Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ofrn Structured version   Visualization version   GIF version

Theorem ofrn 30877
Description: The range of the function operation. (Contributed by Thierry Arnoux, 8-Jan-2017.)
Hypotheses
Ref Expression
ofrn.1 (𝜑𝐹:𝐴𝐵)
ofrn.2 (𝜑𝐺:𝐴𝐵)
ofrn.3 (𝜑+ :(𝐵 × 𝐵)⟶𝐶)
ofrn.4 (𝜑𝐴𝑉)
Assertion
Ref Expression
ofrn (𝜑 → ran (𝐹f + 𝐺) ⊆ 𝐶)

Proof of Theorem ofrn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ofrn.3 . . . 4 (𝜑+ :(𝐵 × 𝐵)⟶𝐶)
21fovrnda 7421 . . 3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥 + 𝑦) ∈ 𝐶)
3 ofrn.1 . . 3 (𝜑𝐹:𝐴𝐵)
4 ofrn.2 . . 3 (𝜑𝐺:𝐴𝐵)
5 ofrn.4 . . 3 (𝜑𝐴𝑉)
6 inidm 4149 . . 3 (𝐴𝐴) = 𝐴
72, 3, 4, 5, 5, 6off 7529 . 2 (𝜑 → (𝐹f + 𝐺):𝐴𝐶)
87frnd 6592 1 (𝜑 → ran (𝐹f + 𝐺) ⊆ 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  wss 3883   × cxp 5578  ran crn 5581  wf 6414  (class class class)co 7255  f cof 7509
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator