Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ofcfn | Structured version Visualization version GIF version |
Description: The function operation produces a function. (Contributed by Thierry Arnoux, 31-Jan-2017.) |
Ref | Expression |
---|---|
ofcfval.1 | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
ofcfval.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
ofcfval.3 | ⊢ (𝜑 → 𝐶 ∈ 𝑊) |
Ref | Expression |
---|---|
ofcfn | ⊢ (𝜑 → (𝐹 ∘f/c 𝑅𝐶) Fn 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovex 7265 | . . 3 ⊢ ((𝐹‘𝑥)𝑅𝐶) ∈ V | |
2 | eqid 2738 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↦ ((𝐹‘𝑥)𝑅𝐶)) = (𝑥 ∈ 𝐴 ↦ ((𝐹‘𝑥)𝑅𝐶)) | |
3 | 1, 2 | fnmpti 6540 | . 2 ⊢ (𝑥 ∈ 𝐴 ↦ ((𝐹‘𝑥)𝑅𝐶)) Fn 𝐴 |
4 | ofcfval.1 | . . . 4 ⊢ (𝜑 → 𝐹 Fn 𝐴) | |
5 | ofcfval.2 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
6 | ofcfval.3 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑊) | |
7 | eqidd 2739 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = (𝐹‘𝑥)) | |
8 | 4, 5, 6, 7 | ofcfval 31805 | . . 3 ⊢ (𝜑 → (𝐹 ∘f/c 𝑅𝐶) = (𝑥 ∈ 𝐴 ↦ ((𝐹‘𝑥)𝑅𝐶))) |
9 | 8 | fneq1d 6490 | . 2 ⊢ (𝜑 → ((𝐹 ∘f/c 𝑅𝐶) Fn 𝐴 ↔ (𝑥 ∈ 𝐴 ↦ ((𝐹‘𝑥)𝑅𝐶)) Fn 𝐴)) |
10 | 3, 9 | mpbiri 261 | 1 ⊢ (𝜑 → (𝐹 ∘f/c 𝑅𝐶) Fn 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∈ wcel 2111 ↦ cmpt 5150 Fn wfn 6393 ‘cfv 6398 (class class class)co 7232 ∘f/c cofc 31802 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2159 ax-12 2176 ax-ext 2709 ax-rep 5194 ax-sep 5207 ax-nul 5214 ax-pr 5337 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2072 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2887 df-ne 2942 df-ral 3067 df-rex 3068 df-reu 3069 df-rab 3071 df-v 3423 df-sbc 3710 df-csb 3827 df-dif 3884 df-un 3886 df-in 3888 df-ss 3898 df-nul 4253 df-if 4455 df-sn 4557 df-pr 4559 df-op 4563 df-uni 4835 df-iun 4921 df-br 5069 df-opab 5131 df-mpt 5151 df-id 5470 df-xp 5572 df-rel 5573 df-cnv 5574 df-co 5575 df-dm 5576 df-rn 5577 df-res 5578 df-ima 5579 df-iota 6356 df-fun 6400 df-fn 6401 df-f 6402 df-f1 6403 df-fo 6404 df-f1o 6405 df-fv 6406 df-ov 7235 df-oprab 7236 df-mpo 7237 df-ofc 31803 |
This theorem is referenced by: probfinmeasb 32134 coinflipspace 32186 |
Copyright terms: Public domain | W3C validator |