Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ofcof Structured version   Visualization version   GIF version

Theorem ofcof 32075
Description: Relate function operation with operation with a constant. (Contributed by Thierry Arnoux, 3-Oct-2018.)
Hypotheses
Ref Expression
ofcof.1 (𝜑𝐹:𝐴𝐵)
ofcof.2 (𝜑𝐴𝑉)
ofcof.3 (𝜑𝐶𝑊)
Assertion
Ref Expression
ofcof (𝜑 → (𝐹f/c 𝑅𝐶) = (𝐹f 𝑅(𝐴 × {𝐶})))

Proof of Theorem ofcof
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ofcof.1 . . . 4 (𝜑𝐹:𝐴𝐵)
21ffnd 6601 . . 3 (𝜑𝐹 Fn 𝐴)
3 ofcof.2 . . 3 (𝜑𝐴𝑉)
4 ofcof.3 . . 3 (𝜑𝐶𝑊)
5 eqidd 2739 . . 3 ((𝜑𝑥𝐴) → (𝐹𝑥) = (𝐹𝑥))
62, 3, 4, 5ofcfval 32066 . 2 (𝜑 → (𝐹f/c 𝑅𝐶) = (𝑥𝐴 ↦ ((𝐹𝑥)𝑅𝐶)))
7 fnconstg 6662 . . . 4 (𝐶𝑊 → (𝐴 × {𝐶}) Fn 𝐴)
84, 7syl 17 . . 3 (𝜑 → (𝐴 × {𝐶}) Fn 𝐴)
9 inidm 4152 . . 3 (𝐴𝐴) = 𝐴
10 fvconst2g 7077 . . . 4 ((𝐶𝑊𝑥𝐴) → ((𝐴 × {𝐶})‘𝑥) = 𝐶)
114, 10sylan 580 . . 3 ((𝜑𝑥𝐴) → ((𝐴 × {𝐶})‘𝑥) = 𝐶)
122, 8, 3, 3, 9, 5, 11offval 7542 . 2 (𝜑 → (𝐹f 𝑅(𝐴 × {𝐶})) = (𝑥𝐴 ↦ ((𝐹𝑥)𝑅𝐶)))
136, 12eqtr4d 2781 1 (𝜑 → (𝐹f/c 𝑅𝐶) = (𝐹f 𝑅(𝐴 × {𝐶})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  {csn 4561  cmpt 5157   × cxp 5587   Fn wfn 6428  wf 6429  cfv 6433  (class class class)co 7275  f cof 7531  f/c cofc 32063
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-ofc 32064
This theorem is referenced by:  ofcccat  32522
  Copyright terms: Public domain W3C validator