| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ofcfn | Structured version Visualization version GIF version | ||
| Description: The function operation produces a function. (Contributed by Thierry Arnoux, 31-Jan-2017.) |
| Ref | Expression |
|---|---|
| ofcfval.1 | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
| ofcfval.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| ofcfval.3 | ⊢ (𝜑 → 𝐶 ∈ 𝑊) |
| Ref | Expression |
|---|---|
| ofcfn | ⊢ (𝜑 → (𝐹 ∘f/c 𝑅𝐶) Fn 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovex 7379 | . . 3 ⊢ ((𝐹‘𝑥)𝑅𝐶) ∈ V | |
| 2 | eqid 2731 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↦ ((𝐹‘𝑥)𝑅𝐶)) = (𝑥 ∈ 𝐴 ↦ ((𝐹‘𝑥)𝑅𝐶)) | |
| 3 | 1, 2 | fnmpti 6624 | . 2 ⊢ (𝑥 ∈ 𝐴 ↦ ((𝐹‘𝑥)𝑅𝐶)) Fn 𝐴 |
| 4 | ofcfval.1 | . . . 4 ⊢ (𝜑 → 𝐹 Fn 𝐴) | |
| 5 | ofcfval.2 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 6 | ofcfval.3 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑊) | |
| 7 | eqidd 2732 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = (𝐹‘𝑥)) | |
| 8 | 4, 5, 6, 7 | ofcfval 34111 | . . 3 ⊢ (𝜑 → (𝐹 ∘f/c 𝑅𝐶) = (𝑥 ∈ 𝐴 ↦ ((𝐹‘𝑥)𝑅𝐶))) |
| 9 | 8 | fneq1d 6574 | . 2 ⊢ (𝜑 → ((𝐹 ∘f/c 𝑅𝐶) Fn 𝐴 ↔ (𝑥 ∈ 𝐴 ↦ ((𝐹‘𝑥)𝑅𝐶)) Fn 𝐴)) |
| 10 | 3, 9 | mpbiri 258 | 1 ⊢ (𝜑 → (𝐹 ∘f/c 𝑅𝐶) Fn 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2111 ↦ cmpt 5170 Fn wfn 6476 ‘cfv 6481 (class class class)co 7346 ∘f/c cofc 34108 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-ofc 34109 |
| This theorem is referenced by: probfinmeasb 34441 coinflipspace 34494 |
| Copyright terms: Public domain | W3C validator |