| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ofcfval4 | Structured version Visualization version GIF version | ||
| Description: The function/constant operation expressed as an operation composition. (Contributed by Thierry Arnoux, 31-Jan-2017.) |
| Ref | Expression |
|---|---|
| ofcfval4.1 | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| ofcfval4.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| ofcfval4.3 | ⊢ (𝜑 → 𝐶 ∈ 𝑊) |
| Ref | Expression |
|---|---|
| ofcfval4 | ⊢ (𝜑 → (𝐹 ∘f/c 𝑅𝐶) = ((𝑥 ∈ 𝐵 ↦ (𝑥𝑅𝐶)) ∘ 𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ofcfval4.1 | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
| 2 | 1 | fdmd 6716 | . . 3 ⊢ (𝜑 → dom 𝐹 = 𝐴) |
| 3 | 2 | mpteq1d 5210 | . 2 ⊢ (𝜑 → (𝑦 ∈ dom 𝐹 ↦ ((𝐹‘𝑦)𝑅𝐶)) = (𝑦 ∈ 𝐴 ↦ ((𝐹‘𝑦)𝑅𝐶))) |
| 4 | ofcfval4.2 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 5 | 1, 4 | fexd 7219 | . . 3 ⊢ (𝜑 → 𝐹 ∈ V) |
| 6 | ofcfval4.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑊) | |
| 7 | ofcfval3 34133 | . . 3 ⊢ ((𝐹 ∈ V ∧ 𝐶 ∈ 𝑊) → (𝐹 ∘f/c 𝑅𝐶) = (𝑦 ∈ dom 𝐹 ↦ ((𝐹‘𝑦)𝑅𝐶))) | |
| 8 | 5, 6, 7 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐹 ∘f/c 𝑅𝐶) = (𝑦 ∈ dom 𝐹 ↦ ((𝐹‘𝑦)𝑅𝐶))) |
| 9 | 1 | ffvelcdmda 7074 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (𝐹‘𝑦) ∈ 𝐵) |
| 10 | 1 | feqmptd 6947 | . . 3 ⊢ (𝜑 → 𝐹 = (𝑦 ∈ 𝐴 ↦ (𝐹‘𝑦))) |
| 11 | eqidd 2736 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ (𝑥𝑅𝐶)) = (𝑥 ∈ 𝐵 ↦ (𝑥𝑅𝐶))) | |
| 12 | oveq1 7412 | . . 3 ⊢ (𝑥 = (𝐹‘𝑦) → (𝑥𝑅𝐶) = ((𝐹‘𝑦)𝑅𝐶)) | |
| 13 | 9, 10, 11, 12 | fmptco 7119 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐵 ↦ (𝑥𝑅𝐶)) ∘ 𝐹) = (𝑦 ∈ 𝐴 ↦ ((𝐹‘𝑦)𝑅𝐶))) |
| 14 | 3, 8, 13 | 3eqtr4d 2780 | 1 ⊢ (𝜑 → (𝐹 ∘f/c 𝑅𝐶) = ((𝑥 ∈ 𝐵 ↦ (𝑥𝑅𝐶)) ∘ 𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 Vcvv 3459 ↦ cmpt 5201 dom cdm 5654 ∘ ccom 5658 ⟶wf 6527 ‘cfv 6531 (class class class)co 7405 ∘f/c cofc 34126 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-ofc 34127 |
| This theorem is referenced by: rrvmulc 34485 |
| Copyright terms: Public domain | W3C validator |