![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ofcfn | Structured version Visualization version GIF version |
Description: The function operation produces a function. (Contributed by Thierry Arnoux, 31-Jan-2017.) |
Ref | Expression |
---|---|
ofcfval.1 | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
ofcfval.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
ofcfval.3 | ⊢ (𝜑 → 𝐶 ∈ 𝑊) |
Ref | Expression |
---|---|
ofcfn | ⊢ (𝜑 → (𝐹 ∘f/c 𝑅𝐶) Fn 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovex 7435 | . . 3 ⊢ ((𝐹‘𝑥)𝑅𝐶) ∈ V | |
2 | eqid 2724 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↦ ((𝐹‘𝑥)𝑅𝐶)) = (𝑥 ∈ 𝐴 ↦ ((𝐹‘𝑥)𝑅𝐶)) | |
3 | 1, 2 | fnmpti 6684 | . 2 ⊢ (𝑥 ∈ 𝐴 ↦ ((𝐹‘𝑥)𝑅𝐶)) Fn 𝐴 |
4 | ofcfval.1 | . . . 4 ⊢ (𝜑 → 𝐹 Fn 𝐴) | |
5 | ofcfval.2 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
6 | ofcfval.3 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑊) | |
7 | eqidd 2725 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = (𝐹‘𝑥)) | |
8 | 4, 5, 6, 7 | ofcfval 33615 | . . 3 ⊢ (𝜑 → (𝐹 ∘f/c 𝑅𝐶) = (𝑥 ∈ 𝐴 ↦ ((𝐹‘𝑥)𝑅𝐶))) |
9 | 8 | fneq1d 6633 | . 2 ⊢ (𝜑 → ((𝐹 ∘f/c 𝑅𝐶) Fn 𝐴 ↔ (𝑥 ∈ 𝐴 ↦ ((𝐹‘𝑥)𝑅𝐶)) Fn 𝐴)) |
10 | 3, 9 | mpbiri 258 | 1 ⊢ (𝜑 → (𝐹 ∘f/c 𝑅𝐶) Fn 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2098 ↦ cmpt 5222 Fn wfn 6529 ‘cfv 6534 (class class class)co 7402 ∘f/c cofc 33612 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5276 ax-sep 5290 ax-nul 5297 ax-pr 5418 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-if 4522 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-iun 4990 df-br 5140 df-opab 5202 df-mpt 5223 df-id 5565 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-ov 7405 df-oprab 7406 df-mpo 7407 df-ofc 33613 |
This theorem is referenced by: probfinmeasb 33946 coinflipspace 33998 |
Copyright terms: Public domain | W3C validator |