Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ofcfval4 Structured version   Visualization version   GIF version

Theorem ofcfval4 34136
Description: The function/constant operation expressed as an operation composition. (Contributed by Thierry Arnoux, 31-Jan-2017.)
Hypotheses
Ref Expression
ofcfval4.1 (𝜑𝐹:𝐴𝐵)
ofcfval4.2 (𝜑𝐴𝑉)
ofcfval4.3 (𝜑𝐶𝑊)
Assertion
Ref Expression
ofcfval4 (𝜑 → (𝐹f/c 𝑅𝐶) = ((𝑥𝐵 ↦ (𝑥𝑅𝐶)) ∘ 𝐹))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐶   𝑥,𝐹   𝑥,𝑅
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)   𝑉(𝑥)   𝑊(𝑥)

Proof of Theorem ofcfval4
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ofcfval4.1 . . . 4 (𝜑𝐹:𝐴𝐵)
21fdmd 6716 . . 3 (𝜑 → dom 𝐹 = 𝐴)
32mpteq1d 5210 . 2 (𝜑 → (𝑦 ∈ dom 𝐹 ↦ ((𝐹𝑦)𝑅𝐶)) = (𝑦𝐴 ↦ ((𝐹𝑦)𝑅𝐶)))
4 ofcfval4.2 . . . 4 (𝜑𝐴𝑉)
51, 4fexd 7219 . . 3 (𝜑𝐹 ∈ V)
6 ofcfval4.3 . . 3 (𝜑𝐶𝑊)
7 ofcfval3 34133 . . 3 ((𝐹 ∈ V ∧ 𝐶𝑊) → (𝐹f/c 𝑅𝐶) = (𝑦 ∈ dom 𝐹 ↦ ((𝐹𝑦)𝑅𝐶)))
85, 6, 7syl2anc 584 . 2 (𝜑 → (𝐹f/c 𝑅𝐶) = (𝑦 ∈ dom 𝐹 ↦ ((𝐹𝑦)𝑅𝐶)))
91ffvelcdmda 7074 . . 3 ((𝜑𝑦𝐴) → (𝐹𝑦) ∈ 𝐵)
101feqmptd 6947 . . 3 (𝜑𝐹 = (𝑦𝐴 ↦ (𝐹𝑦)))
11 eqidd 2736 . . 3 (𝜑 → (𝑥𝐵 ↦ (𝑥𝑅𝐶)) = (𝑥𝐵 ↦ (𝑥𝑅𝐶)))
12 oveq1 7412 . . 3 (𝑥 = (𝐹𝑦) → (𝑥𝑅𝐶) = ((𝐹𝑦)𝑅𝐶))
139, 10, 11, 12fmptco 7119 . 2 (𝜑 → ((𝑥𝐵 ↦ (𝑥𝑅𝐶)) ∘ 𝐹) = (𝑦𝐴 ↦ ((𝐹𝑦)𝑅𝐶)))
143, 8, 133eqtr4d 2780 1 (𝜑 → (𝐹f/c 𝑅𝐶) = ((𝑥𝐵 ↦ (𝑥𝑅𝐶)) ∘ 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  Vcvv 3459  cmpt 5201  dom cdm 5654  ccom 5658  wf 6527  cfv 6531  (class class class)co 7405  f/c cofc 34126
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-ofc 34127
This theorem is referenced by:  rrvmulc  34485
  Copyright terms: Public domain W3C validator