Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ofcfn Structured version   Visualization version   GIF version

Theorem ofcfn 31807
Description: The function operation produces a function. (Contributed by Thierry Arnoux, 31-Jan-2017.)
Hypotheses
Ref Expression
ofcfval.1 (𝜑𝐹 Fn 𝐴)
ofcfval.2 (𝜑𝐴𝑉)
ofcfval.3 (𝜑𝐶𝑊)
Assertion
Ref Expression
ofcfn (𝜑 → (𝐹f/c 𝑅𝐶) Fn 𝐴)

Proof of Theorem ofcfn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ovex 7265 . . 3 ((𝐹𝑥)𝑅𝐶) ∈ V
2 eqid 2738 . . 3 (𝑥𝐴 ↦ ((𝐹𝑥)𝑅𝐶)) = (𝑥𝐴 ↦ ((𝐹𝑥)𝑅𝐶))
31, 2fnmpti 6540 . 2 (𝑥𝐴 ↦ ((𝐹𝑥)𝑅𝐶)) Fn 𝐴
4 ofcfval.1 . . . 4 (𝜑𝐹 Fn 𝐴)
5 ofcfval.2 . . . 4 (𝜑𝐴𝑉)
6 ofcfval.3 . . . 4 (𝜑𝐶𝑊)
7 eqidd 2739 . . . 4 ((𝜑𝑥𝐴) → (𝐹𝑥) = (𝐹𝑥))
84, 5, 6, 7ofcfval 31805 . . 3 (𝜑 → (𝐹f/c 𝑅𝐶) = (𝑥𝐴 ↦ ((𝐹𝑥)𝑅𝐶)))
98fneq1d 6490 . 2 (𝜑 → ((𝐹f/c 𝑅𝐶) Fn 𝐴 ↔ (𝑥𝐴 ↦ ((𝐹𝑥)𝑅𝐶)) Fn 𝐴))
103, 9mpbiri 261 1 (𝜑 → (𝐹f/c 𝑅𝐶) Fn 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wcel 2111  cmpt 5150   Fn wfn 6393  cfv 6398  (class class class)co 7232  f/c cofc 31802
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2159  ax-12 2176  ax-ext 2709  ax-rep 5194  ax-sep 5207  ax-nul 5214  ax-pr 5337
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2072  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2887  df-ne 2942  df-ral 3067  df-rex 3068  df-reu 3069  df-rab 3071  df-v 3423  df-sbc 3710  df-csb 3827  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4253  df-if 4455  df-sn 4557  df-pr 4559  df-op 4563  df-uni 4835  df-iun 4921  df-br 5069  df-opab 5131  df-mpt 5151  df-id 5470  df-xp 5572  df-rel 5573  df-cnv 5574  df-co 5575  df-dm 5576  df-rn 5577  df-res 5578  df-ima 5579  df-iota 6356  df-fun 6400  df-fn 6401  df-f 6402  df-f1 6403  df-fo 6404  df-f1o 6405  df-fv 6406  df-ov 7235  df-oprab 7236  df-mpo 7237  df-ofc 31803
This theorem is referenced by:  probfinmeasb  32134  coinflipspace  32186
  Copyright terms: Public domain W3C validator