Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ofcc Structured version   Visualization version   GIF version

Theorem ofcc 31450
 Description: Left operation by a constant on a mixed operation with a constant. (Contributed by Thierry Arnoux, 31-Jan-2017.)
Hypotheses
Ref Expression
ofcc.1 (𝜑𝐴𝑉)
ofcc.2 (𝜑𝐵𝑊)
ofcc.3 (𝜑𝐶𝑋)
Assertion
Ref Expression
ofcc (𝜑 → ((𝐴 × {𝐵}) ∘f/c 𝑅𝐶) = (𝐴 × {(𝐵𝑅𝐶)}))

Proof of Theorem ofcc
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ofcc.2 . . . 4 (𝜑𝐵𝑊)
2 fnconstg 6559 . . . 4 (𝐵𝑊 → (𝐴 × {𝐵}) Fn 𝐴)
31, 2syl 17 . . 3 (𝜑 → (𝐴 × {𝐵}) Fn 𝐴)
4 ofcc.1 . . 3 (𝜑𝐴𝑉)
5 ofcc.3 . . 3 (𝜑𝐶𝑋)
6 fvconst2g 6957 . . . 4 ((𝐵𝑊𝑥𝐴) → ((𝐴 × {𝐵})‘𝑥) = 𝐵)
71, 6sylan 583 . . 3 ((𝜑𝑥𝐴) → ((𝐴 × {𝐵})‘𝑥) = 𝐵)
83, 4, 5, 7ofcfval 31442 . 2 (𝜑 → ((𝐴 × {𝐵}) ∘f/c 𝑅𝐶) = (𝑥𝐴 ↦ (𝐵𝑅𝐶)))
9 fconstmpt 5602 . 2 (𝐴 × {(𝐵𝑅𝐶)}) = (𝑥𝐴 ↦ (𝐵𝑅𝐶))
108, 9eqtr4di 2877 1 (𝜑 → ((𝐴 × {𝐵}) ∘f/c 𝑅𝐶) = (𝐴 × {(𝐵𝑅𝐶)}))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1538   ∈ wcel 2115  {csn 4550   ↦ cmpt 5133   × cxp 5541   Fn wfn 6340  ‘cfv 6345  (class class class)co 7151   ∘f/c cofc 31439 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5177  ax-sep 5190  ax-nul 5197  ax-pr 5318 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-ral 3138  df-rex 3139  df-reu 3140  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-nul 4277  df-if 4451  df-sn 4551  df-pr 4553  df-op 4557  df-uni 4825  df-iun 4907  df-br 5054  df-opab 5116  df-mpt 5134  df-id 5448  df-xp 5549  df-rel 5550  df-cnv 5551  df-co 5552  df-dm 5553  df-rn 5554  df-res 5555  df-ima 5556  df-iota 6304  df-fun 6347  df-fn 6348  df-f 6349  df-f1 6350  df-fo 6351  df-f1o 6352  df-fv 6353  df-ov 7154  df-oprab 7155  df-mpo 7156  df-ofc 31440 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator