![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ofcof | Structured version Visualization version GIF version |
Description: Relate function operation with operation with a constant. (Contributed by Thierry Arnoux, 3-Oct-2018.) |
Ref | Expression |
---|---|
ofcof.1 | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
ofcof.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
ofcof.3 | ⊢ (𝜑 → 𝐶 ∈ 𝑊) |
Ref | Expression |
---|---|
ofcof | ⊢ (𝜑 → (𝐹 ∘f/c 𝑅𝐶) = (𝐹 ∘f 𝑅(𝐴 × {𝐶}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ofcof.1 | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
2 | 1 | ffnd 6723 | . . 3 ⊢ (𝜑 → 𝐹 Fn 𝐴) |
3 | ofcof.2 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
4 | ofcof.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑊) | |
5 | eqidd 2729 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = (𝐹‘𝑥)) | |
6 | 2, 3, 4, 5 | ofcfval 33717 | . 2 ⊢ (𝜑 → (𝐹 ∘f/c 𝑅𝐶) = (𝑥 ∈ 𝐴 ↦ ((𝐹‘𝑥)𝑅𝐶))) |
7 | fnconstg 6785 | . . . 4 ⊢ (𝐶 ∈ 𝑊 → (𝐴 × {𝐶}) Fn 𝐴) | |
8 | 4, 7 | syl 17 | . . 3 ⊢ (𝜑 → (𝐴 × {𝐶}) Fn 𝐴) |
9 | inidm 4219 | . . 3 ⊢ (𝐴 ∩ 𝐴) = 𝐴 | |
10 | fvconst2g 7214 | . . . 4 ⊢ ((𝐶 ∈ 𝑊 ∧ 𝑥 ∈ 𝐴) → ((𝐴 × {𝐶})‘𝑥) = 𝐶) | |
11 | 4, 10 | sylan 579 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝐴 × {𝐶})‘𝑥) = 𝐶) |
12 | 2, 8, 3, 3, 9, 5, 11 | offval 7694 | . 2 ⊢ (𝜑 → (𝐹 ∘f 𝑅(𝐴 × {𝐶})) = (𝑥 ∈ 𝐴 ↦ ((𝐹‘𝑥)𝑅𝐶))) |
13 | 6, 12 | eqtr4d 2771 | 1 ⊢ (𝜑 → (𝐹 ∘f/c 𝑅𝐶) = (𝐹 ∘f 𝑅(𝐴 × {𝐶}))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 {csn 4629 ↦ cmpt 5231 × cxp 5676 Fn wfn 6543 ⟶wf 6544 ‘cfv 6548 (class class class)co 7420 ∘f cof 7683 ∘f/c cofc 33714 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-ov 7423 df-oprab 7424 df-mpo 7425 df-of 7685 df-ofc 33715 |
This theorem is referenced by: ofcccat 34175 |
Copyright terms: Public domain | W3C validator |