| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ofcfval4 | Structured version Visualization version GIF version | ||
| Description: The function/constant operation expressed as an operation composition. (Contributed by Thierry Arnoux, 31-Jan-2017.) |
| Ref | Expression |
|---|---|
| ofcfval4.1 | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| ofcfval4.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| ofcfval4.3 | ⊢ (𝜑 → 𝐶 ∈ 𝑊) |
| Ref | Expression |
|---|---|
| ofcfval4 | ⊢ (𝜑 → (𝐹 ∘f/c 𝑅𝐶) = ((𝑥 ∈ 𝐵 ↦ (𝑥𝑅𝐶)) ∘ 𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ofcfval4.1 | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
| 2 | 1 | fdmd 6662 | . . 3 ⊢ (𝜑 → dom 𝐹 = 𝐴) |
| 3 | 2 | mpteq1d 5182 | . 2 ⊢ (𝜑 → (𝑦 ∈ dom 𝐹 ↦ ((𝐹‘𝑦)𝑅𝐶)) = (𝑦 ∈ 𝐴 ↦ ((𝐹‘𝑦)𝑅𝐶))) |
| 4 | ofcfval4.2 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 5 | 1, 4 | fexd 7163 | . . 3 ⊢ (𝜑 → 𝐹 ∈ V) |
| 6 | ofcfval4.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑊) | |
| 7 | ofcfval3 34069 | . . 3 ⊢ ((𝐹 ∈ V ∧ 𝐶 ∈ 𝑊) → (𝐹 ∘f/c 𝑅𝐶) = (𝑦 ∈ dom 𝐹 ↦ ((𝐹‘𝑦)𝑅𝐶))) | |
| 8 | 5, 6, 7 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐹 ∘f/c 𝑅𝐶) = (𝑦 ∈ dom 𝐹 ↦ ((𝐹‘𝑦)𝑅𝐶))) |
| 9 | 1 | ffvelcdmda 7018 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (𝐹‘𝑦) ∈ 𝐵) |
| 10 | 1 | feqmptd 6891 | . . 3 ⊢ (𝜑 → 𝐹 = (𝑦 ∈ 𝐴 ↦ (𝐹‘𝑦))) |
| 11 | eqidd 2730 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ (𝑥𝑅𝐶)) = (𝑥 ∈ 𝐵 ↦ (𝑥𝑅𝐶))) | |
| 12 | oveq1 7356 | . . 3 ⊢ (𝑥 = (𝐹‘𝑦) → (𝑥𝑅𝐶) = ((𝐹‘𝑦)𝑅𝐶)) | |
| 13 | 9, 10, 11, 12 | fmptco 7063 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐵 ↦ (𝑥𝑅𝐶)) ∘ 𝐹) = (𝑦 ∈ 𝐴 ↦ ((𝐹‘𝑦)𝑅𝐶))) |
| 14 | 3, 8, 13 | 3eqtr4d 2774 | 1 ⊢ (𝜑 → (𝐹 ∘f/c 𝑅𝐶) = ((𝑥 ∈ 𝐵 ↦ (𝑥𝑅𝐶)) ∘ 𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3436 ↦ cmpt 5173 dom cdm 5619 ∘ ccom 5623 ⟶wf 6478 ‘cfv 6482 (class class class)co 7349 ∘f/c cofc 34062 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-ofc 34063 |
| This theorem is referenced by: rrvmulc 34421 |
| Copyright terms: Public domain | W3C validator |