MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmval2 Structured version   Visualization version   GIF version

Theorem nmval2 24568
Description: The value of the norm on a group as the distance restricted to the elements of the base set to zero. (Contributed by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
nmfval2.n 𝑁 = (norm‘𝑊)
nmfval2.x 𝑋 = (Base‘𝑊)
nmfval2.z 0 = (0g𝑊)
nmfval2.d 𝐷 = (dist‘𝑊)
nmfval2.e 𝐸 = (𝐷 ↾ (𝑋 × 𝑋))
Assertion
Ref Expression
nmval2 ((𝑊 ∈ Grp ∧ 𝐴𝑋) → (𝑁𝐴) = (𝐴𝐸 0 ))

Proof of Theorem nmval2
StepHypRef Expression
1 nmfval2.n . . . 4 𝑁 = (norm‘𝑊)
2 nmfval2.x . . . 4 𝑋 = (Base‘𝑊)
3 nmfval2.z . . . 4 0 = (0g𝑊)
4 nmfval2.d . . . 4 𝐷 = (dist‘𝑊)
51, 2, 3, 4nmval 24565 . . 3 (𝐴𝑋 → (𝑁𝐴) = (𝐴𝐷 0 ))
65adantl 481 . 2 ((𝑊 ∈ Grp ∧ 𝐴𝑋) → (𝑁𝐴) = (𝐴𝐷 0 ))
7 nmfval2.e . . . 4 𝐸 = (𝐷 ↾ (𝑋 × 𝑋))
87oveqi 7427 . . 3 (𝐴𝐸 0 ) = (𝐴(𝐷 ↾ (𝑋 × 𝑋)) 0 )
9 id 22 . . . 4 (𝐴𝑋𝐴𝑋)
102, 3grpidcl 18957 . . . 4 (𝑊 ∈ Grp → 0𝑋)
11 ovres 7582 . . . 4 ((𝐴𝑋0𝑋) → (𝐴(𝐷 ↾ (𝑋 × 𝑋)) 0 ) = (𝐴𝐷 0 ))
129, 10, 11syl2anr 597 . . 3 ((𝑊 ∈ Grp ∧ 𝐴𝑋) → (𝐴(𝐷 ↾ (𝑋 × 𝑋)) 0 ) = (𝐴𝐷 0 ))
138, 12eqtr2id 2782 . 2 ((𝑊 ∈ Grp ∧ 𝐴𝑋) → (𝐴𝐷 0 ) = (𝐴𝐸 0 ))
146, 13eqtrd 2769 1 ((𝑊 ∈ Grp ∧ 𝐴𝑋) → (𝑁𝐴) = (𝐴𝐸 0 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107   × cxp 5665  cres 5669  cfv 6542  (class class class)co 7414  Basecbs 17230  distcds 17286  0gc0g 17460  Grpcgrp 18925  normcnm 24552
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5278  ax-nul 5288  ax-pow 5347  ax-pr 5414  ax-un 7738
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3773  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-br 5126  df-opab 5188  df-mpt 5208  df-id 5560  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-iota 6495  df-fun 6544  df-fn 6545  df-f 6546  df-fv 6550  df-riota 7371  df-ov 7417  df-0g 17462  df-mgm 18627  df-sgrp 18706  df-mnd 18722  df-grp 18928  df-nm 24558
This theorem is referenced by:  nmhmcn  25108  nglmle  25291
  Copyright terms: Public domain W3C validator