . . . . . . . . 17 𝑥𝑎 / 𝑥𝐵
9992, 98nfsum 14798 . . . . . . . . . . . . . . . 16 𝑥Σ𝑖𝑏 𝑎 / 𝑥𝐵
100 csbeq1a 3766 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑎𝐵 = 𝑎 / 𝑥𝐵)
101100sumeq2sdv 14812 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑎 → Σ𝑖𝑏 𝐵 = Σ𝑖𝑏 𝑎 / 𝑥𝐵)
10297, 99, 101cbvmpt 4972 . . . . . . . . . . . . . . 15 (𝑥𝑋 ↦ Σ𝑖𝑏 𝐵) = (𝑎𝑋 ↦ Σ𝑖𝑏 𝑎 / 𝑥𝐵)
10396, 102eqeq12i 2839 . . . . . . . . . . . . . 14 ((𝑆 D (𝑥𝑋 ↦ Σ𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑖𝑏 𝐵) ↔ (𝑆 D (𝑎𝑋 ↦ Σ𝑖𝑏 𝑎 / 𝑥𝐴)) = (𝑎𝑋 ↦ Σ𝑖𝑏 𝑎 / 𝑥𝐵))
104103biimpi 208 . . . . . . . . . . . . 13 ((𝑆 D (𝑥𝑋 ↦ Σ𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑖𝑏 𝐵) → (𝑆 D (𝑎𝑋 ↦ Σ𝑖𝑏 𝑎 / 𝑥𝐴)) = (𝑎𝑋 ↦ Σ𝑖𝑏 𝑎 / 𝑥𝐵))
105104ad2antll 722 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ 𝑐𝑏) ∧ ((𝑏 ∪ {𝑐}) ⊆ 𝐼 ∧ (𝑆 D (𝑥𝑋 ↦ Σ𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑖𝑏 𝐵))) → (𝑆 D (𝑎𝑋 ↦ Σ𝑖𝑏 𝑎 / 𝑥𝐴)) = (𝑎𝑋 ↦ Σ𝑖𝑏 𝑎 / 𝑥𝐵))
106 simplll 793 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ¬ 𝑐𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑎𝑋) → 𝜑)
107 ssun2 4004 . . . . . . . . . . . . . . . . 17 {𝑐} ⊆ (𝑏 ∪ {𝑐})
108 sstr 3835 . . . . . . . . . . . . . . . . 17 (({𝑐} ⊆ (𝑏 ∪ {𝑐}) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) → {𝑐} ⊆ 𝐼)
109107, 108mpan 683 . . . . . . . . . . . . . . . 16 ((𝑏 ∪ {𝑐}) ⊆ 𝐼 → {𝑐} ⊆ 𝐼)
110 vex 3417 . . . . . . . . . . . . . . . . 17 𝑐 ∈ V
111110snss 4535 . . . . . . . . . . . . . . . 16 (𝑐𝐼 ↔ {𝑐} ⊆ 𝐼)
112109, 111sylibr 226 . . . . . . . . . . . . . . 15 ((𝑏 ∪ {𝑐}) ⊆ 𝐼𝑐𝐼)
113112ad2antlr 720 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ¬ 𝑐𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑎𝑋) → 𝑐𝐼)
114 simpr 479 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ¬ 𝑐𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑎𝑋) → 𝑎𝑋)
115843expb 1155 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑖𝐼𝑥𝑋)) → 𝐴 ∈ ℂ)
116115ancom2s 642 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑥𝑋𝑖𝐼)) → 𝐴 ∈ ℂ)
117116ralrimivva 3180 . . . . . . . . . . . . . . 15 (𝜑 → ∀𝑥𝑋𝑖𝐼 𝐴 ∈ ℂ)
118 nfcsb1v 3773 . . . . . . . . . . . . . . . . . 18 𝑖𝑐 / 𝑖𝑎 / 𝑥𝐴
119118nfel1 2984 . . . . . . . . . . . . . . . . 17 𝑖𝑐 / 𝑖𝑎 / 𝑥𝐴 ∈ ℂ
120 csbeq1a 3766 . . . . . . . . . . . . . . . . . 18 (𝑖 = 𝑐𝑎 / 𝑥𝐴 = 𝑐 / 𝑖𝑎 / 𝑥𝐴)
121120eleq1d 2891 . . . . . . . . . . . . . . . . 17 (𝑖 = 𝑐 → (𝑎 / 𝑥𝐴 ∈ ℂ ↔ 𝑐 / 𝑖𝑎 / 𝑥𝐴 ∈ ℂ))
12277, 119, 82, 121rspc2 3537 . . . . . . . . . . . . . . . 16 ((𝑎𝑋𝑐𝐼) → (∀𝑥𝑋𝑖𝐼 𝐴 ∈ ℂ → 𝑐 / 𝑖𝑎 / 𝑥𝐴 ∈ ℂ))
123122ancoms 452 . . . . . . . . . . . . . . 15 ((𝑐𝐼𝑎𝑋) → (∀𝑥𝑋𝑖𝐼 𝐴 ∈ ℂ → 𝑐 / 𝑖𝑎 / 𝑥𝐴 ∈ ℂ))
