Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ofcval Structured version   Visualization version   GIF version

Theorem ofcval 32363
Description: Evaluate a function/constant operation at a point. (Contributed by Thierry Arnoux, 31-Jan-2017.)
Hypotheses
Ref Expression
ofcfval.1 (𝜑𝐹 Fn 𝐴)
ofcfval.2 (𝜑𝐴𝑉)
ofcfval.3 (𝜑𝐶𝑊)
ofcval.6 ((𝜑𝑋𝐴) → (𝐹𝑋) = 𝐵)
Assertion
Ref Expression
ofcval ((𝜑𝑋𝐴) → ((𝐹f/c 𝑅𝐶)‘𝑋) = (𝐵𝑅𝐶))

Proof of Theorem ofcval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ofcfval.1 . . . . 5 (𝜑𝐹 Fn 𝐴)
2 ofcfval.2 . . . . 5 (𝜑𝐴𝑉)
3 ofcfval.3 . . . . 5 (𝜑𝐶𝑊)
4 eqidd 2738 . . . . 5 ((𝜑𝑥𝐴) → (𝐹𝑥) = (𝐹𝑥))
51, 2, 3, 4ofcfval 32362 . . . 4 (𝜑 → (𝐹f/c 𝑅𝐶) = (𝑥𝐴 ↦ ((𝐹𝑥)𝑅𝐶)))
65adantr 482 . . 3 ((𝜑𝑋𝐴) → (𝐹f/c 𝑅𝐶) = (𝑥𝐴 ↦ ((𝐹𝑥)𝑅𝐶)))
7 simpr 486 . . . . 5 (((𝜑𝑋𝐴) ∧ 𝑥 = 𝑋) → 𝑥 = 𝑋)
87fveq2d 6834 . . . 4 (((𝜑𝑋𝐴) ∧ 𝑥 = 𝑋) → (𝐹𝑥) = (𝐹𝑋))
98oveq1d 7357 . . 3 (((𝜑𝑋𝐴) ∧ 𝑥 = 𝑋) → ((𝐹𝑥)𝑅𝐶) = ((𝐹𝑋)𝑅𝐶))
10 simpr 486 . . 3 ((𝜑𝑋𝐴) → 𝑋𝐴)
11 ovexd 7377 . . 3 ((𝜑𝑋𝐴) → ((𝐹𝑋)𝑅𝐶) ∈ V)
126, 9, 10, 11fvmptd 6943 . 2 ((𝜑𝑋𝐴) → ((𝐹f/c 𝑅𝐶)‘𝑋) = ((𝐹𝑋)𝑅𝐶))
13 ofcval.6 . . 3 ((𝜑𝑋𝐴) → (𝐹𝑋) = 𝐵)
1413oveq1d 7357 . 2 ((𝜑𝑋𝐴) → ((𝐹𝑋)𝑅𝐶) = (𝐵𝑅𝐶))
1512, 14eqtrd 2777 1 ((𝜑𝑋𝐴) → ((𝐹f/c 𝑅𝐶)‘𝑋) = (𝐵𝑅𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1541  wcel 2106  Vcvv 3442  cmpt 5180   Fn wfn 6479  cfv 6484  (class class class)co 7342  f/c cofc 32359
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-rep 5234  ax-sep 5248  ax-nul 5255  ax-pr 5377
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3351  df-rab 3405  df-v 3444  df-sbc 3732  df-csb 3848  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4275  df-if 4479  df-sn 4579  df-pr 4581  df-op 4585  df-uni 4858  df-iun 4948  df-br 5098  df-opab 5160  df-mpt 5181  df-id 5523  df-xp 5631  df-rel 5632  df-cnv 5633  df-co 5634  df-dm 5635  df-rn 5636  df-res 5637  df-ima 5638  df-iota 6436  df-fun 6486  df-fn 6487  df-f 6488  df-f1 6489  df-fo 6490  df-f1o 6491  df-fv 6492  df-ov 7345  df-oprab 7346  df-mpo 7347  df-ofc 32360
This theorem is referenced by:  probfinmeasb  32693
  Copyright terms: Public domain W3C validator