MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odfvalALT Structured version   Visualization version   GIF version

Theorem odfvalALT 19453
Description: Shorter proof of odfval 19452 using ax-rep 5221. (Contributed by Mario Carneiro, 13-Jul-2014.) (Revised by AV, 5-Oct-2020.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
odval.1 𝑋 = (Base‘𝐺)
odval.2 · = (.g𝐺)
odval.3 0 = (0g𝐺)
odval.4 𝑂 = (od‘𝐺)
Assertion
Ref Expression
odfvalALT 𝑂 = (𝑥𝑋{𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } / 𝑖if(𝑖 = ∅, 0, inf(𝑖, ℝ, < )))
Distinct variable groups:   𝑦,𝑖,𝑥   𝑥,𝐺,𝑦   𝑥, · ,𝑖,𝑦   𝑥, 0 ,𝑦,𝑖   𝑥,𝑋
Allowed substitution hints:   𝐺(𝑖)   𝑂(𝑥,𝑦,𝑖)   𝑋(𝑦,𝑖)

Proof of Theorem odfvalALT
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 odval.4 . 2 𝑂 = (od‘𝐺)
2 fveq2 6831 . . . . . 6 (𝑔 = 𝐺 → (Base‘𝑔) = (Base‘𝐺))
3 odval.1 . . . . . 6 𝑋 = (Base‘𝐺)
42, 3eqtr4di 2786 . . . . 5 (𝑔 = 𝐺 → (Base‘𝑔) = 𝑋)
5 fveq2 6831 . . . . . . . . . 10 (𝑔 = 𝐺 → (.g𝑔) = (.g𝐺))
6 odval.2 . . . . . . . . . 10 · = (.g𝐺)
75, 6eqtr4di 2786 . . . . . . . . 9 (𝑔 = 𝐺 → (.g𝑔) = · )
87oveqd 7372 . . . . . . . 8 (𝑔 = 𝐺 → (𝑦(.g𝑔)𝑥) = (𝑦 · 𝑥))
9 fveq2 6831 . . . . . . . . 9 (𝑔 = 𝐺 → (0g𝑔) = (0g𝐺))
10 odval.3 . . . . . . . . 9 0 = (0g𝐺)
119, 10eqtr4di 2786 . . . . . . . 8 (𝑔 = 𝐺 → (0g𝑔) = 0 )
128, 11eqeq12d 2749 . . . . . . 7 (𝑔 = 𝐺 → ((𝑦(.g𝑔)𝑥) = (0g𝑔) ↔ (𝑦 · 𝑥) = 0 ))
1312rabbidv 3403 . . . . . 6 (𝑔 = 𝐺 → {𝑦 ∈ ℕ ∣ (𝑦(.g𝑔)𝑥) = (0g𝑔)} = {𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 })
1413csbeq1d 3850 . . . . 5 (𝑔 = 𝐺{𝑦 ∈ ℕ ∣ (𝑦(.g𝑔)𝑥) = (0g𝑔)} / 𝑖if(𝑖 = ∅, 0, inf(𝑖, ℝ, < )) = {𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } / 𝑖if(𝑖 = ∅, 0, inf(𝑖, ℝ, < )))
154, 14mpteq12dv 5182 . . . 4 (𝑔 = 𝐺 → (𝑥 ∈ (Base‘𝑔) ↦ {𝑦 ∈ ℕ ∣ (𝑦(.g𝑔)𝑥) = (0g𝑔)} / 𝑖if(𝑖 = ∅, 0, inf(𝑖, ℝ, < ))) = (𝑥𝑋{𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } / 𝑖if(𝑖 = ∅, 0, inf(𝑖, ℝ, < ))))
16 df-od 19448 . . . 4 od = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔) ↦ {𝑦 ∈ ℕ ∣ (𝑦(.g𝑔)𝑥) = (0g𝑔)} / 𝑖if(𝑖 = ∅, 0, inf(𝑖, ℝ, < ))))
1715, 16, 3mptfvmpt 7171 . . 3 (𝐺 ∈ V → (od‘𝐺) = (𝑥𝑋{𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } / 𝑖if(𝑖 = ∅, 0, inf(𝑖, ℝ, < ))))
18 fvprc 6823 . . . 4 𝐺 ∈ V → (od‘𝐺) = ∅)
19 fvprc 6823 . . . . . . 7 𝐺 ∈ V → (Base‘𝐺) = ∅)
203, 19eqtrid 2780 . . . . . 6 𝐺 ∈ V → 𝑋 = ∅)
2120mpteq1d 5185 . . . . 5 𝐺 ∈ V → (𝑥𝑋{𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } / 𝑖if(𝑖 = ∅, 0, inf(𝑖, ℝ, < ))) = (𝑥 ∈ ∅ ↦ {𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } / 𝑖if(𝑖 = ∅, 0, inf(𝑖, ℝ, < ))))
22 mpt0 6631 . . . . 5 (𝑥 ∈ ∅ ↦ {𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } / 𝑖if(𝑖 = ∅, 0, inf(𝑖, ℝ, < ))) = ∅
2321, 22eqtrdi 2784 . . . 4 𝐺 ∈ V → (𝑥𝑋{𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } / 𝑖if(𝑖 = ∅, 0, inf(𝑖, ℝ, < ))) = ∅)
2418, 23eqtr4d 2771 . . 3 𝐺 ∈ V → (od‘𝐺) = (𝑥𝑋{𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } / 𝑖if(𝑖 = ∅, 0, inf(𝑖, ℝ, < ))))
2517, 24pm2.61i 182 . 2 (od‘𝐺) = (𝑥𝑋{𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } / 𝑖if(𝑖 = ∅, 0, inf(𝑖, ℝ, < )))
261, 25eqtri 2756 1 𝑂 = (𝑥𝑋{𝑦 ∈ ℕ ∣ (𝑦 · 𝑥) = 0 } / 𝑖if(𝑖 = ∅, 0, inf(𝑖, ℝ, < )))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1541  wcel 2113  {crab 3396  Vcvv 3437  csb 3846  c0 4282  ifcif 4476  cmpt 5176  cfv 6489  (class class class)co 7355  infcinf 9336  cr 11016  0cc0 11017   < clt 11157  cn 12136  Basecbs 17127  0gc0g 17350  .gcmg 18988  odcod 19444
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-ov 7358  df-od 19448
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator