![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nmval2 | Structured version Visualization version GIF version |
Description: The value of the norm on a group as the distance restricted to the elements of the base set to zero. (Contributed by Mario Carneiro, 2-Oct-2015.) |
Ref | Expression |
---|---|
nmfval2.n | ⊢ 𝑁 = (norm‘𝑊) |
nmfval2.x | ⊢ 𝑋 = (Base‘𝑊) |
nmfval2.z | ⊢ 0 = (0g‘𝑊) |
nmfval2.d | ⊢ 𝐷 = (dist‘𝑊) |
nmfval2.e | ⊢ 𝐸 = (𝐷 ↾ (𝑋 × 𝑋)) |
Ref | Expression |
---|---|
nmval2 | ⊢ ((𝑊 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (𝑁‘𝐴) = (𝐴𝐸 0 )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nmfval2.n | . . . 4 ⊢ 𝑁 = (norm‘𝑊) | |
2 | nmfval2.x | . . . 4 ⊢ 𝑋 = (Base‘𝑊) | |
3 | nmfval2.z | . . . 4 ⊢ 0 = (0g‘𝑊) | |
4 | nmfval2.d | . . . 4 ⊢ 𝐷 = (dist‘𝑊) | |
5 | 1, 2, 3, 4 | nmval 24492 | . . 3 ⊢ (𝐴 ∈ 𝑋 → (𝑁‘𝐴) = (𝐴𝐷 0 )) |
6 | 5 | adantl 481 | . 2 ⊢ ((𝑊 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (𝑁‘𝐴) = (𝐴𝐷 0 )) |
7 | nmfval2.e | . . . 4 ⊢ 𝐸 = (𝐷 ↾ (𝑋 × 𝑋)) | |
8 | 7 | oveqi 7428 | . . 3 ⊢ (𝐴𝐸 0 ) = (𝐴(𝐷 ↾ (𝑋 × 𝑋)) 0 ) |
9 | id 22 | . . . 4 ⊢ (𝐴 ∈ 𝑋 → 𝐴 ∈ 𝑋) | |
10 | 2, 3 | grpidcl 18916 | . . . 4 ⊢ (𝑊 ∈ Grp → 0 ∈ 𝑋) |
11 | ovres 7582 | . . . 4 ⊢ ((𝐴 ∈ 𝑋 ∧ 0 ∈ 𝑋) → (𝐴(𝐷 ↾ (𝑋 × 𝑋)) 0 ) = (𝐴𝐷 0 )) | |
12 | 9, 10, 11 | syl2anr 596 | . . 3 ⊢ ((𝑊 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (𝐴(𝐷 ↾ (𝑋 × 𝑋)) 0 ) = (𝐴𝐷 0 )) |
13 | 8, 12 | eqtr2id 2781 | . 2 ⊢ ((𝑊 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (𝐴𝐷 0 ) = (𝐴𝐸 0 )) |
14 | 6, 13 | eqtrd 2768 | 1 ⊢ ((𝑊 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (𝑁‘𝐴) = (𝐴𝐸 0 )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 × cxp 5671 ↾ cres 5675 ‘cfv 6543 (class class class)co 7415 Basecbs 17174 distcds 17236 0gc0g 17415 Grpcgrp 18884 normcnm 24479 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5294 ax-nul 5301 ax-pow 5360 ax-pr 5424 ax-un 7735 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-br 5144 df-opab 5206 df-mpt 5227 df-id 5571 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-fv 6551 df-riota 7371 df-ov 7418 df-0g 17417 df-mgm 18594 df-sgrp 18673 df-mnd 18689 df-grp 18887 df-nm 24485 |
This theorem is referenced by: nmhmcn 25041 nglmle 25224 |
Copyright terms: Public domain | W3C validator |