| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ofcfn | Structured version Visualization version GIF version | ||
| Description: The function operation produces a function. (Contributed by Thierry Arnoux, 31-Jan-2017.) |
| Ref | Expression |
|---|---|
| ofcfval.1 | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
| ofcfval.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| ofcfval.3 | ⊢ (𝜑 → 𝐶 ∈ 𝑊) |
| Ref | Expression |
|---|---|
| ofcfn | ⊢ (𝜑 → (𝐹 ∘f/c 𝑅𝐶) Fn 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovex 7464 | . . 3 ⊢ ((𝐹‘𝑥)𝑅𝐶) ∈ V | |
| 2 | eqid 2737 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↦ ((𝐹‘𝑥)𝑅𝐶)) = (𝑥 ∈ 𝐴 ↦ ((𝐹‘𝑥)𝑅𝐶)) | |
| 3 | 1, 2 | fnmpti 6711 | . 2 ⊢ (𝑥 ∈ 𝐴 ↦ ((𝐹‘𝑥)𝑅𝐶)) Fn 𝐴 |
| 4 | ofcfval.1 | . . . 4 ⊢ (𝜑 → 𝐹 Fn 𝐴) | |
| 5 | ofcfval.2 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 6 | ofcfval.3 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑊) | |
| 7 | eqidd 2738 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = (𝐹‘𝑥)) | |
| 8 | 4, 5, 6, 7 | ofcfval 34099 | . . 3 ⊢ (𝜑 → (𝐹 ∘f/c 𝑅𝐶) = (𝑥 ∈ 𝐴 ↦ ((𝐹‘𝑥)𝑅𝐶))) |
| 9 | 8 | fneq1d 6661 | . 2 ⊢ (𝜑 → ((𝐹 ∘f/c 𝑅𝐶) Fn 𝐴 ↔ (𝑥 ∈ 𝐴 ↦ ((𝐹‘𝑥)𝑅𝐶)) Fn 𝐴)) |
| 10 | 3, 9 | mpbiri 258 | 1 ⊢ (𝜑 → (𝐹 ∘f/c 𝑅𝐶) Fn 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ↦ cmpt 5225 Fn wfn 6556 ‘cfv 6561 (class class class)co 7431 ∘f/c cofc 34096 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pr 5432 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-ov 7434 df-oprab 7435 df-mpo 7436 df-ofc 34097 |
| This theorem is referenced by: probfinmeasb 34430 coinflipspace 34483 |
| Copyright terms: Public domain | W3C validator |