| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ofcc | Structured version Visualization version GIF version | ||
| Description: Left operation by a constant on a mixed operation with a constant. (Contributed by Thierry Arnoux, 31-Jan-2017.) |
| Ref | Expression |
|---|---|
| ofcc.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| ofcc.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| ofcc.3 | ⊢ (𝜑 → 𝐶 ∈ 𝑋) |
| Ref | Expression |
|---|---|
| ofcc | ⊢ (𝜑 → ((𝐴 × {𝐵}) ∘f/c 𝑅𝐶) = (𝐴 × {(𝐵𝑅𝐶)})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ofcc.2 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
| 2 | fnconstg 6706 | . . . 4 ⊢ (𝐵 ∈ 𝑊 → (𝐴 × {𝐵}) Fn 𝐴) | |
| 3 | 1, 2 | syl 17 | . . 3 ⊢ (𝜑 → (𝐴 × {𝐵}) Fn 𝐴) |
| 4 | ofcc.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 5 | ofcc.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑋) | |
| 6 | fvconst2g 7131 | . . . 4 ⊢ ((𝐵 ∈ 𝑊 ∧ 𝑥 ∈ 𝐴) → ((𝐴 × {𝐵})‘𝑥) = 𝐵) | |
| 7 | 1, 6 | sylan 580 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝐴 × {𝐵})‘𝑥) = 𝐵) |
| 8 | 3, 4, 5, 7 | ofcfval 34103 | . 2 ⊢ (𝜑 → ((𝐴 × {𝐵}) ∘f/c 𝑅𝐶) = (𝑥 ∈ 𝐴 ↦ (𝐵𝑅𝐶))) |
| 9 | fconstmpt 5673 | . 2 ⊢ (𝐴 × {(𝐵𝑅𝐶)}) = (𝑥 ∈ 𝐴 ↦ (𝐵𝑅𝐶)) | |
| 10 | 8, 9 | eqtr4di 2784 | 1 ⊢ (𝜑 → ((𝐴 × {𝐵}) ∘f/c 𝑅𝐶) = (𝐴 × {(𝐵𝑅𝐶)})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 {csn 4571 ↦ cmpt 5167 × cxp 5609 Fn wfn 6471 ‘cfv 6476 (class class class)co 7341 ∘f/c cofc 34100 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-ov 7344 df-oprab 7345 df-mpo 7346 df-ofc 34101 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |