MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fovcdmda Structured version   Visualization version   GIF version

Theorem fovcdmda 7520
Description: An operation's value belongs to its codomain. (Contributed by Mario Carneiro, 29-Dec-2016.)
Hypothesis
Ref Expression
fovcdmd.1 (𝜑𝐹:(𝑅 × 𝑆)⟶𝐶)
Assertion
Ref Expression
fovcdmda ((𝜑 ∧ (𝐴𝑅𝐵𝑆)) → (𝐴𝐹𝐵) ∈ 𝐶)

Proof of Theorem fovcdmda
StepHypRef Expression
1 fovcdmd.1 . . 3 (𝜑𝐹:(𝑅 × 𝑆)⟶𝐶)
2 fovcdm 7519 . . 3 ((𝐹:(𝑅 × 𝑆)⟶𝐶𝐴𝑅𝐵𝑆) → (𝐴𝐹𝐵) ∈ 𝐶)
31, 2syl3an1 1163 . 2 ((𝜑𝐴𝑅𝐵𝑆) → (𝐴𝐹𝐵) ∈ 𝐶)
433expb 1120 1 ((𝜑 ∧ (𝐴𝑅𝐵𝑆)) → (𝐴𝐹𝐵) ∈ 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109   × cxp 5617  wf 6478  (class class class)co 7349
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-fv 6490  df-ov 7352
This theorem is referenced by:  eroprf  8742  yonedalem3  18186  yonedainv  18187  gass  19180  gsumxp2  19859  mamulid  22326  mamurid  22327  maducoeval2  22525  madutpos  22527  madugsum  22528  madurid  22529  isxmet2d  24213  prdsxmetlem  24254  rrxds  25291  ofrn  32582  fedgmullem2  33597  metideq  33860  sibfof  34308  ofoacl  43334  naddcnfcl  43342
  Copyright terms: Public domain W3C validator