124117, 123mpan9 504 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑐𝐼𝑎𝑋)) → 𝑐 / 𝑖𝑎 / 𝑥𝐴 ∈ ℂ)
125106, 113, 114, 124syl12anc 872 . . . . . . . . . . . . 13 ((((𝜑 ∧ ¬ 𝑐𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑎𝑋) → 𝑐 / 𝑖𝑎 / 𝑥𝐴 ∈ ℂ)
126125adantlrr 714 . . . . . . . . . . . 12 ((((𝜑 ∧ ¬ 𝑐𝑏) ∧ ((𝑏 ∪ {𝑐}) ⊆ 𝐼 ∧ (𝑆 D (𝑥𝑋 ↦ Σ𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑖𝑏 𝐵))) ∧ 𝑎𝑋) → 𝑐 / 𝑖𝑎 / 𝑥𝐴 ∈ ℂ)
127 dvmptfsum.b . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖𝐼𝑥𝑋) → 𝐵 ∈ ℂ)
1281273expb 1155 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑖𝐼𝑥𝑋)) → 𝐵 ∈ ℂ)
129128ancom2s 642 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑥𝑋𝑖𝐼)) → 𝐵 ∈ ℂ)
130129ralrimivva 3180 . . . . . . . . . . . . . . 15 (𝜑 → ∀𝑥𝑋𝑖𝐼 𝐵 ∈ ℂ)
13198nfel1 2984 . . . . . . . . . . . . . . . . 17 𝑥𝑎 / 𝑥𝐵 ∈ ℂ
132 nfcsb1v 3773 . . . . . . . . . . . . . . . . . 18 𝑖𝑐 / 𝑖𝑎 / 𝑥𝐵
133132nfel1 2984 . . . . . . . . . . . . . . . . 17 𝑖𝑐 / 𝑖𝑎 / 𝑥𝐵 ∈ ℂ
134100eleq1d 2891 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑎 → (𝐵 ∈ ℂ ↔ 𝑎 / 𝑥𝐵 ∈ ℂ))
135 csbeq1a 3766 . . . . . . . . . . . . . . . . . 18 (𝑖 = 𝑐𝑎 / 𝑥𝐵 = 𝑐 / 𝑖𝑎 / 𝑥𝐵)
136135eleq1d 2891 . . . . . . . . . . . . . . . . 17 (𝑖 = 𝑐 → (𝑎 / 𝑥𝐵 ∈ ℂ ↔ 𝑐 / 𝑖𝑎 / 𝑥𝐵 ∈ ℂ))
137131, 133, 134, 136rspc2 3537 . . . . . . . . . . . . . . . 16 ((𝑎𝑋𝑐𝐼) → (∀𝑥𝑋𝑖𝐼 𝐵 ∈ ℂ → 𝑐 / 𝑖𝑎 / 𝑥𝐵 ∈ ℂ))
138137ancoms 452 . . . . . . . . . . . . . . 15 ((𝑐𝐼𝑎𝑋) → (∀𝑥𝑋𝑖𝐼 𝐵 ∈ ℂ → 𝑐 / 𝑖𝑎 / 𝑥𝐵 ∈ ℂ))
139130, 138mpan9 504 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑐𝐼𝑎𝑋)) → 𝑐 / 𝑖𝑎 / 𝑥𝐵 ∈ ℂ)
140106, 113, 114, 139syl12anc 872 . . . . . . . . . . . . 13 ((((𝜑 ∧ ¬ 𝑐𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑎𝑋) → 𝑐 / 𝑖𝑎 / 𝑥𝐵 ∈ ℂ)
141140adantlrr 714 . . . . . . . . . . . 12 ((((𝜑 ∧ ¬ 𝑐𝑏) ∧ ((𝑏 ∪ {𝑐}) ⊆ 𝐼 ∧ (𝑆 D (𝑥𝑋 ↦ Σ𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑖𝑏 𝐵))) ∧ 𝑎𝑋) → 𝑐 / 𝑖𝑎 / 𝑥𝐵 ∈ ℂ)
142112ad2antrl 721 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ 𝑐𝑏) ∧ ((𝑏 ∪ {𝑐}) ⊆ 𝐼 ∧ (𝑆 D (𝑥𝑋 ↦ Σ𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑖𝑏 𝐵))) → 𝑐𝐼)
143 nfv 2015 . . . . . . . . . . . . . . . 16 𝑖(𝜑𝑐𝐼)
144 nfcv 2969 . . . . . . . . . . . . . . . . . 18 𝑖𝑆
145 nfcv 2969 . . . . . . . . . . . . . . . . . 18 𝑖 D
146 nfcv 2969 . . . . . . . . . . . . . . . . . . 19 𝑖𝑋
147 nfcsb1v 3773 . . . . . . . . . . . . . . . . . . 19 𝑖𝑐 / 𝑖𝐴
148146, 147nfmpt 4969 . . . . . . . . . . . . . . . . . 18 𝑖(𝑥𝑋𝑐 / 𝑖𝐴)
149144, 145, 148nfov 6935 . . . . . . . . . . . . . . . . 17 𝑖(𝑆 D (𝑥𝑋𝑐 / 𝑖𝐴))
150 nfcsb1v 3773 . . . . . . . . . . . . . . . . . 18 𝑖𝑐 / 𝑖𝐵
