MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odfvalALT Structured version   Visualization version   GIF version

Theorem odfvalALT 19524
Description: Shorter proof of odfval 19523 using ax-rep 5261. (Contributed by Mario Carneiro, 13-Jul-2014.) (Revised by AV, 5-Oct-2020.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
odval.1 𝑋 = (Base‘𝐺)
odval.2 · = (.g𝐺)
odval.3 0 = (0g𝐺)
odval.4 𝑂 = (od‘𝐺)
Assertion
Ref Expression
odfvalALT 𝑂 = (𝑥𝑋{𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } / 𝑖if(𝑖 = ∅, 0, inf(𝑖, ℝ, < )))
Distinct variable groups:   𝑦,𝑖,𝑥   𝑥,𝐺,𝑦   𝑥, · ,𝑖,𝑦   𝑥, 0 ,𝑦,𝑖   𝑥,𝑋
Allowed substitution hints:   𝐺(𝑖)   𝑂(𝑥,𝑦,𝑖)   𝑋(𝑦,𝑖)

Proof of Theorem odfvalALT
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 odval.4 . 2 𝑂 = (od‘𝐺)
2 fveq2 6887 . . . . . 6 (𝑔 = 𝐺 → (Base‘𝑔) = (Base‘𝐺))
3 odval.1 . . . . . 6 𝑋 = (Base‘𝐺)
42, 3eqtr4di 2787 . . . . 5 (𝑔 = 𝐺 → (Base‘𝑔) = 𝑋)
5 fveq2 6887 . . . . . . . . . 10 (𝑔 = 𝐺 → (.g𝑔) = (.g𝐺))
6 odval.2 . . . . . . . . . 10 · = (.g𝐺)
75, 6eqtr4di 2787 . . . . . . . . 9 (𝑔 = 𝐺 → (.g𝑔) = · )
87oveqd 7431 . . . . . . . 8 (𝑔 = 𝐺 → (𝑦(.g𝑔)𝑥) = (𝑦 · 𝑥))
9 fveq2 6887 . . . . . . . . 9 (𝑔 = 𝐺 → (0g𝑔) = (0g𝐺))
10 odval.3 . . . . . . . . 9 0 = (0g𝐺)
119, 10eqtr4di 2787 . . . . . . . 8 (𝑔 = 𝐺 → (0g𝑔) = 0 )
128, 11eqeq12d 2750 . . . . . . 7 (𝑔 = 𝐺 → ((𝑦(.g𝑔)𝑥) = (0g𝑔) ↔ (𝑦 · 𝑥) = 0 ))
1312rabbidv 3428 . . . . . 6 (𝑔 = 𝐺 → {𝑦 ∈ ℕ ∣ (𝑦(.g𝑔)𝑥) = (0g𝑔)} = {𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 })
1413csbeq1d 3885 . . . . 5 (𝑔 = 𝐺{𝑦 ∈ ℕ ∣ (𝑦(.g𝑔)𝑥) = (0g𝑔)} / 𝑖if(𝑖 = ∅, 0, inf(𝑖, ℝ, < )) = {𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } / 𝑖if(𝑖 = ∅, 0, inf(𝑖, ℝ, < )))
154, 14mpteq12dv 5215 . . . 4 (𝑔 = 𝐺 → (𝑥 ∈ (Base‘𝑔) ↦ {𝑦 ∈ ℕ ∣ (𝑦(.g𝑔)𝑥) = (0g𝑔)} / 𝑖if(𝑖 = ∅, 0, inf(𝑖, ℝ, < ))) = (𝑥𝑋{𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } / 𝑖if(𝑖 = ∅, 0, inf(𝑖, ℝ, < ))))
16 df-od 19519 . . . 4 od = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔) ↦ {𝑦 ∈ ℕ ∣ (𝑦(.g𝑔)𝑥) = (0g𝑔)} / 𝑖if(𝑖 = ∅, 0, inf(𝑖, ℝ, < ))))
1715, 16, 3mptfvmpt 7231 . . 3 (𝐺 ∈ V → (od‘𝐺) = (𝑥𝑋{𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } / 𝑖if(𝑖 = ∅, 0, inf(𝑖, ℝ, < ))))
18 fvprc 6879 . . . 4 𝐺 ∈ V → (od‘𝐺) = ∅)
19 fvprc 6879 . . . . . . 7 𝐺 ∈ V → (Base‘𝐺) = ∅)
203, 19eqtrid 2781 . . . . . 6 𝐺 ∈ V → 𝑋 = ∅)
2120mpteq1d 5219 . . . . 5 𝐺 ∈ V → (𝑥𝑋{𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } / 𝑖if(𝑖 = ∅, 0, inf(𝑖, ℝ, < ))) = (𝑥 ∈ ∅ ↦ {𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } / 𝑖if(𝑖 = ∅, 0, inf(𝑖, ℝ, < ))))
22 mpt0 6691 . . . . 5 (𝑥 ∈ ∅ ↦ {𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } / 𝑖if(𝑖 = ∅, 0, inf(𝑖, ℝ, < ))) = ∅
2321, 22eqtrdi 2785 . . . 4 𝐺 ∈ V → (𝑥𝑋{𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } / 𝑖if(𝑖 = ∅, 0, inf(𝑖, ℝ, < ))) = ∅)
2418, 23eqtr4d 2772 . . 3 𝐺 ∈ V → (od‘𝐺) = (𝑥𝑋{𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } / 𝑖if(𝑖 = ∅, 0, inf(𝑖, ℝ, < ))))
2517, 24pm2.61i 182 . 2 (od‘𝐺) = (𝑥𝑋{𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } / 𝑖if(𝑖 = ∅, 0, inf(𝑖, ℝ, < )))
261, 25eqtri 2757 1 𝑂 = (𝑥𝑋{𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } / 𝑖if(𝑖 = ∅, 0, inf(𝑖, ℝ, < )))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1539  wcel 2107  {crab 3420  Vcvv 3464  csb 3881  c0 4315  ifcif 4507  cmpt 5207  cfv 6542  (class class class)co 7414  infcinf 9464  cr 11137  0cc0 11138   < clt 11278  cn 12249  Basecbs 17230  0gc0g 17460  .gcmg 19059  odcod 19515
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5261  ax-sep 5278  ax-nul 5288  ax-pr 5414
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3773  df-csb 3882  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-nul 4316  df-if 4508  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-iun 4975  df-br 5126  df-opab 5188  df-mpt 5208  df-id 5560  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-iota 6495  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-ov 7417  df-od 19519
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator