Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ofcc Structured version   Visualization version   GIF version

Theorem ofcc 34092
Description: Left operation by a constant on a mixed operation with a constant. (Contributed by Thierry Arnoux, 31-Jan-2017.)
Hypotheses
Ref Expression
ofcc.1 (𝜑𝐴𝑉)
ofcc.2 (𝜑𝐵𝑊)
ofcc.3 (𝜑𝐶𝑋)
Assertion
Ref Expression
ofcc (𝜑 → ((𝐴 × {𝐵}) ∘f/c 𝑅𝐶) = (𝐴 × {(𝐵𝑅𝐶)}))

Proof of Theorem ofcc
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ofcc.2 . . . 4 (𝜑𝐵𝑊)
2 fnconstg 6716 . . . 4 (𝐵𝑊 → (𝐴 × {𝐵}) Fn 𝐴)
31, 2syl 17 . . 3 (𝜑 → (𝐴 × {𝐵}) Fn 𝐴)
4 ofcc.1 . . 3 (𝜑𝐴𝑉)
5 ofcc.3 . . 3 (𝜑𝐶𝑋)
6 fvconst2g 7142 . . . 4 ((𝐵𝑊𝑥𝐴) → ((𝐴 × {𝐵})‘𝑥) = 𝐵)
71, 6sylan 580 . . 3 ((𝜑𝑥𝐴) → ((𝐴 × {𝐵})‘𝑥) = 𝐵)
83, 4, 5, 7ofcfval 34084 . 2 (𝜑 → ((𝐴 × {𝐵}) ∘f/c 𝑅𝐶) = (𝑥𝐴 ↦ (𝐵𝑅𝐶)))
9 fconstmpt 5685 . 2 (𝐴 × {(𝐵𝑅𝐶)}) = (𝑥𝐴 ↦ (𝐵𝑅𝐶))
108, 9eqtr4di 2782 1 (𝜑 → ((𝐴 × {𝐵}) ∘f/c 𝑅𝐶) = (𝐴 × {(𝐵𝑅𝐶)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  {csn 4579  cmpt 5176   × cxp 5621   Fn wfn 6481  cfv 6486  (class class class)co 7353  f/c cofc 34081
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-ofc 34082
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator