MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nminv Structured version   Visualization version   GIF version

Theorem nminv 24655
Description: The norm of a negated element is the same as the norm of the original element. (Contributed by Mario Carneiro, 4-Oct-2015.)
Hypotheses
Ref Expression
nmf.x 𝑋 = (Base‘𝐺)
nmf.n 𝑁 = (norm‘𝐺)
nminv.i 𝐼 = (invg𝐺)
Assertion
Ref Expression
nminv ((𝐺 ∈ NrmGrp ∧ 𝐴𝑋) → (𝑁‘(𝐼𝐴)) = (𝑁𝐴))

Proof of Theorem nminv
StepHypRef Expression
1 ngpgrp 24633 . . . . 5 (𝐺 ∈ NrmGrp → 𝐺 ∈ Grp)
21adantr 480 . . . 4 ((𝐺 ∈ NrmGrp ∧ 𝐴𝑋) → 𝐺 ∈ Grp)
3 nmf.x . . . . 5 𝑋 = (Base‘𝐺)
4 eqid 2740 . . . . 5 (0g𝐺) = (0g𝐺)
53, 4grpidcl 19005 . . . 4 (𝐺 ∈ Grp → (0g𝐺) ∈ 𝑋)
62, 5syl 17 . . 3 ((𝐺 ∈ NrmGrp ∧ 𝐴𝑋) → (0g𝐺) ∈ 𝑋)
7 nmf.n . . . 4 𝑁 = (norm‘𝐺)
8 eqid 2740 . . . 4 (-g𝐺) = (-g𝐺)
9 eqid 2740 . . . 4 (dist‘𝐺) = (dist‘𝐺)
107, 3, 8, 9ngpdsr 24639 . . 3 ((𝐺 ∈ NrmGrp ∧ 𝐴𝑋 ∧ (0g𝐺) ∈ 𝑋) → (𝐴(dist‘𝐺)(0g𝐺)) = (𝑁‘((0g𝐺)(-g𝐺)𝐴)))
116, 10mpd3an3 1462 . 2 ((𝐺 ∈ NrmGrp ∧ 𝐴𝑋) → (𝐴(dist‘𝐺)(0g𝐺)) = (𝑁‘((0g𝐺)(-g𝐺)𝐴)))
127, 3, 4, 9nmval 24623 . . 3 (𝐴𝑋 → (𝑁𝐴) = (𝐴(dist‘𝐺)(0g𝐺)))
1312adantl 481 . 2 ((𝐺 ∈ NrmGrp ∧ 𝐴𝑋) → (𝑁𝐴) = (𝐴(dist‘𝐺)(0g𝐺)))
14 nminv.i . . . . 5 𝐼 = (invg𝐺)
153, 8, 14, 4grpinvval2 19063 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (𝐼𝐴) = ((0g𝐺)(-g𝐺)𝐴))
161, 15sylan 579 . . 3 ((𝐺 ∈ NrmGrp ∧ 𝐴𝑋) → (𝐼𝐴) = ((0g𝐺)(-g𝐺)𝐴))
1716fveq2d 6924 . 2 ((𝐺 ∈ NrmGrp ∧ 𝐴𝑋) → (𝑁‘(𝐼𝐴)) = (𝑁‘((0g𝐺)(-g𝐺)𝐴)))
1811, 13, 173eqtr4rd 2791 1 ((𝐺 ∈ NrmGrp ∧ 𝐴𝑋) → (𝑁‘(𝐼𝐴)) = (𝑁𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  cfv 6573  (class class class)co 7448  Basecbs 17258  distcds 17320  0gc0g 17499  Grpcgrp 18973  invgcminusg 18974  -gcsg 18975  normcnm 24610  NrmGrpcngp 24611
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-n0 12554  df-z 12640  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-0g 17501  df-topgen 17503  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-grp 18976  df-minusg 18977  df-sbg 18978  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-xms 24351  df-ms 24352  df-nm 24616  df-ngp 24617
This theorem is referenced by:  nmsub  24657  nmtri  24660  tngngp3  24698  cnncvsabsnegdemo  25218
  Copyright terms: Public domain W3C validator