MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omsuc Structured version   Visualization version   GIF version

Theorem omsuc 8476
Description: Multiplication with successor. Definition 8.15 of [TakeutiZaring] p. 62. Definition 2.5 of [Schloeder] p. 4. (Contributed by NM, 17-Sep-1995.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
omsuc ((๐ด โˆˆ On โˆง ๐ต โˆˆ On) โ†’ (๐ด ยทo suc ๐ต) = ((๐ด ยทo ๐ต) +o ๐ด))

Proof of Theorem omsuc
Dummy variable ๐‘ฅ is distinct from all other variables.
StepHypRef Expression
1 rdgsuc 8374 . . 3 (๐ต โˆˆ On โ†’ (rec((๐‘ฅ โˆˆ V โ†ฆ (๐‘ฅ +o ๐ด)), โˆ…)โ€˜suc ๐ต) = ((๐‘ฅ โˆˆ V โ†ฆ (๐‘ฅ +o ๐ด))โ€˜(rec((๐‘ฅ โˆˆ V โ†ฆ (๐‘ฅ +o ๐ด)), โˆ…)โ€˜๐ต)))
21adantl 483 . 2 ((๐ด โˆˆ On โˆง ๐ต โˆˆ On) โ†’ (rec((๐‘ฅ โˆˆ V โ†ฆ (๐‘ฅ +o ๐ด)), โˆ…)โ€˜suc ๐ต) = ((๐‘ฅ โˆˆ V โ†ฆ (๐‘ฅ +o ๐ด))โ€˜(rec((๐‘ฅ โˆˆ V โ†ฆ (๐‘ฅ +o ๐ด)), โˆ…)โ€˜๐ต)))
3 onsuc 7750 . . 3 (๐ต โˆˆ On โ†’ suc ๐ต โˆˆ On)
4 omv 8462 . . 3 ((๐ด โˆˆ On โˆง suc ๐ต โˆˆ On) โ†’ (๐ด ยทo suc ๐ต) = (rec((๐‘ฅ โˆˆ V โ†ฆ (๐‘ฅ +o ๐ด)), โˆ…)โ€˜suc ๐ต))
53, 4sylan2 594 . 2 ((๐ด โˆˆ On โˆง ๐ต โˆˆ On) โ†’ (๐ด ยทo suc ๐ต) = (rec((๐‘ฅ โˆˆ V โ†ฆ (๐‘ฅ +o ๐ด)), โˆ…)โ€˜suc ๐ต))
6 ovex 7394 . . . 4 (๐ด ยทo ๐ต) โˆˆ V
7 oveq1 7368 . . . . 5 (๐‘ฅ = (๐ด ยทo ๐ต) โ†’ (๐‘ฅ +o ๐ด) = ((๐ด ยทo ๐ต) +o ๐ด))
8 eqid 2733 . . . . 5 (๐‘ฅ โˆˆ V โ†ฆ (๐‘ฅ +o ๐ด)) = (๐‘ฅ โˆˆ V โ†ฆ (๐‘ฅ +o ๐ด))
9 ovex 7394 . . . . 5 ((๐ด ยทo ๐ต) +o ๐ด) โˆˆ V
107, 8, 9fvmpt 6952 . . . 4 ((๐ด ยทo ๐ต) โˆˆ V โ†’ ((๐‘ฅ โˆˆ V โ†ฆ (๐‘ฅ +o ๐ด))โ€˜(๐ด ยทo ๐ต)) = ((๐ด ยทo ๐ต) +o ๐ด))
116, 10ax-mp 5 . . 3 ((๐‘ฅ โˆˆ V โ†ฆ (๐‘ฅ +o ๐ด))โ€˜(๐ด ยทo ๐ต)) = ((๐ด ยทo ๐ต) +o ๐ด)
12 omv 8462 . . . 4 ((๐ด โˆˆ On โˆง ๐ต โˆˆ On) โ†’ (๐ด ยทo ๐ต) = (rec((๐‘ฅ โˆˆ V โ†ฆ (๐‘ฅ +o ๐ด)), โˆ…)โ€˜๐ต))
1312fveq2d 6850 . . 3 ((๐ด โˆˆ On โˆง ๐ต โˆˆ On) โ†’ ((๐‘ฅ โˆˆ V โ†ฆ (๐‘ฅ +o ๐ด))โ€˜(๐ด ยทo ๐ต)) = ((๐‘ฅ โˆˆ V โ†ฆ (๐‘ฅ +o ๐ด))โ€˜(rec((๐‘ฅ โˆˆ V โ†ฆ (๐‘ฅ +o ๐ด)), โˆ…)โ€˜๐ต)))
1411, 13eqtr3id 2787 . 2 ((๐ด โˆˆ On โˆง ๐ต โˆˆ On) โ†’ ((๐ด ยทo ๐ต) +o ๐ด) = ((๐‘ฅ โˆˆ V โ†ฆ (๐‘ฅ +o ๐ด))โ€˜(rec((๐‘ฅ โˆˆ V โ†ฆ (๐‘ฅ +o ๐ด)), โˆ…)โ€˜๐ต)))
152, 5, 143eqtr4d 2783 1 ((๐ด โˆˆ On โˆง ๐ต โˆˆ On) โ†’ (๐ด ยทo suc ๐ต) = ((๐ด ยทo ๐ต) +o ๐ด))
Colors of variables: wff setvar class
Syntax hints:   โ†’ wi 4   โˆง wa 397   = wceq 1542   โˆˆ wcel 2107  Vcvv 3447  โˆ…c0 4286   โ†ฆ cmpt 5192  Oncon0 6321  suc csuc 6323  โ€˜cfv 6500  (class class class)co 7361  reccrdg 8359   +o coa 8413   ยทo comu 8414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5246  ax-sep 5260  ax-nul 5267  ax-pr 5388  ax-un 7676
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3353  df-rab 3407  df-v 3449  df-sbc 3744  df-csb 3860  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3933  df-nul 4287  df-if 4491  df-pw 4566  df-sn 4591  df-pr 4593  df-op 4597  df-uni 4870  df-iun 4960  df-br 5110  df-opab 5172  df-mpt 5193  df-tr 5227  df-id 5535  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5592  df-we 5594  df-xp 5643  df-rel 5644  df-cnv 5645  df-co 5646  df-dm 5647  df-rn 5648  df-res 5649  df-ima 5650  df-pred 6257  df-ord 6324  df-on 6325  df-lim 6326  df-suc 6327  df-iota 6452  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-ov 7364  df-oprab 7365  df-mpo 7366  df-2nd 7926  df-frecs 8216  df-wrecs 8247  df-recs 8321  df-rdg 8360  df-omul 8421
This theorem is referenced by:  omcl  8486  om0r  8489  om1r  8494  omordi  8517  omwordri  8523  omlimcl  8529  odi  8530  omass  8531  oneo  8532  omeulem1  8533  omeulem2  8534  oeoelem  8549  oaabs2  8599  omxpenlem  9023  cantnflt  9616  cantnflem1d  9632  infxpenc  9962  onexomgt  41622  omlimcl2  41623  onexoegt  41625  om0suclim  41658  oaomoencom  41699  omabs2  41714  naddwordnexlem0  41760  naddwordnexlem3  41763  om2  41768
  Copyright terms: Public domain W3C validator