MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omsuc Structured version   Visualization version   GIF version

Theorem omsuc 8490
Description: Multiplication with successor. Definition 8.15 of [TakeutiZaring] p. 62. Definition 2.5 of [Schloeder] p. 4. (Contributed by NM, 17-Sep-1995.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
omsuc ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o suc 𝐵) = ((𝐴 ·o 𝐵) +o 𝐴))

Proof of Theorem omsuc
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 rdgsuc 8392 . . 3 (𝐵 ∈ On → (rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅)‘suc 𝐵) = ((𝑥 ∈ V ↦ (𝑥 +o 𝐴))‘(rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅)‘𝐵)))
21adantl 481 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅)‘suc 𝐵) = ((𝑥 ∈ V ↦ (𝑥 +o 𝐴))‘(rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅)‘𝐵)))
3 onsuc 7787 . . 3 (𝐵 ∈ On → suc 𝐵 ∈ On)
4 omv 8476 . . 3 ((𝐴 ∈ On ∧ suc 𝐵 ∈ On) → (𝐴 ·o suc 𝐵) = (rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅)‘suc 𝐵))
53, 4sylan2 593 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o suc 𝐵) = (rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅)‘suc 𝐵))
6 ovex 7420 . . . 4 (𝐴 ·o 𝐵) ∈ V
7 oveq1 7394 . . . . 5 (𝑥 = (𝐴 ·o 𝐵) → (𝑥 +o 𝐴) = ((𝐴 ·o 𝐵) +o 𝐴))
8 eqid 2729 . . . . 5 (𝑥 ∈ V ↦ (𝑥 +o 𝐴)) = (𝑥 ∈ V ↦ (𝑥 +o 𝐴))
9 ovex 7420 . . . . 5 ((𝐴 ·o 𝐵) +o 𝐴) ∈ V
107, 8, 9fvmpt 6968 . . . 4 ((𝐴 ·o 𝐵) ∈ V → ((𝑥 ∈ V ↦ (𝑥 +o 𝐴))‘(𝐴 ·o 𝐵)) = ((𝐴 ·o 𝐵) +o 𝐴))
116, 10ax-mp 5 . . 3 ((𝑥 ∈ V ↦ (𝑥 +o 𝐴))‘(𝐴 ·o 𝐵)) = ((𝐴 ·o 𝐵) +o 𝐴)
12 omv 8476 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o 𝐵) = (rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅)‘𝐵))
1312fveq2d 6862 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝑥 ∈ V ↦ (𝑥 +o 𝐴))‘(𝐴 ·o 𝐵)) = ((𝑥 ∈ V ↦ (𝑥 +o 𝐴))‘(rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅)‘𝐵)))
1411, 13eqtr3id 2778 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ·o 𝐵) +o 𝐴) = ((𝑥 ∈ V ↦ (𝑥 +o 𝐴))‘(rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅)‘𝐵)))
152, 5, 143eqtr4d 2774 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o suc 𝐵) = ((𝐴 ·o 𝐵) +o 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3447  c0 4296  cmpt 5188  Oncon0 6332  suc csuc 6334  cfv 6511  (class class class)co 7387  reccrdg 8377   +o coa 8431   ·o comu 8432
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-omul 8439
This theorem is referenced by:  omcl  8500  om0r  8503  om1r  8507  omordi  8530  omwordri  8536  omlimcl  8542  odi  8543  omass  8544  oneo  8545  omeulem1  8546  omeulem2  8547  oeoelem  8562  oaabs2  8613  omxpenlem  9042  cantnflt  9625  cantnflem1d  9641  infxpenc  9971  onexomgt  43230  omlimcl2  43231  onexoegt  43233  om0suclim  43265  oaomoencom  43306  omabs2  43321  naddwordnexlem0  43385  naddwordnexlem3  43388  om2  43393
  Copyright terms: Public domain W3C validator