151146, 150nfmpt 4969 . . . . . . . . . . . . . . . . 17 𝑖(𝑥𝑋𝑐 / 𝑖𝐵)
152149, 151nfeq 2981 . . . . . . . . . . . . . . . 16 𝑖(𝑆 D (𝑥𝑋𝑐 / 𝑖𝐴)) = (𝑥𝑋𝑐 / 𝑖𝐵)
153143, 152nfim 2001 . . . . . . . . . . . . . . 15 𝑖((𝜑𝑐𝐼) → (𝑆 D (𝑥𝑋𝑐 / 𝑖𝐴)) = (𝑥𝑋𝑐 / 𝑖𝐵))
154 eleq1w 2889 . . . . . . . . . . . . . . . . 17 (𝑖 = 𝑐 → (𝑖𝐼𝑐𝐼))
155154anbi2d 624 . . . . . . . . . . . . . . . 16 (𝑖 = 𝑐 → ((𝜑𝑖𝐼) ↔ (𝜑𝑐𝐼)))
156 csbeq1a 3766 . . . . . . . . . . . . . . . . . . 19 (𝑖 = 𝑐𝐴 = 𝑐 / 𝑖𝐴)
157156mpteq2dv 4968 . . . . . . . . . . . . . . . . . 18 (𝑖 = 𝑐 → (𝑥𝑋𝐴) = (𝑥𝑋𝑐 / 𝑖𝐴))
158157oveq2d 6921 . . . . . . . . . . . . . . . . 17 (𝑖 = 𝑐 → (𝑆 D (𝑥𝑋𝐴)) = (𝑆 D (𝑥𝑋𝑐 / 𝑖𝐴)))
159 csbeq1a 3766 . . . . . . . . . . . . . . . . . 18 (𝑖 = 𝑐𝐵 = 𝑐 / 𝑖𝐵)
160159mpteq2dv 4968 . . . . . . . . . . . . . . . . 17 (𝑖 = 𝑐 → (𝑥𝑋𝐵) = (𝑥𝑋𝑐 / 𝑖𝐵))
161158, 160eqeq12d 2840 . . . . . . . . . . . . . . . 16 (𝑖 = 𝑐 → ((𝑆 D (𝑥𝑋𝐴)) = (𝑥𝑋𝐵) ↔ (𝑆 D (𝑥𝑋𝑐 / 𝑖𝐴)) = (𝑥𝑋𝑐 / 𝑖𝐵)))
162155, 161imbi12d 336 . . . . . . . . . . . . . . 15 (𝑖 = 𝑐 → (((𝜑𝑖𝐼) → (𝑆 D (𝑥𝑋𝐴)) = (𝑥𝑋𝐵)) ↔ ((𝜑𝑐𝐼) → (𝑆 D (𝑥𝑋𝑐 / 𝑖𝐴)) = (𝑥𝑋𝑐 / 𝑖𝐵))))
163 dvmptfsum.d . . . . . . . . . . . . . . 15 ((𝜑𝑖𝐼) → (𝑆 D (𝑥𝑋𝐴)) = (𝑥𝑋𝐵))
164153, 162, 163chvar 2416 . . . . . . . . . . . . . 14 ((𝜑𝑐𝐼) → (𝑆 D (𝑥𝑋𝑐 / 𝑖𝐴)) = (𝑥𝑋𝑐 / 𝑖𝐵))
165 nfcv 2969 . . . . . . . . . . . . . . . 16 𝑎𝑐 / 𝑖𝐴
166 nfcv 2969 . . . . . . . . . . . . . . . . 17 𝑥𝑐
167166, 76nfcsb 3775 . . . . . . . . . . . . . . . 16 𝑥𝑐 / 𝑖𝑎 / 𝑥𝐴
16881csbeq2dv 4216 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑎𝑐 / 𝑖𝐴 = 𝑐 / 𝑖𝑎 / 𝑥𝐴)
169165, 167, 168cbvmpt 4972 . . . . . . . . . . . . . . 15 (𝑥𝑋𝑐 / 𝑖𝐴) = (𝑎𝑋𝑐 / 𝑖𝑎 / 𝑥𝐴)
170169oveq2i 6916 . . . . . . . . . . . . . 14 (𝑆 D (𝑥𝑋𝑐 / 𝑖𝐴)) = (𝑆 D (𝑎𝑋𝑐 / 𝑖𝑎 / 𝑥𝐴))
171 nfcv 2969 . . . . . . . . . . . . . . 15 𝑎𝑐 / 𝑖𝐵
172166, 98nfcsb 3775 . . . . . . . . . . . . . . 15 𝑥𝑐 / 𝑖𝑎 / 𝑥𝐵
173100csbeq2dv 4216 . . . . . . . . . . . . . . 15 (𝑥 = 𝑎𝑐 / 𝑖𝐵 = 𝑐 / 𝑖𝑎 / 𝑥𝐵)
174171, 172, 173cbvmpt 4972 . . . . . . . . . . . . . 14 (𝑥𝑋𝑐 / 𝑖𝐵) = (𝑎𝑋𝑐 / 𝑖𝑎 / 𝑥𝐵)
175164, 170, 1743eqtr3g 2884 . . . . . . . . . . . . 13 ((𝜑𝑐𝐼) → (𝑆 D (𝑎𝑋𝑐 / 𝑖𝑎 / 𝑥𝐴)) = (𝑎𝑋𝑐 / 𝑖𝑎 / 𝑥𝐵))
17666, 142, 175syl2anc 581 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ 𝑐𝑏) ∧ ((𝑏 ∪ {𝑐}) ⊆ 𝐼 ∧ (𝑆 D (𝑥𝑋 ↦ Σ𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑖𝑏 𝐵))) → (𝑆 D (𝑎𝑋𝑐 / 𝑖𝑎 / 𝑥𝐴)) = (𝑎𝑋𝑐 / 𝑖𝑎 / 𝑥𝐵))
17767, 88, 90, 105, 126, 141, 176dvmptadd 24122 . . . . . . . . . . 11 (((𝜑 ∧ ¬ 𝑐𝑏) ∧ ((𝑏 ∪ {𝑐}) ⊆ 𝐼 ∧ (𝑆 D (𝑥𝑋 ↦ Σ𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑖𝑏 𝐵))) → (𝑆 D (𝑎𝑋 ↦ (Σ𝑖𝑏 𝑎 / 𝑥𝐴 + 𝑐 / 𝑖𝑎 / 𝑥𝐴))) = (𝑎𝑋 ↦ (Σ𝑖𝑏 𝑎 / 𝑥𝐵 + 𝑐 / 𝑖𝑎 / 𝑥𝐵)))
