| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ofcc | Structured version Visualization version GIF version | ||
| Description: Left operation by a constant on a mixed operation with a constant. (Contributed by Thierry Arnoux, 31-Jan-2017.) |
| Ref | Expression |
|---|---|
| ofcc.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| ofcc.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| ofcc.3 | ⊢ (𝜑 → 𝐶 ∈ 𝑋) |
| Ref | Expression |
|---|---|
| ofcc | ⊢ (𝜑 → ((𝐴 × {𝐵}) ∘f/c 𝑅𝐶) = (𝐴 × {(𝐵𝑅𝐶)})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ofcc.2 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
| 2 | fnconstg 6748 | . . . 4 ⊢ (𝐵 ∈ 𝑊 → (𝐴 × {𝐵}) Fn 𝐴) | |
| 3 | 1, 2 | syl 17 | . . 3 ⊢ (𝜑 → (𝐴 × {𝐵}) Fn 𝐴) |
| 4 | ofcc.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 5 | ofcc.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑋) | |
| 6 | fvconst2g 7176 | . . . 4 ⊢ ((𝐵 ∈ 𝑊 ∧ 𝑥 ∈ 𝐴) → ((𝐴 × {𝐵})‘𝑥) = 𝐵) | |
| 7 | 1, 6 | sylan 580 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝐴 × {𝐵})‘𝑥) = 𝐵) |
| 8 | 3, 4, 5, 7 | ofcfval 34088 | . 2 ⊢ (𝜑 → ((𝐴 × {𝐵}) ∘f/c 𝑅𝐶) = (𝑥 ∈ 𝐴 ↦ (𝐵𝑅𝐶))) |
| 9 | fconstmpt 5700 | . 2 ⊢ (𝐴 × {(𝐵𝑅𝐶)}) = (𝑥 ∈ 𝐴 ↦ (𝐵𝑅𝐶)) | |
| 10 | 8, 9 | eqtr4di 2782 | 1 ⊢ (𝜑 → ((𝐴 × {𝐵}) ∘f/c 𝑅𝐶) = (𝐴 × {(𝐵𝑅𝐶)})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {csn 4589 ↦ cmpt 5188 × cxp 5636 Fn wfn 6506 ‘cfv 6511 (class class class)co 7387 ∘f/c cofc 34085 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-ofc 34086 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |