Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ofcval | Structured version Visualization version GIF version |
Description: Evaluate a function/constant operation at a point. (Contributed by Thierry Arnoux, 31-Jan-2017.) |
Ref | Expression |
---|---|
ofcfval.1 | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
ofcfval.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
ofcfval.3 | ⊢ (𝜑 → 𝐶 ∈ 𝑊) |
ofcval.6 | ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → (𝐹‘𝑋) = 𝐵) |
Ref | Expression |
---|---|
ofcval | ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → ((𝐹 ∘f/c 𝑅𝐶)‘𝑋) = (𝐵𝑅𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ofcfval.1 | . . . . 5 ⊢ (𝜑 → 𝐹 Fn 𝐴) | |
2 | ofcfval.2 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
3 | ofcfval.3 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ 𝑊) | |
4 | eqidd 2737 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = (𝐹‘𝑥)) | |
5 | 1, 2, 3, 4 | ofcfval 32364 | . . . 4 ⊢ (𝜑 → (𝐹 ∘f/c 𝑅𝐶) = (𝑥 ∈ 𝐴 ↦ ((𝐹‘𝑥)𝑅𝐶))) |
6 | 5 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → (𝐹 ∘f/c 𝑅𝐶) = (𝑥 ∈ 𝐴 ↦ ((𝐹‘𝑥)𝑅𝐶))) |
7 | simpr 485 | . . . . 5 ⊢ (((𝜑 ∧ 𝑋 ∈ 𝐴) ∧ 𝑥 = 𝑋) → 𝑥 = 𝑋) | |
8 | 7 | fveq2d 6829 | . . . 4 ⊢ (((𝜑 ∧ 𝑋 ∈ 𝐴) ∧ 𝑥 = 𝑋) → (𝐹‘𝑥) = (𝐹‘𝑋)) |
9 | 8 | oveq1d 7352 | . . 3 ⊢ (((𝜑 ∧ 𝑋 ∈ 𝐴) ∧ 𝑥 = 𝑋) → ((𝐹‘𝑥)𝑅𝐶) = ((𝐹‘𝑋)𝑅𝐶)) |
10 | simpr 485 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → 𝑋 ∈ 𝐴) | |
11 | ovexd 7372 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → ((𝐹‘𝑋)𝑅𝐶) ∈ V) | |
12 | 6, 9, 10, 11 | fvmptd 6938 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → ((𝐹 ∘f/c 𝑅𝐶)‘𝑋) = ((𝐹‘𝑋)𝑅𝐶)) |
13 | ofcval.6 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → (𝐹‘𝑋) = 𝐵) | |
14 | 13 | oveq1d 7352 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → ((𝐹‘𝑋)𝑅𝐶) = (𝐵𝑅𝐶)) |
15 | 12, 14 | eqtrd 2776 | 1 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → ((𝐹 ∘f/c 𝑅𝐶)‘𝑋) = (𝐵𝑅𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 Vcvv 3441 ↦ cmpt 5175 Fn wfn 6474 ‘cfv 6479 (class class class)co 7337 ∘f/c cofc 32361 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5229 ax-sep 5243 ax-nul 5250 ax-pr 5372 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4270 df-if 4474 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5176 df-id 5518 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-f1 6484 df-fo 6485 df-f1o 6486 df-fv 6487 df-ov 7340 df-oprab 7341 df-mpo 7342 df-ofc 32362 |
This theorem is referenced by: probfinmeasb 32695 |
Copyright terms: Public domain | W3C validator |