178 nfcv 2969 . . . . . . . . . . . . . . 15 𝑎Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐴
179 nfcv 2969 . . . . . . . . . . . . . . . 16 𝑥(𝑏 ∪ {𝑐})
180179, 76nfsum 14798 . . . . . . . . . . . . . . 15 𝑥Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝑎 / 𝑥𝐴
18181sumeq2sdv 14812 . . . . . . . . . . . . . . 15 (𝑥 = 𝑎 → Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐴 = Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝑎 / 𝑥𝐴)
182178, 180, 181cbvmpt 4972 . . . . . . . . . . . . . 14 (𝑥𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐴) = (𝑎𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝑎 / 𝑥𝐴)
183 simpllr 795 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ ¬ 𝑐𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑎𝑋) → ¬ 𝑐𝑏)
184 disjsn 4465 . . . . . . . . . . . . . . . . . 18 ((𝑏 ∩ {𝑐}) = ∅ ↔ ¬ 𝑐𝑏)
185183, 184sylibr 226 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ ¬ 𝑐𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑎𝑋) → (𝑏 ∩ {𝑐}) = ∅)
186 eqidd 2826 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ ¬ 𝑐𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑎𝑋) → (𝑏 ∪ {𝑐}) = (𝑏 ∪ {𝑐}))
187 simplr 787 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ ¬ 𝑐𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑎𝑋) → (𝑏 ∪ {𝑐}) ⊆ 𝐼)
188 ssfi 8449 . . . . . . . . . . . . . . . . . 18 ((𝐼 ∈ Fin ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) → (𝑏 ∪ {𝑐}) ∈ Fin)
18968, 187, 188syl2anc 581 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ ¬ 𝑐𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑎𝑋) → (𝑏 ∪ {𝑐}) ∈ Fin)
190 simp-4l 803 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ ¬ 𝑐𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑎𝑋) ∧ 𝑖 ∈ (𝑏 ∪ {𝑐})) → 𝜑)
191187sselda 3827 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ ¬ 𝑐𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑎𝑋) ∧ 𝑖 ∈ (𝑏 ∪ {𝑐})) → 𝑖𝐼)
192 simplr 787 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ ¬ 𝑐𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑎𝑋) ∧ 𝑖 ∈ (𝑏 ∪ {𝑐})) → 𝑎𝑋)
193190, 191, 192, 85syl3anc 1496 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ ¬ 𝑐𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑎𝑋) ∧ 𝑖 ∈ (𝑏 ∪ {𝑐})) → 𝑎 / 𝑥𝐴 ∈ ℂ)
194185, 186, 189, 193fsumsplit 14848 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ ¬ 𝑐𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑎𝑋) → Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝑎 / 𝑥𝐴 = (Σ𝑖𝑏 𝑎 / 𝑥𝐴 + Σ𝑖 ∈ {𝑐}𝑎 / 𝑥𝐴))
