Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ofcfval4 Structured version   Visualization version   GIF version

Theorem ofcfval4 34072
Description: The function/constant operation expressed as an operation composition. (Contributed by Thierry Arnoux, 31-Jan-2017.)
Hypotheses
Ref Expression
ofcfval4.1 (𝜑𝐹:𝐴𝐵)
ofcfval4.2 (𝜑𝐴𝑉)
ofcfval4.3 (𝜑𝐶𝑊)
Assertion
Ref Expression
ofcfval4 (𝜑 → (𝐹f/c 𝑅𝐶) = ((𝑥𝐵 ↦ (𝑥𝑅𝐶)) ∘ 𝐹))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐶   𝑥,𝐹   𝑥,𝑅
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)   𝑉(𝑥)   𝑊(𝑥)

Proof of Theorem ofcfval4
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ofcfval4.1 . . . 4 (𝜑𝐹:𝐴𝐵)
21fdmd 6662 . . 3 (𝜑 → dom 𝐹 = 𝐴)
32mpteq1d 5182 . 2 (𝜑 → (𝑦 ∈ dom 𝐹 ↦ ((𝐹𝑦)𝑅𝐶)) = (𝑦𝐴 ↦ ((𝐹𝑦)𝑅𝐶)))
4 ofcfval4.2 . . . 4 (𝜑𝐴𝑉)
51, 4fexd 7163 . . 3 (𝜑𝐹 ∈ V)
6 ofcfval4.3 . . 3 (𝜑𝐶𝑊)
7 ofcfval3 34069 . . 3 ((𝐹 ∈ V ∧ 𝐶𝑊) → (𝐹f/c 𝑅𝐶) = (𝑦 ∈ dom 𝐹 ↦ ((𝐹𝑦)𝑅𝐶)))
85, 6, 7syl2anc 584 . 2 (𝜑 → (𝐹f/c 𝑅𝐶) = (𝑦 ∈ dom 𝐹 ↦ ((𝐹𝑦)𝑅𝐶)))
91ffvelcdmda 7018 . . 3 ((𝜑𝑦𝐴) → (𝐹𝑦) ∈ 𝐵)
101feqmptd 6891 . . 3 (𝜑𝐹 = (𝑦𝐴 ↦ (𝐹𝑦)))
11 eqidd 2730 . . 3 (𝜑 → (𝑥𝐵 ↦ (𝑥𝑅𝐶)) = (𝑥𝐵 ↦ (𝑥𝑅𝐶)))
12 oveq1 7356 . . 3 (𝑥 = (𝐹𝑦) → (𝑥𝑅𝐶) = ((𝐹𝑦)𝑅𝐶))
139, 10, 11, 12fmptco 7063 . 2 (𝜑 → ((𝑥𝐵 ↦ (𝑥𝑅𝐶)) ∘ 𝐹) = (𝑦𝐴 ↦ ((𝐹𝑦)𝑅𝐶)))
143, 8, 133eqtr4d 2774 1 (𝜑 → (𝐹f/c 𝑅𝐶) = ((𝑥𝐵 ↦ (𝑥𝑅𝐶)) ∘ 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3436  cmpt 5173  dom cdm 5619  ccom 5623  wf 6478  cfv 6482  (class class class)co 7349  f/c cofc 34062
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-ofc 34063
This theorem is referenced by:  rrvmulc  34421
  Copyright terms: Public domain W3C validator