MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onasuc Structured version   Visualization version   GIF version

Theorem onasuc 8469
Description: Addition with successor. Theorem 4I(A2) of [Enderton] p. 79. (Note that this version of oasuc 8465 does not need Replacement.) (Contributed by Mario Carneiro, 16-Nov-2014.)
Assertion
Ref Expression
onasuc ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (𝐴 +o suc 𝐵) = suc (𝐴 +o 𝐵))

Proof of Theorem onasuc
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 frsuc 8382 . . . 4 (𝐵 ∈ ω → ((rec((𝑥 ∈ V ↦ suc 𝑥), 𝐴) ↾ ω)‘suc 𝐵) = ((𝑥 ∈ V ↦ suc 𝑥)‘((rec((𝑥 ∈ V ↦ suc 𝑥), 𝐴) ↾ ω)‘𝐵)))
21adantl 481 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → ((rec((𝑥 ∈ V ↦ suc 𝑥), 𝐴) ↾ ω)‘suc 𝐵) = ((𝑥 ∈ V ↦ suc 𝑥)‘((rec((𝑥 ∈ V ↦ suc 𝑥), 𝐴) ↾ ω)‘𝐵)))
3 peano2 7846 . . . . 5 (𝐵 ∈ ω → suc 𝐵 ∈ ω)
43adantl 481 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → suc 𝐵 ∈ ω)
54fvresd 6860 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → ((rec((𝑥 ∈ V ↦ suc 𝑥), 𝐴) ↾ ω)‘suc 𝐵) = (rec((𝑥 ∈ V ↦ suc 𝑥), 𝐴)‘suc 𝐵))
6 fvres 6859 . . . . 5 (𝐵 ∈ ω → ((rec((𝑥 ∈ V ↦ suc 𝑥), 𝐴) ↾ ω)‘𝐵) = (rec((𝑥 ∈ V ↦ suc 𝑥), 𝐴)‘𝐵))
76adantl 481 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → ((rec((𝑥 ∈ V ↦ suc 𝑥), 𝐴) ↾ ω)‘𝐵) = (rec((𝑥 ∈ V ↦ suc 𝑥), 𝐴)‘𝐵))
87fveq2d 6844 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → ((𝑥 ∈ V ↦ suc 𝑥)‘((rec((𝑥 ∈ V ↦ suc 𝑥), 𝐴) ↾ ω)‘𝐵)) = ((𝑥 ∈ V ↦ suc 𝑥)‘(rec((𝑥 ∈ V ↦ suc 𝑥), 𝐴)‘𝐵)))
92, 5, 83eqtr3d 2772 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (rec((𝑥 ∈ V ↦ suc 𝑥), 𝐴)‘suc 𝐵) = ((𝑥 ∈ V ↦ suc 𝑥)‘(rec((𝑥 ∈ V ↦ suc 𝑥), 𝐴)‘𝐵)))
10 nnon 7828 . . . 4 (𝐵 ∈ ω → 𝐵 ∈ On)
11 onsuc 7767 . . . 4 (𝐵 ∈ On → suc 𝐵 ∈ On)
1210, 11syl 17 . . 3 (𝐵 ∈ ω → suc 𝐵 ∈ On)
13 oav 8452 . . 3 ((𝐴 ∈ On ∧ suc 𝐵 ∈ On) → (𝐴 +o suc 𝐵) = (rec((𝑥 ∈ V ↦ suc 𝑥), 𝐴)‘suc 𝐵))
1412, 13sylan2 593 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (𝐴 +o suc 𝐵) = (rec((𝑥 ∈ V ↦ suc 𝑥), 𝐴)‘suc 𝐵))
15 ovex 7402 . . . 4 (𝐴 +o 𝐵) ∈ V
16 suceq 6388 . . . . 5 (𝑥 = (𝐴 +o 𝐵) → suc 𝑥 = suc (𝐴 +o 𝐵))
17 eqid 2729 . . . . 5 (𝑥 ∈ V ↦ suc 𝑥) = (𝑥 ∈ V ↦ suc 𝑥)
1815sucex 7762 . . . . 5 suc (𝐴 +o 𝐵) ∈ V
1916, 17, 18fvmpt 6950 . . . 4 ((𝐴 +o 𝐵) ∈ V → ((𝑥 ∈ V ↦ suc 𝑥)‘(𝐴 +o 𝐵)) = suc (𝐴 +o 𝐵))
2015, 19ax-mp 5 . . 3 ((𝑥 ∈ V ↦ suc 𝑥)‘(𝐴 +o 𝐵)) = suc (𝐴 +o 𝐵)
21 oav 8452 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o 𝐵) = (rec((𝑥 ∈ V ↦ suc 𝑥), 𝐴)‘𝐵))
2210, 21sylan2 593 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (𝐴 +o 𝐵) = (rec((𝑥 ∈ V ↦ suc 𝑥), 𝐴)‘𝐵))
2322fveq2d 6844 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → ((𝑥 ∈ V ↦ suc 𝑥)‘(𝐴 +o 𝐵)) = ((𝑥 ∈ V ↦ suc 𝑥)‘(rec((𝑥 ∈ V ↦ suc 𝑥), 𝐴)‘𝐵)))
2420, 23eqtr3id 2778 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → suc (𝐴 +o 𝐵) = ((𝑥 ∈ V ↦ suc 𝑥)‘(rec((𝑥 ∈ V ↦ suc 𝑥), 𝐴)‘𝐵)))
259, 14, 243eqtr4d 2774 1 ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (𝐴 +o suc 𝐵) = suc (𝐴 +o 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3444  cmpt 5183  cres 5633  Oncon0 6320  suc csuc 6322  cfv 6499  (class class class)co 7369  ωcom 7822  reccrdg 8354   +o coa 8408
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-oadd 8415
This theorem is referenced by:  oa1suc  8472  o2p2e4  8482  nnasuc  8547  naddoa  8643  rdgeqoa  37331
  Copyright terms: Public domain W3C validator