![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nmval2 | Structured version Visualization version GIF version |
Description: The value of the norm on a group as the distance restricted to the elements of the base set to zero. (Contributed by Mario Carneiro, 2-Oct-2015.) |
Ref | Expression |
---|---|
nmfval2.n | ⊢ 𝑁 = (norm‘𝑊) |
nmfval2.x | ⊢ 𝑋 = (Base‘𝑊) |
nmfval2.z | ⊢ 0 = (0g‘𝑊) |
nmfval2.d | ⊢ 𝐷 = (dist‘𝑊) |
nmfval2.e | ⊢ 𝐸 = (𝐷 ↾ (𝑋 × 𝑋)) |
Ref | Expression |
---|---|
nmval2 | ⊢ ((𝑊 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (𝑁‘𝐴) = (𝐴𝐸 0 )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nmfval2.n | . . . 4 ⊢ 𝑁 = (norm‘𝑊) | |
2 | nmfval2.x | . . . 4 ⊢ 𝑋 = (Base‘𝑊) | |
3 | nmfval2.z | . . . 4 ⊢ 0 = (0g‘𝑊) | |
4 | nmfval2.d | . . . 4 ⊢ 𝐷 = (dist‘𝑊) | |
5 | 1, 2, 3, 4 | nmval 24618 | . . 3 ⊢ (𝐴 ∈ 𝑋 → (𝑁‘𝐴) = (𝐴𝐷 0 )) |
6 | 5 | adantl 481 | . 2 ⊢ ((𝑊 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (𝑁‘𝐴) = (𝐴𝐷 0 )) |
7 | nmfval2.e | . . . 4 ⊢ 𝐸 = (𝐷 ↾ (𝑋 × 𝑋)) | |
8 | 7 | oveqi 7444 | . . 3 ⊢ (𝐴𝐸 0 ) = (𝐴(𝐷 ↾ (𝑋 × 𝑋)) 0 ) |
9 | id 22 | . . . 4 ⊢ (𝐴 ∈ 𝑋 → 𝐴 ∈ 𝑋) | |
10 | 2, 3 | grpidcl 18996 | . . . 4 ⊢ (𝑊 ∈ Grp → 0 ∈ 𝑋) |
11 | ovres 7599 | . . . 4 ⊢ ((𝐴 ∈ 𝑋 ∧ 0 ∈ 𝑋) → (𝐴(𝐷 ↾ (𝑋 × 𝑋)) 0 ) = (𝐴𝐷 0 )) | |
12 | 9, 10, 11 | syl2anr 597 | . . 3 ⊢ ((𝑊 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (𝐴(𝐷 ↾ (𝑋 × 𝑋)) 0 ) = (𝐴𝐷 0 )) |
13 | 8, 12 | eqtr2id 2788 | . 2 ⊢ ((𝑊 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (𝐴𝐷 0 ) = (𝐴𝐸 0 )) |
14 | 6, 13 | eqtrd 2775 | 1 ⊢ ((𝑊 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (𝑁‘𝐴) = (𝐴𝐸 0 )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 × cxp 5687 ↾ cres 5691 ‘cfv 6563 (class class class)co 7431 Basecbs 17245 distcds 17307 0gc0g 17486 Grpcgrp 18964 normcnm 24605 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-fv 6571 df-riota 7388 df-ov 7434 df-0g 17488 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-grp 18967 df-nm 24611 |
This theorem is referenced by: nmhmcn 25167 nglmle 25350 |
Copyright terms: Public domain | W3C validator |