![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ofcof | Structured version Visualization version GIF version |
Description: Relate function operation with operation with a constant. (Contributed by Thierry Arnoux, 3-Oct-2018.) |
Ref | Expression |
---|---|
ofcof.1 | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
ofcof.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
ofcof.3 | ⊢ (𝜑 → 𝐶 ∈ 𝑊) |
Ref | Expression |
---|---|
ofcof | ⊢ (𝜑 → (𝐹 ∘f/c 𝑅𝐶) = (𝐹 ∘f 𝑅(𝐴 × {𝐶}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ofcof.1 | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
2 | 1 | ffnd 6709 | . . 3 ⊢ (𝜑 → 𝐹 Fn 𝐴) |
3 | ofcof.2 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
4 | ofcof.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑊) | |
5 | eqidd 2725 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = (𝐹‘𝑥)) | |
6 | 2, 3, 4, 5 | ofcfval 33615 | . 2 ⊢ (𝜑 → (𝐹 ∘f/c 𝑅𝐶) = (𝑥 ∈ 𝐴 ↦ ((𝐹‘𝑥)𝑅𝐶))) |
7 | fnconstg 6770 | . . . 4 ⊢ (𝐶 ∈ 𝑊 → (𝐴 × {𝐶}) Fn 𝐴) | |
8 | 4, 7 | syl 17 | . . 3 ⊢ (𝜑 → (𝐴 × {𝐶}) Fn 𝐴) |
9 | inidm 4211 | . . 3 ⊢ (𝐴 ∩ 𝐴) = 𝐴 | |
10 | fvconst2g 7196 | . . . 4 ⊢ ((𝐶 ∈ 𝑊 ∧ 𝑥 ∈ 𝐴) → ((𝐴 × {𝐶})‘𝑥) = 𝐶) | |
11 | 4, 10 | sylan 579 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝐴 × {𝐶})‘𝑥) = 𝐶) |
12 | 2, 8, 3, 3, 9, 5, 11 | offval 7673 | . 2 ⊢ (𝜑 → (𝐹 ∘f 𝑅(𝐴 × {𝐶})) = (𝑥 ∈ 𝐴 ↦ ((𝐹‘𝑥)𝑅𝐶))) |
13 | 6, 12 | eqtr4d 2767 | 1 ⊢ (𝜑 → (𝐹 ∘f/c 𝑅𝐶) = (𝐹 ∘f 𝑅(𝐴 × {𝐶}))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 {csn 4621 ↦ cmpt 5222 × cxp 5665 Fn wfn 6529 ⟶wf 6530 ‘cfv 6534 (class class class)co 7402 ∘f cof 7662 ∘f/c cofc 33612 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5276 ax-sep 5290 ax-nul 5297 ax-pr 5418 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-if 4522 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-iun 4990 df-br 5140 df-opab 5202 df-mpt 5223 df-id 5565 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-ov 7405 df-oprab 7406 df-mpo 7407 df-of 7664 df-ofc 33613 |
This theorem is referenced by: ofcccat 34073 |
Copyright terms: Public domain | W3C validator |