| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fovcdmda | Structured version Visualization version GIF version | ||
| Description: An operation's value belongs to its codomain. (Contributed by Mario Carneiro, 29-Dec-2016.) |
| Ref | Expression |
|---|---|
| fovcdmd.1 | ⊢ (𝜑 → 𝐹:(𝑅 × 𝑆)⟶𝐶) |
| Ref | Expression |
|---|---|
| fovcdmda | ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆)) → (𝐴𝐹𝐵) ∈ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fovcdmd.1 | . . 3 ⊢ (𝜑 → 𝐹:(𝑅 × 𝑆)⟶𝐶) | |
| 2 | fovcdm 7562 | . . 3 ⊢ ((𝐹:(𝑅 × 𝑆)⟶𝐶 ∧ 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) → (𝐴𝐹𝐵) ∈ 𝐶) | |
| 3 | 1, 2 | syl3an1 1163 | . 2 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆) → (𝐴𝐹𝐵) ∈ 𝐶) |
| 4 | 3 | 3expb 1120 | 1 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆)) → (𝐴𝐹𝐵) ∈ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 × cxp 5639 ⟶wf 6510 (class class class)co 7390 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-fv 6522 df-ov 7393 |
| This theorem is referenced by: eroprf 8791 yonedalem3 18248 yonedainv 18249 gass 19240 gsumxp2 19917 mamulid 22335 mamurid 22336 maducoeval2 22534 madutpos 22536 madugsum 22537 madurid 22538 isxmet2d 24222 prdsxmetlem 24263 rrxds 25300 ofrn 32570 fedgmullem2 33633 metideq 33890 sibfof 34338 ofoacl 43353 naddcnfcl 43361 |
| Copyright terms: Public domain | W3C validator |