|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > omsuc | Structured version Visualization version GIF version | ||
| Description: Multiplication with successor. Definition 8.15 of [TakeutiZaring] p. 62. Definition 2.5 of [Schloeder] p. 4. (Contributed by NM, 17-Sep-1995.) (Revised by Mario Carneiro, 8-Sep-2013.) | 
| Ref | Expression | 
|---|---|
| omsuc | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o suc 𝐵) = ((𝐴 ·o 𝐵) +o 𝐴)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | rdgsuc 8465 | . . 3 ⊢ (𝐵 ∈ On → (rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅)‘suc 𝐵) = ((𝑥 ∈ V ↦ (𝑥 +o 𝐴))‘(rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅)‘𝐵))) | |
| 2 | 1 | adantl 481 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅)‘suc 𝐵) = ((𝑥 ∈ V ↦ (𝑥 +o 𝐴))‘(rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅)‘𝐵))) | 
| 3 | onsuc 7832 | . . 3 ⊢ (𝐵 ∈ On → suc 𝐵 ∈ On) | |
| 4 | omv 8551 | . . 3 ⊢ ((𝐴 ∈ On ∧ suc 𝐵 ∈ On) → (𝐴 ·o suc 𝐵) = (rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅)‘suc 𝐵)) | |
| 5 | 3, 4 | sylan2 593 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o suc 𝐵) = (rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅)‘suc 𝐵)) | 
| 6 | ovex 7465 | . . . 4 ⊢ (𝐴 ·o 𝐵) ∈ V | |
| 7 | oveq1 7439 | . . . . 5 ⊢ (𝑥 = (𝐴 ·o 𝐵) → (𝑥 +o 𝐴) = ((𝐴 ·o 𝐵) +o 𝐴)) | |
| 8 | eqid 2736 | . . . . 5 ⊢ (𝑥 ∈ V ↦ (𝑥 +o 𝐴)) = (𝑥 ∈ V ↦ (𝑥 +o 𝐴)) | |
| 9 | ovex 7465 | . . . . 5 ⊢ ((𝐴 ·o 𝐵) +o 𝐴) ∈ V | |
| 10 | 7, 8, 9 | fvmpt 7015 | . . . 4 ⊢ ((𝐴 ·o 𝐵) ∈ V → ((𝑥 ∈ V ↦ (𝑥 +o 𝐴))‘(𝐴 ·o 𝐵)) = ((𝐴 ·o 𝐵) +o 𝐴)) | 
| 11 | 6, 10 | ax-mp 5 | . . 3 ⊢ ((𝑥 ∈ V ↦ (𝑥 +o 𝐴))‘(𝐴 ·o 𝐵)) = ((𝐴 ·o 𝐵) +o 𝐴) | 
| 12 | omv 8551 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o 𝐵) = (rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅)‘𝐵)) | |
| 13 | 12 | fveq2d 6909 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝑥 ∈ V ↦ (𝑥 +o 𝐴))‘(𝐴 ·o 𝐵)) = ((𝑥 ∈ V ↦ (𝑥 +o 𝐴))‘(rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅)‘𝐵))) | 
| 14 | 11, 13 | eqtr3id 2790 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ·o 𝐵) +o 𝐴) = ((𝑥 ∈ V ↦ (𝑥 +o 𝐴))‘(rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅)‘𝐵))) | 
| 15 | 2, 5, 14 | 3eqtr4d 2786 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o suc 𝐵) = ((𝐴 ·o 𝐵) +o 𝐴)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 Vcvv 3479 ∅c0 4332 ↦ cmpt 5224 Oncon0 6383 suc csuc 6385 ‘cfv 6560 (class class class)co 7432 reccrdg 8450 +o coa 8504 ·o comu 8505 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pr 5431 ax-un 7756 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-ov 7435 df-oprab 7436 df-mpo 7437 df-2nd 8016 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-omul 8512 | 
| This theorem is referenced by: omcl 8575 om0r 8578 om1r 8582 omordi 8605 omwordri 8611 omlimcl 8617 odi 8618 omass 8619 oneo 8620 omeulem1 8621 omeulem2 8622 oeoelem 8637 oaabs2 8688 omxpenlem 9114 cantnflt 9713 cantnflem1d 9729 infxpenc 10059 onexomgt 43258 omlimcl2 43259 onexoegt 43261 om0suclim 43294 oaomoencom 43335 omabs2 43350 naddwordnexlem0 43414 naddwordnexlem3 43417 om2 43422 | 
| Copyright terms: Public domain | W3C validator |