Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ofcfn Structured version   Visualization version   GIF version

Theorem ofcfn 34090
Description: The function operation produces a function. (Contributed by Thierry Arnoux, 31-Jan-2017.)
Hypotheses
Ref Expression
ofcfval.1 (𝜑𝐹 Fn 𝐴)
ofcfval.2 (𝜑𝐴𝑉)
ofcfval.3 (𝜑𝐶𝑊)
Assertion
Ref Expression
ofcfn (𝜑 → (𝐹f/c 𝑅𝐶) Fn 𝐴)

Proof of Theorem ofcfn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ovex 7420 . . 3 ((𝐹𝑥)𝑅𝐶) ∈ V
2 eqid 2729 . . 3 (𝑥𝐴 ↦ ((𝐹𝑥)𝑅𝐶)) = (𝑥𝐴 ↦ ((𝐹𝑥)𝑅𝐶))
31, 2fnmpti 6661 . 2 (𝑥𝐴 ↦ ((𝐹𝑥)𝑅𝐶)) Fn 𝐴
4 ofcfval.1 . . . 4 (𝜑𝐹 Fn 𝐴)
5 ofcfval.2 . . . 4 (𝜑𝐴𝑉)
6 ofcfval.3 . . . 4 (𝜑𝐶𝑊)
7 eqidd 2730 . . . 4 ((𝜑𝑥𝐴) → (𝐹𝑥) = (𝐹𝑥))
84, 5, 6, 7ofcfval 34088 . . 3 (𝜑 → (𝐹f/c 𝑅𝐶) = (𝑥𝐴 ↦ ((𝐹𝑥)𝑅𝐶)))
98fneq1d 6611 . 2 (𝜑 → ((𝐹f/c 𝑅𝐶) Fn 𝐴 ↔ (𝑥𝐴 ↦ ((𝐹𝑥)𝑅𝐶)) Fn 𝐴))
103, 9mpbiri 258 1 (𝜑 → (𝐹f/c 𝑅𝐶) Fn 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  cmpt 5188   Fn wfn 6506  cfv 6511  (class class class)co 7387  f/c cofc 34085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-ofc 34086
This theorem is referenced by:  probfinmeasb  34419  coinflipspace  34472
  Copyright terms: Public domain W3C validator