Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ofcfval4 Structured version   Visualization version   GIF version

Theorem ofcfval4 34095
Description: The function/constant operation expressed as an operation composition. (Contributed by Thierry Arnoux, 31-Jan-2017.)
Hypotheses
Ref Expression
ofcfval4.1 (𝜑𝐹:𝐴𝐵)
ofcfval4.2 (𝜑𝐴𝑉)
ofcfval4.3 (𝜑𝐶𝑊)
Assertion
Ref Expression
ofcfval4 (𝜑 → (𝐹f/c 𝑅𝐶) = ((𝑥𝐵 ↦ (𝑥𝑅𝐶)) ∘ 𝐹))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐶   𝑥,𝐹   𝑥,𝑅
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)   𝑉(𝑥)   𝑊(𝑥)

Proof of Theorem ofcfval4
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ofcfval4.1 . . . 4 (𝜑𝐹:𝐴𝐵)
21fdmd 6698 . . 3 (𝜑 → dom 𝐹 = 𝐴)
32mpteq1d 5197 . 2 (𝜑 → (𝑦 ∈ dom 𝐹 ↦ ((𝐹𝑦)𝑅𝐶)) = (𝑦𝐴 ↦ ((𝐹𝑦)𝑅𝐶)))
4 ofcfval4.2 . . . 4 (𝜑𝐴𝑉)
51, 4fexd 7201 . . 3 (𝜑𝐹 ∈ V)
6 ofcfval4.3 . . 3 (𝜑𝐶𝑊)
7 ofcfval3 34092 . . 3 ((𝐹 ∈ V ∧ 𝐶𝑊) → (𝐹f/c 𝑅𝐶) = (𝑦 ∈ dom 𝐹 ↦ ((𝐹𝑦)𝑅𝐶)))
85, 6, 7syl2anc 584 . 2 (𝜑 → (𝐹f/c 𝑅𝐶) = (𝑦 ∈ dom 𝐹 ↦ ((𝐹𝑦)𝑅𝐶)))
91ffvelcdmda 7056 . . 3 ((𝜑𝑦𝐴) → (𝐹𝑦) ∈ 𝐵)
101feqmptd 6929 . . 3 (𝜑𝐹 = (𝑦𝐴 ↦ (𝐹𝑦)))
11 eqidd 2730 . . 3 (𝜑 → (𝑥𝐵 ↦ (𝑥𝑅𝐶)) = (𝑥𝐵 ↦ (𝑥𝑅𝐶)))
12 oveq1 7394 . . 3 (𝑥 = (𝐹𝑦) → (𝑥𝑅𝐶) = ((𝐹𝑦)𝑅𝐶))
139, 10, 11, 12fmptco 7101 . 2 (𝜑 → ((𝑥𝐵 ↦ (𝑥𝑅𝐶)) ∘ 𝐹) = (𝑦𝐴 ↦ ((𝐹𝑦)𝑅𝐶)))
143, 8, 133eqtr4d 2774 1 (𝜑 → (𝐹f/c 𝑅𝐶) = ((𝑥𝐵 ↦ (𝑥𝑅𝐶)) ∘ 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3447  cmpt 5188  dom cdm 5638  ccom 5642  wf 6507  cfv 6511  (class class class)co 7387  f/c cofc 34085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-ofc 34086
This theorem is referenced by:  rrvmulc  34444
  Copyright terms: Public domain W3C validator