![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ofcfval4 | Structured version Visualization version GIF version |
Description: The function/constant operation expressed as an operation composition. (Contributed by Thierry Arnoux, 31-Jan-2017.) |
Ref | Expression |
---|---|
ofcfval4.1 | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
ofcfval4.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
ofcfval4.3 | ⊢ (𝜑 → 𝐶 ∈ 𝑊) |
Ref | Expression |
---|---|
ofcfval4 | ⊢ (𝜑 → (𝐹 ∘f/c 𝑅𝐶) = ((𝑥 ∈ 𝐵 ↦ (𝑥𝑅𝐶)) ∘ 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ofcfval4.1 | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
2 | 1 | fdmd 6728 | . . 3 ⊢ (𝜑 → dom 𝐹 = 𝐴) |
3 | 2 | mpteq1d 5243 | . 2 ⊢ (𝜑 → (𝑦 ∈ dom 𝐹 ↦ ((𝐹‘𝑦)𝑅𝐶)) = (𝑦 ∈ 𝐴 ↦ ((𝐹‘𝑦)𝑅𝐶))) |
4 | ofcfval4.2 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
5 | 1, 4 | fexd 7228 | . . 3 ⊢ (𝜑 → 𝐹 ∈ V) |
6 | ofcfval4.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑊) | |
7 | ofcfval3 33095 | . . 3 ⊢ ((𝐹 ∈ V ∧ 𝐶 ∈ 𝑊) → (𝐹 ∘f/c 𝑅𝐶) = (𝑦 ∈ dom 𝐹 ↦ ((𝐹‘𝑦)𝑅𝐶))) | |
8 | 5, 6, 7 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐹 ∘f/c 𝑅𝐶) = (𝑦 ∈ dom 𝐹 ↦ ((𝐹‘𝑦)𝑅𝐶))) |
9 | 1 | ffvelcdmda 7086 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (𝐹‘𝑦) ∈ 𝐵) |
10 | 1 | feqmptd 6960 | . . 3 ⊢ (𝜑 → 𝐹 = (𝑦 ∈ 𝐴 ↦ (𝐹‘𝑦))) |
11 | eqidd 2733 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ (𝑥𝑅𝐶)) = (𝑥 ∈ 𝐵 ↦ (𝑥𝑅𝐶))) | |
12 | oveq1 7415 | . . 3 ⊢ (𝑥 = (𝐹‘𝑦) → (𝑥𝑅𝐶) = ((𝐹‘𝑦)𝑅𝐶)) | |
13 | 9, 10, 11, 12 | fmptco 7126 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐵 ↦ (𝑥𝑅𝐶)) ∘ 𝐹) = (𝑦 ∈ 𝐴 ↦ ((𝐹‘𝑦)𝑅𝐶))) |
14 | 3, 8, 13 | 3eqtr4d 2782 | 1 ⊢ (𝜑 → (𝐹 ∘f/c 𝑅𝐶) = ((𝑥 ∈ 𝐵 ↦ (𝑥𝑅𝐶)) ∘ 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 Vcvv 3474 ↦ cmpt 5231 dom cdm 5676 ∘ ccom 5680 ⟶wf 6539 ‘cfv 6543 (class class class)co 7408 ∘f/c cofc 33088 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7411 df-oprab 7412 df-mpo 7413 df-ofc 33089 |
This theorem is referenced by: rrvmulc 33447 |
Copyright terms: Public domain | W3C validator |