Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ofcval Structured version   Visualization version   GIF version

Theorem ofcval 34065
Description: Evaluate a function/constant operation at a point. (Contributed by Thierry Arnoux, 31-Jan-2017.)
Hypotheses
Ref Expression
ofcfval.1 (𝜑𝐹 Fn 𝐴)
ofcfval.2 (𝜑𝐴𝑉)
ofcfval.3 (𝜑𝐶𝑊)
ofcval.6 ((𝜑𝑋𝐴) → (𝐹𝑋) = 𝐵)
Assertion
Ref Expression
ofcval ((𝜑𝑋𝐴) → ((𝐹f/c 𝑅𝐶)‘𝑋) = (𝐵𝑅𝐶))

Proof of Theorem ofcval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ofcfval.1 . . . . 5 (𝜑𝐹 Fn 𝐴)
2 ofcfval.2 . . . . 5 (𝜑𝐴𝑉)
3 ofcfval.3 . . . . 5 (𝜑𝐶𝑊)
4 eqidd 2730 . . . . 5 ((𝜑𝑥𝐴) → (𝐹𝑥) = (𝐹𝑥))
51, 2, 3, 4ofcfval 34064 . . . 4 (𝜑 → (𝐹f/c 𝑅𝐶) = (𝑥𝐴 ↦ ((𝐹𝑥)𝑅𝐶)))
65adantr 480 . . 3 ((𝜑𝑋𝐴) → (𝐹f/c 𝑅𝐶) = (𝑥𝐴 ↦ ((𝐹𝑥)𝑅𝐶)))
7 simpr 484 . . . . 5 (((𝜑𝑋𝐴) ∧ 𝑥 = 𝑋) → 𝑥 = 𝑋)
87fveq2d 6830 . . . 4 (((𝜑𝑋𝐴) ∧ 𝑥 = 𝑋) → (𝐹𝑥) = (𝐹𝑋))
98oveq1d 7368 . . 3 (((𝜑𝑋𝐴) ∧ 𝑥 = 𝑋) → ((𝐹𝑥)𝑅𝐶) = ((𝐹𝑋)𝑅𝐶))
10 simpr 484 . . 3 ((𝜑𝑋𝐴) → 𝑋𝐴)
11 ovexd 7388 . . 3 ((𝜑𝑋𝐴) → ((𝐹𝑋)𝑅𝐶) ∈ V)
126, 9, 10, 11fvmptd 6941 . 2 ((𝜑𝑋𝐴) → ((𝐹f/c 𝑅𝐶)‘𝑋) = ((𝐹𝑋)𝑅𝐶))
13 ofcval.6 . . 3 ((𝜑𝑋𝐴) → (𝐹𝑋) = 𝐵)
1413oveq1d 7368 . 2 ((𝜑𝑋𝐴) → ((𝐹𝑋)𝑅𝐶) = (𝐵𝑅𝐶))
1512, 14eqtrd 2764 1 ((𝜑𝑋𝐴) → ((𝐹f/c 𝑅𝐶)‘𝑋) = (𝐵𝑅𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3438  cmpt 5176   Fn wfn 6481  cfv 6486  (class class class)co 7353  f/c cofc 34061
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-ofc 34062
This theorem is referenced by:  probfinmeasb  34395
  Copyright terms: Public domain W3C validator