| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nmval2 | Structured version Visualization version GIF version | ||
| Description: The value of the norm on a group as the distance restricted to the elements of the base set to zero. (Contributed by Mario Carneiro, 2-Oct-2015.) |
| Ref | Expression |
|---|---|
| nmfval2.n | ⊢ 𝑁 = (norm‘𝑊) |
| nmfval2.x | ⊢ 𝑋 = (Base‘𝑊) |
| nmfval2.z | ⊢ 0 = (0g‘𝑊) |
| nmfval2.d | ⊢ 𝐷 = (dist‘𝑊) |
| nmfval2.e | ⊢ 𝐸 = (𝐷 ↾ (𝑋 × 𝑋)) |
| Ref | Expression |
|---|---|
| nmval2 | ⊢ ((𝑊 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (𝑁‘𝐴) = (𝐴𝐸 0 )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmfval2.n | . . . 4 ⊢ 𝑁 = (norm‘𝑊) | |
| 2 | nmfval2.x | . . . 4 ⊢ 𝑋 = (Base‘𝑊) | |
| 3 | nmfval2.z | . . . 4 ⊢ 0 = (0g‘𝑊) | |
| 4 | nmfval2.d | . . . 4 ⊢ 𝐷 = (dist‘𝑊) | |
| 5 | 1, 2, 3, 4 | nmval 24483 | . . 3 ⊢ (𝐴 ∈ 𝑋 → (𝑁‘𝐴) = (𝐴𝐷 0 )) |
| 6 | 5 | adantl 481 | . 2 ⊢ ((𝑊 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (𝑁‘𝐴) = (𝐴𝐷 0 )) |
| 7 | nmfval2.e | . . . 4 ⊢ 𝐸 = (𝐷 ↾ (𝑋 × 𝑋)) | |
| 8 | 7 | oveqi 7402 | . . 3 ⊢ (𝐴𝐸 0 ) = (𝐴(𝐷 ↾ (𝑋 × 𝑋)) 0 ) |
| 9 | id 22 | . . . 4 ⊢ (𝐴 ∈ 𝑋 → 𝐴 ∈ 𝑋) | |
| 10 | 2, 3 | grpidcl 18903 | . . . 4 ⊢ (𝑊 ∈ Grp → 0 ∈ 𝑋) |
| 11 | ovres 7557 | . . . 4 ⊢ ((𝐴 ∈ 𝑋 ∧ 0 ∈ 𝑋) → (𝐴(𝐷 ↾ (𝑋 × 𝑋)) 0 ) = (𝐴𝐷 0 )) | |
| 12 | 9, 10, 11 | syl2anr 597 | . . 3 ⊢ ((𝑊 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (𝐴(𝐷 ↾ (𝑋 × 𝑋)) 0 ) = (𝐴𝐷 0 )) |
| 13 | 8, 12 | eqtr2id 2778 | . 2 ⊢ ((𝑊 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (𝐴𝐷 0 ) = (𝐴𝐸 0 )) |
| 14 | 6, 13 | eqtrd 2765 | 1 ⊢ ((𝑊 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (𝑁‘𝐴) = (𝐴𝐸 0 )) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 × cxp 5638 ↾ cres 5642 ‘cfv 6513 (class class class)co 7389 Basecbs 17185 distcds 17235 0gc0g 17408 Grpcgrp 18871 normcnm 24470 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-fv 6521 df-riota 7346 df-ov 7392 df-0g 17410 df-mgm 18573 df-sgrp 18652 df-mnd 18668 df-grp 18874 df-nm 24476 |
| This theorem is referenced by: nmhmcn 25026 nglmle 25208 |
| Copyright terms: Public domain | W3C validator |