![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ofcfval4 | Structured version Visualization version GIF version |
Description: The function/constant operation expressed as an operation composition. (Contributed by Thierry Arnoux, 31-Jan-2017.) |
Ref | Expression |
---|---|
ofcfval4.1 | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
ofcfval4.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
ofcfval4.3 | ⊢ (𝜑 → 𝐶 ∈ 𝑊) |
Ref | Expression |
---|---|
ofcfval4 | ⊢ (𝜑 → (𝐹 ∘f/c 𝑅𝐶) = ((𝑥 ∈ 𝐵 ↦ (𝑥𝑅𝐶)) ∘ 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ofcfval4.1 | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
2 | 1 | fdmd 6722 | . . 3 ⊢ (𝜑 → dom 𝐹 = 𝐴) |
3 | 2 | mpteq1d 5236 | . 2 ⊢ (𝜑 → (𝑦 ∈ dom 𝐹 ↦ ((𝐹‘𝑦)𝑅𝐶)) = (𝑦 ∈ 𝐴 ↦ ((𝐹‘𝑦)𝑅𝐶))) |
4 | ofcfval4.2 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
5 | 1, 4 | fexd 7224 | . . 3 ⊢ (𝜑 → 𝐹 ∈ V) |
6 | ofcfval4.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑊) | |
7 | ofcfval3 33630 | . . 3 ⊢ ((𝐹 ∈ V ∧ 𝐶 ∈ 𝑊) → (𝐹 ∘f/c 𝑅𝐶) = (𝑦 ∈ dom 𝐹 ↦ ((𝐹‘𝑦)𝑅𝐶))) | |
8 | 5, 6, 7 | syl2anc 583 | . 2 ⊢ (𝜑 → (𝐹 ∘f/c 𝑅𝐶) = (𝑦 ∈ dom 𝐹 ↦ ((𝐹‘𝑦)𝑅𝐶))) |
9 | 1 | ffvelcdmda 7080 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (𝐹‘𝑦) ∈ 𝐵) |
10 | 1 | feqmptd 6954 | . . 3 ⊢ (𝜑 → 𝐹 = (𝑦 ∈ 𝐴 ↦ (𝐹‘𝑦))) |
11 | eqidd 2727 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ (𝑥𝑅𝐶)) = (𝑥 ∈ 𝐵 ↦ (𝑥𝑅𝐶))) | |
12 | oveq1 7412 | . . 3 ⊢ (𝑥 = (𝐹‘𝑦) → (𝑥𝑅𝐶) = ((𝐹‘𝑦)𝑅𝐶)) | |
13 | 9, 10, 11, 12 | fmptco 7123 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐵 ↦ (𝑥𝑅𝐶)) ∘ 𝐹) = (𝑦 ∈ 𝐴 ↦ ((𝐹‘𝑦)𝑅𝐶))) |
14 | 3, 8, 13 | 3eqtr4d 2776 | 1 ⊢ (𝜑 → (𝐹 ∘f/c 𝑅𝐶) = ((𝑥 ∈ 𝐵 ↦ (𝑥𝑅𝐶)) ∘ 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 Vcvv 3468 ↦ cmpt 5224 dom cdm 5669 ∘ ccom 5673 ⟶wf 6533 ‘cfv 6537 (class class class)co 7405 ∘f/c cofc 33623 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pr 5420 ax-un 7722 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-ov 7408 df-oprab 7409 df-mpo 7410 df-ofc 33624 |
This theorem is referenced by: rrvmulc 33982 |
Copyright terms: Public domain | W3C validator |