Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ofcof | Structured version Visualization version GIF version |
Description: Relate function operation with operation with a constant. (Contributed by Thierry Arnoux, 3-Oct-2018.) |
Ref | Expression |
---|---|
ofcof.1 | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
ofcof.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
ofcof.3 | ⊢ (𝜑 → 𝐶 ∈ 𝑊) |
Ref | Expression |
---|---|
ofcof | ⊢ (𝜑 → (𝐹 ∘f/c 𝑅𝐶) = (𝐹 ∘f 𝑅(𝐴 × {𝐶}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ofcof.1 | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
2 | 1 | ffnd 6601 | . . 3 ⊢ (𝜑 → 𝐹 Fn 𝐴) |
3 | ofcof.2 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
4 | ofcof.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑊) | |
5 | eqidd 2739 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = (𝐹‘𝑥)) | |
6 | 2, 3, 4, 5 | ofcfval 32066 | . 2 ⊢ (𝜑 → (𝐹 ∘f/c 𝑅𝐶) = (𝑥 ∈ 𝐴 ↦ ((𝐹‘𝑥)𝑅𝐶))) |
7 | fnconstg 6662 | . . . 4 ⊢ (𝐶 ∈ 𝑊 → (𝐴 × {𝐶}) Fn 𝐴) | |
8 | 4, 7 | syl 17 | . . 3 ⊢ (𝜑 → (𝐴 × {𝐶}) Fn 𝐴) |
9 | inidm 4152 | . . 3 ⊢ (𝐴 ∩ 𝐴) = 𝐴 | |
10 | fvconst2g 7077 | . . . 4 ⊢ ((𝐶 ∈ 𝑊 ∧ 𝑥 ∈ 𝐴) → ((𝐴 × {𝐶})‘𝑥) = 𝐶) | |
11 | 4, 10 | sylan 580 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝐴 × {𝐶})‘𝑥) = 𝐶) |
12 | 2, 8, 3, 3, 9, 5, 11 | offval 7542 | . 2 ⊢ (𝜑 → (𝐹 ∘f 𝑅(𝐴 × {𝐶})) = (𝑥 ∈ 𝐴 ↦ ((𝐹‘𝑥)𝑅𝐶))) |
13 | 6, 12 | eqtr4d 2781 | 1 ⊢ (𝜑 → (𝐹 ∘f/c 𝑅𝐶) = (𝐹 ∘f 𝑅(𝐴 × {𝐶}))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 {csn 4561 ↦ cmpt 5157 × cxp 5587 Fn wfn 6428 ⟶wf 6429 ‘cfv 6433 (class class class)co 7275 ∘f cof 7531 ∘f/c cofc 32063 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-of 7533 df-ofc 32064 |
This theorem is referenced by: ofcccat 32522 |
Copyright terms: Public domain | W3C validator |