Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ofcof Structured version   Visualization version   GIF version

Theorem ofcof 34090
Description: Relate function operation with operation with a constant. (Contributed by Thierry Arnoux, 3-Oct-2018.)
Hypotheses
Ref Expression
ofcof.1 (𝜑𝐹:𝐴𝐵)
ofcof.2 (𝜑𝐴𝑉)
ofcof.3 (𝜑𝐶𝑊)
Assertion
Ref Expression
ofcof (𝜑 → (𝐹f/c 𝑅𝐶) = (𝐹f 𝑅(𝐴 × {𝐶})))

Proof of Theorem ofcof
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ofcof.1 . . . 4 (𝜑𝐹:𝐴𝐵)
21ffnd 6671 . . 3 (𝜑𝐹 Fn 𝐴)
3 ofcof.2 . . 3 (𝜑𝐴𝑉)
4 ofcof.3 . . 3 (𝜑𝐶𝑊)
5 eqidd 2730 . . 3 ((𝜑𝑥𝐴) → (𝐹𝑥) = (𝐹𝑥))
62, 3, 4, 5ofcfval 34081 . 2 (𝜑 → (𝐹f/c 𝑅𝐶) = (𝑥𝐴 ↦ ((𝐹𝑥)𝑅𝐶)))
7 fnconstg 6730 . . . 4 (𝐶𝑊 → (𝐴 × {𝐶}) Fn 𝐴)
84, 7syl 17 . . 3 (𝜑 → (𝐴 × {𝐶}) Fn 𝐴)
9 inidm 4186 . . 3 (𝐴𝐴) = 𝐴
10 fvconst2g 7158 . . . 4 ((𝐶𝑊𝑥𝐴) → ((𝐴 × {𝐶})‘𝑥) = 𝐶)
114, 10sylan 580 . . 3 ((𝜑𝑥𝐴) → ((𝐴 × {𝐶})‘𝑥) = 𝐶)
122, 8, 3, 3, 9, 5, 11offval 7642 . 2 (𝜑 → (𝐹f 𝑅(𝐴 × {𝐶})) = (𝑥𝐴 ↦ ((𝐹𝑥)𝑅𝐶)))
136, 12eqtr4d 2767 1 (𝜑 → (𝐹f/c 𝑅𝐶) = (𝐹f 𝑅(𝐴 × {𝐶})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {csn 4585  cmpt 5183   × cxp 5629   Fn wfn 6494  wf 6495  cfv 6499  (class class class)co 7369  f cof 7631  f/c cofc 34078
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-ofc 34079
This theorem is referenced by:  ofcccat  34527
  Copyright terms: Public domain W3C validator