195 sumsns 14856 . . . . . . . . . . . . . . . . . 18 ((𝑐 ∈ V ∧ 𝑐 / 𝑖𝑎 / 𝑥𝐴 ∈ ℂ) → Σ𝑖 ∈ {𝑐}𝑎 / 𝑥𝐴 = 𝑐 / 𝑖𝑎 / 𝑥𝐴)
196110, 125, 195sylancr 583 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ ¬ 𝑐𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑎𝑋) → Σ𝑖 ∈ {𝑐}𝑎 / 𝑥𝐴 = 𝑐 / 𝑖𝑎 / 𝑥𝐴)
197196oveq2d 6921 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ ¬ 𝑐𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑎𝑋) → (Σ𝑖𝑏 𝑎 / 𝑥𝐴 + Σ𝑖 ∈ {𝑐}𝑎 / 𝑥𝐴) = (Σ𝑖𝑏 𝑎 / 𝑥𝐴 + 𝑐 / 𝑖𝑎 / 𝑥𝐴))
198194, 197eqtrd 2861 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ ¬ 𝑐𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑎𝑋) → Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝑎 / 𝑥𝐴 = (Σ𝑖𝑏 𝑎 / 𝑥𝐴 + 𝑐 / 𝑖𝑎 / 𝑥𝐴))
199198mpteq2dva 4967 . . . . . . . . . . . . . 14 (((𝜑 ∧ ¬ 𝑐𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) → (𝑎𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝑎 / 𝑥𝐴) = (𝑎𝑋 ↦ (Σ𝑖𝑏 𝑎 / 𝑥𝐴 + 𝑐 / 𝑖𝑎 / 𝑥𝐴)))
200182, 199syl5eq 2873 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ 𝑐𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) → (𝑥𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐴) = (𝑎𝑋 ↦ (Σ𝑖𝑏 𝑎 / 𝑥𝐴 + 𝑐 / 𝑖𝑎 / 𝑥𝐴)))
201200adantrr 710 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ 𝑐𝑏) ∧ ((𝑏 ∪ {𝑐}) ⊆ 𝐼 ∧ (𝑆 D (𝑥𝑋 ↦ Σ𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑖𝑏 𝐵))) → (𝑥𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐴) = (𝑎𝑋 ↦ (Σ𝑖𝑏 𝑎 / 𝑥𝐴 + 𝑐 / 𝑖𝑎 / 𝑥𝐴)))
202201oveq2d 6921 . . . . . . . . . . 11 (((𝜑 ∧ ¬ 𝑐𝑏) ∧ ((𝑏 ∪ {𝑐}) ⊆ 𝐼 ∧ (𝑆 D (𝑥𝑋 ↦ Σ𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑖𝑏 𝐵))) → (𝑆 D (𝑥𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐴)) = (𝑆 D (𝑎𝑋 ↦ (Σ𝑖𝑏 𝑎 / 𝑥𝐴 + 𝑐 / 𝑖𝑎 / 𝑥𝐴))))
203 nfcv 2969 . . . . . . . . . . . . . 14 𝑎Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐵
204179, 98nfsum 14798 . . . . . . . . . . . . . 14 𝑥Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝑎 / 𝑥𝐵
205100sumeq2sdv 14812 . . . . . . . . . . . . . 14 (𝑥 = 𝑎 → Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐵 = Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝑎 / 𝑥𝐵)
206203, 204, 205cbvmpt 4972 . . . . . . . . . . . . 13 (𝑥𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐵) = (𝑎𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝑎 / 𝑥𝐵)
20775, 131nfim 2001 . . . . . . . . . . . . . . . . . 18 𝑥((𝜑𝑖𝐼𝑎𝑋) → 𝑎 / 𝑥𝐵 ∈ ℂ)
20880, 134imbi12d 336 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑎 → (((𝜑𝑖𝐼𝑥𝑋) → 𝐵 ∈ ℂ) ↔ ((𝜑𝑖𝐼𝑎𝑋) → 𝑎 / 𝑥𝐵 ∈ ℂ)))
209207, 208, 127chvar 2416 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖𝐼𝑎𝑋) → 𝑎 / 𝑥𝐵 ∈ ℂ)
