| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ofrn | Structured version Visualization version GIF version | ||
| Description: The range of the function operation. (Contributed by Thierry Arnoux, 8-Jan-2017.) |
| Ref | Expression |
|---|---|
| ofrn.1 | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| ofrn.2 | ⊢ (𝜑 → 𝐺:𝐴⟶𝐵) |
| ofrn.3 | ⊢ (𝜑 → + :(𝐵 × 𝐵)⟶𝐶) |
| ofrn.4 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| ofrn | ⊢ (𝜑 → ran (𝐹 ∘f + 𝐺) ⊆ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ofrn.3 | . . . 4 ⊢ (𝜑 → + :(𝐵 × 𝐵)⟶𝐶) | |
| 2 | 1 | fovcdmda 7540 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥 + 𝑦) ∈ 𝐶) |
| 3 | ofrn.1 | . . 3 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
| 4 | ofrn.2 | . . 3 ⊢ (𝜑 → 𝐺:𝐴⟶𝐵) | |
| 5 | ofrn.4 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 6 | inidm 4186 | . . 3 ⊢ (𝐴 ∩ 𝐴) = 𝐴 | |
| 7 | 2, 3, 4, 5, 5, 6 | off 7651 | . 2 ⊢ (𝜑 → (𝐹 ∘f + 𝐺):𝐴⟶𝐶) |
| 8 | 7 | frnd 6678 | 1 ⊢ (𝜑 → ran (𝐹 ∘f + 𝐺) ⊆ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ⊆ wss 3911 × cxp 5629 ran crn 5632 ⟶wf 6495 (class class class)co 7369 ∘f cof 7631 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-of 7633 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |