Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ofcval Structured version   Visualization version   GIF version

Theorem ofcval 34107
Description: Evaluate a function/constant operation at a point. (Contributed by Thierry Arnoux, 31-Jan-2017.)
Hypotheses
Ref Expression
ofcfval.1 (𝜑𝐹 Fn 𝐴)
ofcfval.2 (𝜑𝐴𝑉)
ofcfval.3 (𝜑𝐶𝑊)
ofcval.6 ((𝜑𝑋𝐴) → (𝐹𝑋) = 𝐵)
Assertion
Ref Expression
ofcval ((𝜑𝑋𝐴) → ((𝐹f/c 𝑅𝐶)‘𝑋) = (𝐵𝑅𝐶))

Proof of Theorem ofcval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ofcfval.1 . . . . 5 (𝜑𝐹 Fn 𝐴)
2 ofcfval.2 . . . . 5 (𝜑𝐴𝑉)
3 ofcfval.3 . . . . 5 (𝜑𝐶𝑊)
4 eqidd 2732 . . . . 5 ((𝜑𝑥𝐴) → (𝐹𝑥) = (𝐹𝑥))
51, 2, 3, 4ofcfval 34106 . . . 4 (𝜑 → (𝐹f/c 𝑅𝐶) = (𝑥𝐴 ↦ ((𝐹𝑥)𝑅𝐶)))
65adantr 480 . . 3 ((𝜑𝑋𝐴) → (𝐹f/c 𝑅𝐶) = (𝑥𝐴 ↦ ((𝐹𝑥)𝑅𝐶)))
7 simpr 484 . . . . 5 (((𝜑𝑋𝐴) ∧ 𝑥 = 𝑋) → 𝑥 = 𝑋)
87fveq2d 6826 . . . 4 (((𝜑𝑋𝐴) ∧ 𝑥 = 𝑋) → (𝐹𝑥) = (𝐹𝑋))
98oveq1d 7361 . . 3 (((𝜑𝑋𝐴) ∧ 𝑥 = 𝑋) → ((𝐹𝑥)𝑅𝐶) = ((𝐹𝑋)𝑅𝐶))
10 simpr 484 . . 3 ((𝜑𝑋𝐴) → 𝑋𝐴)
11 ovexd 7381 . . 3 ((𝜑𝑋𝐴) → ((𝐹𝑋)𝑅𝐶) ∈ V)
126, 9, 10, 11fvmptd 6936 . 2 ((𝜑𝑋𝐴) → ((𝐹f/c 𝑅𝐶)‘𝑋) = ((𝐹𝑋)𝑅𝐶))
13 ofcval.6 . . 3 ((𝜑𝑋𝐴) → (𝐹𝑋) = 𝐵)
1413oveq1d 7361 . 2 ((𝜑𝑋𝐴) → ((𝐹𝑋)𝑅𝐶) = (𝐵𝑅𝐶))
1512, 14eqtrd 2766 1 ((𝜑𝑋𝐴) → ((𝐹f/c 𝑅𝐶)‘𝑋) = (𝐵𝑅𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  Vcvv 3436  cmpt 5172   Fn wfn 6476  cfv 6481  (class class class)co 7346  f/c cofc 34103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-ofc 34104
This theorem is referenced by:  probfinmeasb  34436
  Copyright terms: Public domain W3C validator