210190, 191, 192, 209syl3anc 1496 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ ¬ 𝑐𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑎𝑋) ∧ 𝑖 ∈ (𝑏 ∪ {𝑐})) → 𝑎 / 𝑥𝐵 ∈ ℂ)
211185, 186, 189, 210fsumsplit 14848 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ ¬ 𝑐𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑎𝑋) → Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝑎 / 𝑥𝐵 = (Σ𝑖𝑏 𝑎 / 𝑥𝐵 + Σ𝑖 ∈ {𝑐}𝑎 / 𝑥𝐵))
212 sumsns 14856 . . . . . . . . . . . . . . . . 17 ((𝑐 ∈ V ∧ 𝑐 / 𝑖𝑎 / 𝑥𝐵 ∈ ℂ) → Σ𝑖 ∈ {𝑐}𝑎 / 𝑥𝐵 = 𝑐 / 𝑖𝑎 / 𝑥𝐵)
213110, 140, 212sylancr 583 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ ¬ 𝑐𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑎𝑋) → Σ𝑖 ∈ {𝑐}𝑎 / 𝑥𝐵 = 𝑐 / 𝑖𝑎 / 𝑥𝐵)
214213oveq2d 6921 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ ¬ 𝑐𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑎𝑋) → (Σ𝑖𝑏 𝑎 / 𝑥𝐵 + Σ𝑖 ∈ {𝑐}𝑎 / 𝑥𝐵) = (Σ𝑖𝑏 𝑎 / 𝑥𝐵 + 𝑐 / 𝑖𝑎 / 𝑥𝐵))
215211, 214eqtrd 2861 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ¬ 𝑐𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑎𝑋) → Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝑎 / 𝑥𝐵 = (Σ𝑖𝑏 𝑎 / 𝑥𝐵 + 𝑐 / 𝑖𝑎 / 𝑥𝐵))
216215mpteq2dva 4967 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ 𝑐𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) → (𝑎𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝑎 / 𝑥𝐵) = (𝑎𝑋 ↦ (Σ𝑖𝑏 𝑎 / 𝑥𝐵 + 𝑐 / 𝑖𝑎 / 𝑥𝐵)))
217206, 216syl5eq 2873 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ 𝑐𝑏) ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) → (𝑥𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐵) = (𝑎𝑋 ↦ (Σ𝑖𝑏 𝑎 / 𝑥𝐵 + 𝑐 / 𝑖𝑎 / 𝑥𝐵)))
218217adantrr 710 . . . . . . . . . . 11 (((𝜑 ∧ ¬ 𝑐𝑏) ∧ ((𝑏 ∪ {𝑐}) ⊆ 𝐼 ∧ (𝑆 D (𝑥𝑋 ↦ Σ𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑖𝑏 𝐵))) → (𝑥𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐵) = (𝑎𝑋 ↦ (Σ𝑖𝑏 𝑎 / 𝑥𝐵 + 𝑐 / 𝑖𝑎 / 𝑥𝐵)))
219177, 202, 2183eqtr4d 2871 . . . . . . . . . 10 (((𝜑 ∧ ¬ 𝑐𝑏) ∧ ((𝑏 ∪ {𝑐}) ⊆ 𝐼 ∧ (𝑆 D (𝑥𝑋 ↦ Σ𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑖𝑏 𝐵))) → (𝑆 D (𝑥𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐴)) = (𝑥𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐵))
220219exp32 413 . . . . . . . . 9 ((𝜑 ∧ ¬ 𝑐𝑏) → ((𝑏 ∪ {𝑐}) ⊆ 𝐼 → ((𝑆 D (𝑥𝑋 ↦ Σ𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑖𝑏 𝐵) → (𝑆 D (𝑥𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐴)) = (𝑥𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐵))))
