![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ofcval | Structured version Visualization version GIF version |
Description: Evaluate a function/constant operation at a point. (Contributed by Thierry Arnoux, 31-Jan-2017.) |
Ref | Expression |
---|---|
ofcfval.1 | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
ofcfval.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
ofcfval.3 | ⊢ (𝜑 → 𝐶 ∈ 𝑊) |
ofcval.6 | ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → (𝐹‘𝑋) = 𝐵) |
Ref | Expression |
---|---|
ofcval | ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → ((𝐹∘𝑓/𝑐𝑅𝐶)‘𝑋) = (𝐵𝑅𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ofcfval.1 | . . . . 5 ⊢ (𝜑 → 𝐹 Fn 𝐴) | |
2 | ofcfval.2 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
3 | ofcfval.3 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ 𝑊) | |
4 | eqidd 2772 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = (𝐹‘𝑥)) | |
5 | 1, 2, 3, 4 | ofcfval 31033 | . . . 4 ⊢ (𝜑 → (𝐹∘𝑓/𝑐𝑅𝐶) = (𝑥 ∈ 𝐴 ↦ ((𝐹‘𝑥)𝑅𝐶))) |
6 | 5 | adantr 473 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → (𝐹∘𝑓/𝑐𝑅𝐶) = (𝑥 ∈ 𝐴 ↦ ((𝐹‘𝑥)𝑅𝐶))) |
7 | simpr 477 | . . . . 5 ⊢ (((𝜑 ∧ 𝑋 ∈ 𝐴) ∧ 𝑥 = 𝑋) → 𝑥 = 𝑋) | |
8 | 7 | fveq2d 6500 | . . . 4 ⊢ (((𝜑 ∧ 𝑋 ∈ 𝐴) ∧ 𝑥 = 𝑋) → (𝐹‘𝑥) = (𝐹‘𝑋)) |
9 | 8 | oveq1d 6989 | . . 3 ⊢ (((𝜑 ∧ 𝑋 ∈ 𝐴) ∧ 𝑥 = 𝑋) → ((𝐹‘𝑥)𝑅𝐶) = ((𝐹‘𝑋)𝑅𝐶)) |
10 | simpr 477 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → 𝑋 ∈ 𝐴) | |
11 | ovexd 7008 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → ((𝐹‘𝑋)𝑅𝐶) ∈ V) | |
12 | 6, 9, 10, 11 | fvmptd 6599 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → ((𝐹∘𝑓/𝑐𝑅𝐶)‘𝑋) = ((𝐹‘𝑋)𝑅𝐶)) |
13 | ofcval.6 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → (𝐹‘𝑋) = 𝐵) | |
14 | 13 | oveq1d 6989 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → ((𝐹‘𝑋)𝑅𝐶) = (𝐵𝑅𝐶)) |
15 | 12, 14 | eqtrd 2807 | 1 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → ((𝐹∘𝑓/𝑐𝑅𝐶)‘𝑋) = (𝐵𝑅𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 = wceq 1508 ∈ wcel 2051 Vcvv 3408 ↦ cmpt 5004 Fn wfn 6180 ‘cfv 6185 (class class class)co 6974 ∘𝑓/𝑐cofc 31030 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-13 2302 ax-ext 2743 ax-rep 5045 ax-sep 5056 ax-nul 5063 ax-pr 5182 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3an 1071 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-mo 2548 df-eu 2585 df-clab 2752 df-cleq 2764 df-clel 2839 df-nfc 2911 df-ne 2961 df-ral 3086 df-rex 3087 df-reu 3088 df-rab 3090 df-v 3410 df-sbc 3675 df-csb 3780 df-dif 3825 df-un 3827 df-in 3829 df-ss 3836 df-nul 4173 df-if 4345 df-sn 4436 df-pr 4438 df-op 4442 df-uni 4709 df-iun 4790 df-br 4926 df-opab 4988 df-mpt 5005 df-id 5308 df-xp 5409 df-rel 5410 df-cnv 5411 df-co 5412 df-dm 5413 df-rn 5414 df-res 5415 df-ima 5416 df-iota 6149 df-fun 6187 df-fn 6188 df-f 6189 df-f1 6190 df-fo 6191 df-f1o 6192 df-fv 6193 df-ov 6977 df-oprab 6978 df-mpo 6979 df-ofc 31031 |
This theorem is referenced by: probfinmeasb 31365 |
Copyright terms: Public domain | W3C validator |