Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ofcval | Structured version Visualization version GIF version |
Description: Evaluate a function/constant operation at a point. (Contributed by Thierry Arnoux, 31-Jan-2017.) |
Ref | Expression |
---|---|
ofcfval.1 | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
ofcfval.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
ofcfval.3 | ⊢ (𝜑 → 𝐶 ∈ 𝑊) |
ofcval.6 | ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → (𝐹‘𝑋) = 𝐵) |
Ref | Expression |
---|---|
ofcval | ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → ((𝐹 ∘f/c 𝑅𝐶)‘𝑋) = (𝐵𝑅𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ofcfval.1 | . . . . 5 ⊢ (𝜑 → 𝐹 Fn 𝐴) | |
2 | ofcfval.2 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
3 | ofcfval.3 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ 𝑊) | |
4 | eqidd 2738 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = (𝐹‘𝑥)) | |
5 | 1, 2, 3, 4 | ofcfval 32362 | . . . 4 ⊢ (𝜑 → (𝐹 ∘f/c 𝑅𝐶) = (𝑥 ∈ 𝐴 ↦ ((𝐹‘𝑥)𝑅𝐶))) |
6 | 5 | adantr 482 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → (𝐹 ∘f/c 𝑅𝐶) = (𝑥 ∈ 𝐴 ↦ ((𝐹‘𝑥)𝑅𝐶))) |
7 | simpr 486 | . . . . 5 ⊢ (((𝜑 ∧ 𝑋 ∈ 𝐴) ∧ 𝑥 = 𝑋) → 𝑥 = 𝑋) | |
8 | 7 | fveq2d 6834 | . . . 4 ⊢ (((𝜑 ∧ 𝑋 ∈ 𝐴) ∧ 𝑥 = 𝑋) → (𝐹‘𝑥) = (𝐹‘𝑋)) |
9 | 8 | oveq1d 7357 | . . 3 ⊢ (((𝜑 ∧ 𝑋 ∈ 𝐴) ∧ 𝑥 = 𝑋) → ((𝐹‘𝑥)𝑅𝐶) = ((𝐹‘𝑋)𝑅𝐶)) |
10 | simpr 486 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → 𝑋 ∈ 𝐴) | |
11 | ovexd 7377 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → ((𝐹‘𝑋)𝑅𝐶) ∈ V) | |
12 | 6, 9, 10, 11 | fvmptd 6943 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → ((𝐹 ∘f/c 𝑅𝐶)‘𝑋) = ((𝐹‘𝑋)𝑅𝐶)) |
13 | ofcval.6 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → (𝐹‘𝑋) = 𝐵) | |
14 | 13 | oveq1d 7357 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → ((𝐹‘𝑋)𝑅𝐶) = (𝐵𝑅𝐶)) |
15 | 12, 14 | eqtrd 2777 | 1 ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐴) → ((𝐹 ∘f/c 𝑅𝐶)‘𝑋) = (𝐵𝑅𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1541 ∈ wcel 2106 Vcvv 3442 ↦ cmpt 5180 Fn wfn 6479 ‘cfv 6484 (class class class)co 7342 ∘f/c cofc 32359 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-rep 5234 ax-sep 5248 ax-nul 5255 ax-pr 5377 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3351 df-rab 3405 df-v 3444 df-sbc 3732 df-csb 3848 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4275 df-if 4479 df-sn 4579 df-pr 4581 df-op 4585 df-uni 4858 df-iun 4948 df-br 5098 df-opab 5160 df-mpt 5181 df-id 5523 df-xp 5631 df-rel 5632 df-cnv 5633 df-co 5634 df-dm 5635 df-rn 5636 df-res 5637 df-ima 5638 df-iota 6436 df-fun 6486 df-fn 6487 df-f 6488 df-f1 6489 df-fo 6490 df-f1o 6491 df-fv 6492 df-ov 7345 df-oprab 7346 df-mpo 7347 df-ofc 32360 |
This theorem is referenced by: probfinmeasb 32693 |
Copyright terms: Public domain | W3C validator |