221220a2d 29 . . . . . . . 8 ((𝜑 ∧ ¬ 𝑐𝑏) → (((𝑏 ∪ {𝑐}) ⊆ 𝐼 → (𝑆 D (𝑥𝑋 ↦ Σ𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑖𝑏 𝐵)) → ((𝑏 ∪ {𝑐}) ⊆ 𝐼 → (𝑆 D (𝑥𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐴)) = (𝑥𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐵))))
22265, 221syl5 34 . . . . . . 7 ((𝜑 ∧ ¬ 𝑐𝑏) → ((𝑏𝐼 → (𝑆 D (𝑥𝑋 ↦ Σ𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑖𝑏 𝐵)) → ((𝑏 ∪ {𝑐}) ⊆ 𝐼 → (𝑆 D (𝑥𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐴)) = (𝑥𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐵))))
223222expcom 404 . . . . . 6 𝑐𝑏 → (𝜑 → ((𝑏𝐼 → (𝑆 D (𝑥𝑋 ↦ Σ𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑖𝑏 𝐵)) → ((𝑏 ∪ {𝑐}) ⊆ 𝐼 → (𝑆 D (𝑥𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐴)) = (𝑥𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐵)))))
224223adantl 475 . . . . 5 ((𝑏 ∈ Fin ∧ ¬ 𝑐𝑏) → (𝜑 → ((𝑏𝐼 → (𝑆 D (𝑥𝑋 ↦ Σ𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑖𝑏 𝐵)) → ((𝑏 ∪ {𝑐}) ⊆ 𝐼 → (𝑆 D (𝑥𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐴)) = (𝑥𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐵)))))
225224a2d 29 . . . 4 ((𝑏 ∈ Fin ∧ ¬ 𝑐𝑏) → ((𝜑 → (𝑏𝐼 → (𝑆 D (𝑥𝑋 ↦ Σ𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑖𝑏 𝐵))) → (𝜑 → ((𝑏 ∪ {𝑐}) ⊆ 𝐼 → (𝑆 D (𝑥𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐴)) = (𝑥𝑋 ↦ Σ𝑖 ∈ (𝑏 ∪ {𝑐})𝐵)))))
22611, 20, 29, 38, 61, 225findcard2s 8470 . . 3 (𝐼 ∈ Fin → (𝜑 → (𝐼𝐼 → (𝑆 D (𝑥𝑋 ↦ Σ𝑖𝐼 𝐴)) = (𝑥𝑋 ↦ Σ𝑖𝐼 𝐵))))
2272, 226mpcom 38 . 2 (𝜑 → (𝐼𝐼 → (𝑆 D (𝑥𝑋 ↦ Σ𝑖𝐼 𝐴)) = (𝑥𝑋 ↦ Σ𝑖𝐼 𝐵)))
2281, 227mpi 20 1 (𝜑 → (𝑆 D (𝑥𝑋 ↦ Σ𝑖𝐼 𝐴)) = (𝑥𝑋 ↦ Σ𝑖𝐼 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 386  w3a 1113   = wceq 1658  wcel 2166  wral 3117  Vcvv 3414  csb 3757  cun 3796  cin 3797  wss 3798  c0 4144  {csn 4397  {cpr 4399  cmpt 4952  cfv 6123  (class class class)co 6905  Fincfn 8222  cc 10250  cr 10251  0cc0 10252   + caddc 10255  Σcsu 14793  t crest 16434  TopOpenctopn 16435  fldccnfld 20106  TopOnctopon 21085   D cdv 24026
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-rep 4994  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-inf2 8815  ax-cnex 10308  ax-resscn 10309  ax-1cn 10310  ax-icn 10311  ax-addcl 10312  ax-addrcl 10313  ax-mulcl 10314  ax-mulrcl 10315  ax-mulcom 10316  ax-addass 10317  ax-mulass 10318  ax-distr 10319  ax-i2m1 10320  ax-1ne0 10321  ax-1rid 10322  ax-rnegex 10323  ax-rrecex 10324  ax-cnre 10325  ax-pre-lttri 10326  ax-pre-lttrn 10327  ax-pre-ltadd 10328  ax-pre-mulgt0 10329  ax-pre-sup 10330  ax-addf 10331
