| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > omsuc | Structured version Visualization version GIF version | ||
| Description: Multiplication with successor. Definition 8.15 of [TakeutiZaring] p. 62. Definition 2.5 of [Schloeder] p. 4. (Contributed by NM, 17-Sep-1995.) (Revised by Mario Carneiro, 8-Sep-2013.) |
| Ref | Expression |
|---|---|
| omsuc | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o suc 𝐵) = ((𝐴 ·o 𝐵) +o 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rdgsuc 8346 | . . 3 ⊢ (𝐵 ∈ On → (rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅)‘suc 𝐵) = ((𝑥 ∈ V ↦ (𝑥 +o 𝐴))‘(rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅)‘𝐵))) | |
| 2 | 1 | adantl 481 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅)‘suc 𝐵) = ((𝑥 ∈ V ↦ (𝑥 +o 𝐴))‘(rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅)‘𝐵))) |
| 3 | onsuc 7746 | . . 3 ⊢ (𝐵 ∈ On → suc 𝐵 ∈ On) | |
| 4 | omv 8430 | . . 3 ⊢ ((𝐴 ∈ On ∧ suc 𝐵 ∈ On) → (𝐴 ·o suc 𝐵) = (rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅)‘suc 𝐵)) | |
| 5 | 3, 4 | sylan2 593 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o suc 𝐵) = (rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅)‘suc 𝐵)) |
| 6 | ovex 7382 | . . . 4 ⊢ (𝐴 ·o 𝐵) ∈ V | |
| 7 | oveq1 7356 | . . . . 5 ⊢ (𝑥 = (𝐴 ·o 𝐵) → (𝑥 +o 𝐴) = ((𝐴 ·o 𝐵) +o 𝐴)) | |
| 8 | eqid 2729 | . . . . 5 ⊢ (𝑥 ∈ V ↦ (𝑥 +o 𝐴)) = (𝑥 ∈ V ↦ (𝑥 +o 𝐴)) | |
| 9 | ovex 7382 | . . . . 5 ⊢ ((𝐴 ·o 𝐵) +o 𝐴) ∈ V | |
| 10 | 7, 8, 9 | fvmpt 6930 | . . . 4 ⊢ ((𝐴 ·o 𝐵) ∈ V → ((𝑥 ∈ V ↦ (𝑥 +o 𝐴))‘(𝐴 ·o 𝐵)) = ((𝐴 ·o 𝐵) +o 𝐴)) |
| 11 | 6, 10 | ax-mp 5 | . . 3 ⊢ ((𝑥 ∈ V ↦ (𝑥 +o 𝐴))‘(𝐴 ·o 𝐵)) = ((𝐴 ·o 𝐵) +o 𝐴) |
| 12 | omv 8430 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o 𝐵) = (rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅)‘𝐵)) | |
| 13 | 12 | fveq2d 6826 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝑥 ∈ V ↦ (𝑥 +o 𝐴))‘(𝐴 ·o 𝐵)) = ((𝑥 ∈ V ↦ (𝑥 +o 𝐴))‘(rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅)‘𝐵))) |
| 14 | 11, 13 | eqtr3id 2778 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ·o 𝐵) +o 𝐴) = ((𝑥 ∈ V ↦ (𝑥 +o 𝐴))‘(rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅)‘𝐵))) |
| 15 | 2, 5, 14 | 3eqtr4d 2774 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o suc 𝐵) = ((𝐴 ·o 𝐵) +o 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3436 ∅c0 4284 ↦ cmpt 5173 Oncon0 6307 suc csuc 6309 ‘cfv 6482 (class class class)co 7349 reccrdg 8331 +o coa 8385 ·o comu 8386 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-omul 8393 |
| This theorem is referenced by: omcl 8454 om0r 8457 om1r 8461 omordi 8484 omwordri 8490 omlimcl 8496 odi 8497 omass 8498 oneo 8499 omeulem1 8500 omeulem2 8501 oeoelem 8516 oaabs2 8567 omxpenlem 8995 cantnflt 9568 cantnflem1d 9584 infxpenc 9912 onexomgt 43224 omlimcl2 43225 onexoegt 43227 om0suclim 43259 oaomoencom 43300 omabs2 43315 naddwordnexlem0 43379 naddwordnexlem3 43382 om2 43387 |
| Copyright terms: Public domain | W3C validator |