Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ofcfval4 Structured version   Visualization version   GIF version

Theorem ofcfval4 31250
Description: The function/constant operation expressed as an operation composition. (Contributed by Thierry Arnoux, 31-Jan-2017.)
Hypotheses
Ref Expression
ofcfval4.1 (𝜑𝐹:𝐴𝐵)
ofcfval4.2 (𝜑𝐴𝑉)
ofcfval4.3 (𝜑𝐶𝑊)
Assertion
Ref Expression
ofcfval4 (𝜑 → (𝐹f/c 𝑅𝐶) = ((𝑥𝐵 ↦ (𝑥𝑅𝐶)) ∘ 𝐹))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐶   𝑥,𝐹   𝑥,𝑅
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)   𝑉(𝑥)   𝑊(𝑥)

Proof of Theorem ofcfval4
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ofcfval4.1 . . . 4 (𝜑𝐹:𝐴𝐵)
21fdmd 6519 . . 3 (𝜑 → dom 𝐹 = 𝐴)
32mpteq1d 5151 . 2 (𝜑 → (𝑦 ∈ dom 𝐹 ↦ ((𝐹𝑦)𝑅𝐶)) = (𝑦𝐴 ↦ ((𝐹𝑦)𝑅𝐶)))
4 ofcfval4.2 . . . 4 (𝜑𝐴𝑉)
5 fex 6987 . . . 4 ((𝐹:𝐴𝐵𝐴𝑉) → 𝐹 ∈ V)
61, 4, 5syl2anc 584 . . 3 (𝜑𝐹 ∈ V)
7 ofcfval4.3 . . 3 (𝜑𝐶𝑊)
8 ofcfval3 31247 . . 3 ((𝐹 ∈ V ∧ 𝐶𝑊) → (𝐹f/c 𝑅𝐶) = (𝑦 ∈ dom 𝐹 ↦ ((𝐹𝑦)𝑅𝐶)))
96, 7, 8syl2anc 584 . 2 (𝜑 → (𝐹f/c 𝑅𝐶) = (𝑦 ∈ dom 𝐹 ↦ ((𝐹𝑦)𝑅𝐶)))
101ffvelrnda 6846 . . 3 ((𝜑𝑦𝐴) → (𝐹𝑦) ∈ 𝐵)
111feqmptd 6729 . . 3 (𝜑𝐹 = (𝑦𝐴 ↦ (𝐹𝑦)))
12 eqidd 2826 . . 3 (𝜑 → (𝑥𝐵 ↦ (𝑥𝑅𝐶)) = (𝑥𝐵 ↦ (𝑥𝑅𝐶)))
13 oveq1 7158 . . 3 (𝑥 = (𝐹𝑦) → (𝑥𝑅𝐶) = ((𝐹𝑦)𝑅𝐶))
1410, 11, 12, 13fmptco 6886 . 2 (𝜑 → ((𝑥𝐵 ↦ (𝑥𝑅𝐶)) ∘ 𝐹) = (𝑦𝐴 ↦ ((𝐹𝑦)𝑅𝐶)))
153, 9, 143eqtr4d 2870 1 (𝜑 → (𝐹f/c 𝑅𝐶) = ((𝑥𝐵 ↦ (𝑥𝑅𝐶)) ∘ 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1530  wcel 2107  Vcvv 3499  cmpt 5142  dom cdm 5553  ccom 5557  wf 6347  cfv 6351  (class class class)co 7151  f/c cofc 31240
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2797  ax-rep 5186  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2619  df-eu 2651  df-clab 2804  df-cleq 2818  df-clel 2897  df-nfc 2967  df-ne 3021  df-ral 3147  df-rex 3148  df-reu 3149  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4470  df-sn 4564  df-pr 4566  df-op 4570  df-uni 4837  df-iun 4918  df-br 5063  df-opab 5125  df-mpt 5143  df-id 5458  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-ov 7154  df-oprab 7155  df-mpo 7156  df-ofc 31241
This theorem is referenced by:  rrvmulc  31597
  Copyright terms: Public domain W3C validator