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-fal 1672  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4659  df-int 4698  df-iun 4742  df-iin 4743  df-br 4874  df-opab 4936  df-mpt 4953  df-tr 4976  df-id 5250  df-eprel 5255  df-po 5263  df-so 5264  df-fr 5301  df-se 5302  df-we 5303  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-pred 5920  df-ord 5966  df-on 5967  df-lim 5968  df-suc 5969  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-isom 6132  df-riota 6866  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-of 7157  df-om 7327  df-1st 7428  df-2nd 7429  df-supp 7560  df-wrecs 7672  df-recs 7734  df-rdg 7772  df-1o 7826  df-2o 7827  df-oadd 7830  df-er 8009  df-map 8124  df-pm 8125  df-ixp 8176  df-en 8223  df-dom 8224  df-sdom 8225  df-fin 8226  df-fsupp 8545  df-fi 8586  df-sup 8617  df-inf 8618  df-oi 8684  df-card 9078  df-cda 9305  df-pnf 10393  df-mnf 10394  df-xr 10395  df-ltxr 10396  df-le 10397  df-sub 10587  df-neg 10588  df-div 11010  df-nn 11351  df-2 11414  df-3 11415  df-4 11416  df-5 11417  df-6 11418  df-7 11419  df-8 11420  df-9 11421  df-n0 11619  df-z 11705  df-dec 11822  df-uz 11969  df-q 12072  df-rp 12113  df-xneg 12232  df-xadd 12233  df-xmul 12234  df-icc 12470  df-fz 12620  df-fzo 12761  df-seq 13096  df-exp 13155  df-hash 13411  df-cj 14216  df-re 14217  df-im 14218  df-sqrt 14352  df-abs 14353  df-clim 14596  df-sum 14794  df-struct 16224  df-ndx 16225  df-slot 16226  df-base 16228  df-sets 16229  df-ress 16230  df-plusg 16318  df-mulr 16319  df-starv 16320  df-sca 16321  df-vsca 16322  df-ip 16323  df-tset 16324  df-ple 16325  df-ds 16327  df-unif 16328  df-hom 16329  df-cco 16330  df-rest 16436  df-topn 16437  df-0g 16455  df-gsum 16456  df-topgen 16457  df-pt 16458  df-prds 16461  df-xrs 16515  df-qtop 16520  df-imas 16521  df-xps 16523  df-mre 16599  df-mrc 16600  df-acs 16602  df-mgm 17595  df-sgrp 17637  df-mnd 17648  df-submnd 17689  df-mulg 17895  df-cntz 18100  df-cmn 18548  df-psmet 20098  df-xmet 20099  df-met 20100  df-bl 20101  df-mopn 20102  df-fbas 20103  df-fg 20104  df-cnfld 20107  df-top 21069  df-topon 21086  df-topsp 21108  df-bases 21121  df-cld 21194  df-ntr 21195  df-cls 21196  df-nei 21273  df-lp 21311  df-perf 21312  df-cn 21402  df-cnp 21403  df-haus 21490  df-tx 21736  df-hmeo 21929  df-fil 22020  df-fm 22112  df-flim 22113  df-flf 22114  df-xms 22495  df-ms 22496  df-tms 22497  df-cncf 23051  df-limc 24029  df-dv 24030
This theorem is referenced by:  dvply1  24438  dvtaylp  24523  pserdvlem2  24581  advlogexp  24800  dvnmul  40953  dirkeritg  41113  etransclem2  41247
  Copyright terms: Public domain W3C validator