Step | Hyp | Ref
| Expression |
1 | | odval.4 |
. 2
⊢ 𝑂 = (od‘𝐺) |
2 | | fveq2 6658 |
. . . . . 6
⊢ (𝑔 = 𝐺 → (Base‘𝑔) = (Base‘𝐺)) |
3 | | odval.1 |
. . . . . 6
⊢ 𝑋 = (Base‘𝐺) |
4 | 2, 3 | eqtr4di 2811 |
. . . . 5
⊢ (𝑔 = 𝐺 → (Base‘𝑔) = 𝑋) |
5 | | fveq2 6658 |
. . . . . . . . . 10
⊢ (𝑔 = 𝐺 → (.g‘𝑔) = (.g‘𝐺)) |
6 | | odval.2 |
. . . . . . . . . 10
⊢ · =
(.g‘𝐺) |
7 | 5, 6 | eqtr4di 2811 |
. . . . . . . . 9
⊢ (𝑔 = 𝐺 → (.g‘𝑔) = · ) |
8 | 7 | oveqd 7167 |
. . . . . . . 8
⊢ (𝑔 = 𝐺 → (𝑦(.g‘𝑔)𝑥) = (𝑦 · 𝑥)) |
9 | | fveq2 6658 |
. . . . . . . . 9
⊢ (𝑔 = 𝐺 → (0g‘𝑔) = (0g‘𝐺)) |
10 | | odval.3 |
. . . . . . . . 9
⊢ 0 =
(0g‘𝐺) |
11 | 9, 10 | eqtr4di 2811 |
. . . . . . . 8
⊢ (𝑔 = 𝐺 → (0g‘𝑔) = 0 ) |
12 | 8, 11 | eqeq12d 2774 |
. . . . . . 7
⊢ (𝑔 = 𝐺 → ((𝑦(.g‘𝑔)𝑥) = (0g‘𝑔) ↔ (𝑦 · 𝑥) = 0 )) |
13 | 12 | rabbidv 3392 |
. . . . . 6
⊢ (𝑔 = 𝐺 → {𝑦 ∈ ℕ ∣ (𝑦(.g‘𝑔)𝑥) = (0g‘𝑔)} = {𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 }) |
14 | 13 | csbeq1d 3809 |
. . . . 5
⊢ (𝑔 = 𝐺 → ⦋{𝑦 ∈ ℕ ∣ (𝑦(.g‘𝑔)𝑥) = (0g‘𝑔)} / 𝑖⦌if(𝑖 = ∅, 0, inf(𝑖, ℝ, < )) = ⦋{𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } / 𝑖⦌if(𝑖 = ∅, 0, inf(𝑖, ℝ, < ))) |
15 | 4, 14 | mpteq12dv 5117 |
. . . 4
⊢ (𝑔 = 𝐺 → (𝑥 ∈ (Base‘𝑔) ↦ ⦋{𝑦 ∈ ℕ ∣ (𝑦(.g‘𝑔)𝑥) = (0g‘𝑔)} / 𝑖⦌if(𝑖 = ∅, 0, inf(𝑖, ℝ, < ))) = (𝑥 ∈ 𝑋 ↦ ⦋{𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } / 𝑖⦌if(𝑖 = ∅, 0, inf(𝑖, ℝ, < )))) |
16 | | df-od 18723 |
. . . 4
⊢ od =
(𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔) ↦ ⦋{𝑦 ∈ ℕ ∣ (𝑦(.g‘𝑔)𝑥) = (0g‘𝑔)} / 𝑖⦌if(𝑖 = ∅, 0, inf(𝑖, ℝ, < )))) |
17 | 15, 16, 3 | mptfvmpt 6982 |
. . 3
⊢ (𝐺 ∈ V → (od‘𝐺) = (𝑥 ∈ 𝑋 ↦ ⦋{𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } / 𝑖⦌if(𝑖 = ∅, 0, inf(𝑖, ℝ, < )))) |
18 | | fvprc 6650 |
. . . 4
⊢ (¬
𝐺 ∈ V →
(od‘𝐺) =
∅) |
19 | | fvprc 6650 |
. . . . . . 7
⊢ (¬
𝐺 ∈ V →
(Base‘𝐺) =
∅) |
20 | 3, 19 | syl5eq 2805 |
. . . . . 6
⊢ (¬
𝐺 ∈ V → 𝑋 = ∅) |
21 | 20 | mpteq1d 5121 |
. . . . 5
⊢ (¬
𝐺 ∈ V → (𝑥 ∈ 𝑋 ↦ ⦋{𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } / 𝑖⦌if(𝑖 = ∅, 0, inf(𝑖, ℝ, < ))) = (𝑥 ∈ ∅ ↦ ⦋{𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } / 𝑖⦌if(𝑖 = ∅, 0, inf(𝑖, ℝ, < )))) |
22 | | mpt0 6473 |
. . . . 5
⊢ (𝑥 ∈ ∅ ↦
⦋{𝑦 ∈
ℕ ∣ (𝑦 · 𝑥) = 0 } / 𝑖⦌if(𝑖 = ∅, 0, inf(𝑖, ℝ, < ))) =
∅ |
23 | 21, 22 | eqtrdi 2809 |
. . . 4
⊢ (¬
𝐺 ∈ V → (𝑥 ∈ 𝑋 ↦ ⦋{𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } / 𝑖⦌if(𝑖 = ∅, 0, inf(𝑖, ℝ, < ))) =
∅) |
24 | 18, 23 | eqtr4d 2796 |
. . 3
⊢ (¬
𝐺 ∈ V →
(od‘𝐺) = (𝑥 ∈ 𝑋 ↦ ⦋{𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } / 𝑖⦌if(𝑖 = ∅, 0, inf(𝑖, ℝ, < )))) |
25 | 17, 24 | pm2.61i 185 |
. 2
⊢
(od‘𝐺) =
(𝑥 ∈ 𝑋 ↦ ⦋{𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } / 𝑖⦌if(𝑖 = ∅, 0, inf(𝑖, ℝ, < ))) |
26 | 1, 25 | eqtri 2781 |
1
⊢ 𝑂 = (𝑥 ∈ 𝑋 ↦ ⦋{𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } / 𝑖⦌if(𝑖 = ∅, 0, inf(𝑖, ℝ, < ))) |