MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmval2 Structured version   Visualization version   GIF version

Theorem nmval2 23748
Description: The value of the norm on a group as the distance restricted to the elements of the base set to zero. (Contributed by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
nmfval2.n 𝑁 = (norm‘𝑊)
nmfval2.x 𝑋 = (Base‘𝑊)
nmfval2.z 0 = (0g𝑊)
nmfval2.d 𝐷 = (dist‘𝑊)
nmfval2.e 𝐸 = (𝐷 ↾ (𝑋 × 𝑋))
Assertion
Ref Expression
nmval2 ((𝑊 ∈ Grp ∧ 𝐴𝑋) → (𝑁𝐴) = (𝐴𝐸 0 ))

Proof of Theorem nmval2
StepHypRef Expression
1 nmfval2.n . . . 4 𝑁 = (norm‘𝑊)
2 nmfval2.x . . . 4 𝑋 = (Base‘𝑊)
3 nmfval2.z . . . 4 0 = (0g𝑊)
4 nmfval2.d . . . 4 𝐷 = (dist‘𝑊)
51, 2, 3, 4nmval 23745 . . 3 (𝐴𝑋 → (𝑁𝐴) = (𝐴𝐷 0 ))
65adantl 482 . 2 ((𝑊 ∈ Grp ∧ 𝐴𝑋) → (𝑁𝐴) = (𝐴𝐷 0 ))
7 nmfval2.e . . . 4 𝐸 = (𝐷 ↾ (𝑋 × 𝑋))
87oveqi 7288 . . 3 (𝐴𝐸 0 ) = (𝐴(𝐷 ↾ (𝑋 × 𝑋)) 0 )
9 id 22 . . . 4 (𝐴𝑋𝐴𝑋)
102, 3grpidcl 18607 . . . 4 (𝑊 ∈ Grp → 0𝑋)
11 ovres 7438 . . . 4 ((𝐴𝑋0𝑋) → (𝐴(𝐷 ↾ (𝑋 × 𝑋)) 0 ) = (𝐴𝐷 0 ))
129, 10, 11syl2anr 597 . . 3 ((𝑊 ∈ Grp ∧ 𝐴𝑋) → (𝐴(𝐷 ↾ (𝑋 × 𝑋)) 0 ) = (𝐴𝐷 0 ))
138, 12eqtr2id 2791 . 2 ((𝑊 ∈ Grp ∧ 𝐴𝑋) → (𝐴𝐷 0 ) = (𝐴𝐸 0 ))
146, 13eqtrd 2778 1 ((𝑊 ∈ Grp ∧ 𝐴𝑋) → (𝑁𝐴) = (𝐴𝐸 0 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106   × cxp 5587  cres 5591  cfv 6433  (class class class)co 7275  Basecbs 16912  distcds 16971  0gc0g 17150  Grpcgrp 18577  normcnm 23732
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fv 6441  df-riota 7232  df-ov 7278  df-0g 17152  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-grp 18580  df-nm 23738
This theorem is referenced by:  nmhmcn  24283  nglmle  24466
  Copyright terms: Public domain W3C validator