Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ofcof | Structured version Visualization version GIF version |
Description: Relate function operation with operation with a constant. (Contributed by Thierry Arnoux, 3-Oct-2018.) |
Ref | Expression |
---|---|
ofcof.1 | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
ofcof.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
ofcof.3 | ⊢ (𝜑 → 𝐶 ∈ 𝑊) |
Ref | Expression |
---|---|
ofcof | ⊢ (𝜑 → (𝐹 ∘f/c 𝑅𝐶) = (𝐹 ∘f 𝑅(𝐴 × {𝐶}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ofcof.1 | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
2 | 1 | ffnd 6599 | . . 3 ⊢ (𝜑 → 𝐹 Fn 𝐴) |
3 | ofcof.2 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
4 | ofcof.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑊) | |
5 | eqidd 2741 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = (𝐹‘𝑥)) | |
6 | 2, 3, 4, 5 | ofcfval 32062 | . 2 ⊢ (𝜑 → (𝐹 ∘f/c 𝑅𝐶) = (𝑥 ∈ 𝐴 ↦ ((𝐹‘𝑥)𝑅𝐶))) |
7 | fnconstg 6660 | . . . 4 ⊢ (𝐶 ∈ 𝑊 → (𝐴 × {𝐶}) Fn 𝐴) | |
8 | 4, 7 | syl 17 | . . 3 ⊢ (𝜑 → (𝐴 × {𝐶}) Fn 𝐴) |
9 | inidm 4158 | . . 3 ⊢ (𝐴 ∩ 𝐴) = 𝐴 | |
10 | fvconst2g 7074 | . . . 4 ⊢ ((𝐶 ∈ 𝑊 ∧ 𝑥 ∈ 𝐴) → ((𝐴 × {𝐶})‘𝑥) = 𝐶) | |
11 | 4, 10 | sylan 580 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝐴 × {𝐶})‘𝑥) = 𝐶) |
12 | 2, 8, 3, 3, 9, 5, 11 | offval 7536 | . 2 ⊢ (𝜑 → (𝐹 ∘f 𝑅(𝐴 × {𝐶})) = (𝑥 ∈ 𝐴 ↦ ((𝐹‘𝑥)𝑅𝐶))) |
13 | 6, 12 | eqtr4d 2783 | 1 ⊢ (𝜑 → (𝐹 ∘f/c 𝑅𝐶) = (𝐹 ∘f 𝑅(𝐴 × {𝐶}))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1542 ∈ wcel 2110 {csn 4567 ↦ cmpt 5162 × cxp 5588 Fn wfn 6427 ⟶wf 6428 ‘cfv 6432 (class class class)co 7271 ∘f cof 7525 ∘f/c cofc 32059 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pr 5356 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-ral 3071 df-rex 3072 df-reu 3073 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-ov 7274 df-oprab 7275 df-mpo 7276 df-of 7527 df-ofc 32060 |
This theorem is referenced by: ofcccat 32518 |
Copyright terms: Public domain | W3C validator |