Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ofcfn Structured version   Visualization version   GIF version

Theorem ofcfn 34063
Description: The function operation produces a function. (Contributed by Thierry Arnoux, 31-Jan-2017.)
Hypotheses
Ref Expression
ofcfval.1 (𝜑𝐹 Fn 𝐴)
ofcfval.2 (𝜑𝐴𝑉)
ofcfval.3 (𝜑𝐶𝑊)
Assertion
Ref Expression
ofcfn (𝜑 → (𝐹f/c 𝑅𝐶) Fn 𝐴)

Proof of Theorem ofcfn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ovex 7402 . . 3 ((𝐹𝑥)𝑅𝐶) ∈ V
2 eqid 2729 . . 3 (𝑥𝐴 ↦ ((𝐹𝑥)𝑅𝐶)) = (𝑥𝐴 ↦ ((𝐹𝑥)𝑅𝐶))
31, 2fnmpti 6643 . 2 (𝑥𝐴 ↦ ((𝐹𝑥)𝑅𝐶)) Fn 𝐴
4 ofcfval.1 . . . 4 (𝜑𝐹 Fn 𝐴)
5 ofcfval.2 . . . 4 (𝜑𝐴𝑉)
6 ofcfval.3 . . . 4 (𝜑𝐶𝑊)
7 eqidd 2730 . . . 4 ((𝜑𝑥𝐴) → (𝐹𝑥) = (𝐹𝑥))
84, 5, 6, 7ofcfval 34061 . . 3 (𝜑 → (𝐹f/c 𝑅𝐶) = (𝑥𝐴 ↦ ((𝐹𝑥)𝑅𝐶)))
98fneq1d 6593 . 2 (𝜑 → ((𝐹f/c 𝑅𝐶) Fn 𝐴 ↔ (𝑥𝐴 ↦ ((𝐹𝑥)𝑅𝐶)) Fn 𝐴))
103, 9mpbiri 258 1 (𝜑 → (𝐹f/c 𝑅𝐶) Fn 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  cmpt 5183   Fn wfn 6494  cfv 6499  (class class class)co 7369  f/c cofc 34058
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-ofc 34059
This theorem is referenced by:  probfinmeasb  34392  coinflipspace  34445
  Copyright terms: Public domain W3C validator