MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fovcdmda Structured version   Visualization version   GIF version

Theorem fovcdmda 7563
Description: An operation's value belongs to its codomain. (Contributed by Mario Carneiro, 29-Dec-2016.)
Hypothesis
Ref Expression
fovcdmd.1 (𝜑𝐹:(𝑅 × 𝑆)⟶𝐶)
Assertion
Ref Expression
fovcdmda ((𝜑 ∧ (𝐴𝑅𝐵𝑆)) → (𝐴𝐹𝐵) ∈ 𝐶)

Proof of Theorem fovcdmda
StepHypRef Expression
1 fovcdmd.1 . . 3 (𝜑𝐹:(𝑅 × 𝑆)⟶𝐶)
2 fovcdm 7562 . . 3 ((𝐹:(𝑅 × 𝑆)⟶𝐶𝐴𝑅𝐵𝑆) → (𝐴𝐹𝐵) ∈ 𝐶)
31, 2syl3an1 1163 . 2 ((𝜑𝐴𝑅𝐵𝑆) → (𝐴𝐹𝐵) ∈ 𝐶)
433expb 1120 1 ((𝜑 ∧ (𝐴𝑅𝐵𝑆)) → (𝐴𝐹𝐵) ∈ 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109   × cxp 5639  wf 6510  (class class class)co 7390
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-fv 6522  df-ov 7393
This theorem is referenced by:  eroprf  8791  yonedalem3  18248  yonedainv  18249  gass  19240  gsumxp2  19917  mamulid  22335  mamurid  22336  maducoeval2  22534  madutpos  22536  madugsum  22537  madurid  22538  isxmet2d  24222  prdsxmetlem  24263  rrxds  25300  ofrn  32570  fedgmullem2  33633  metideq  33890  sibfof  34338  ofoacl  43353  naddcnfcl  43361
  Copyright terms: Public domain W3C validator