MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omsuc Structured version   Visualization version   GIF version

Theorem omsuc 8565
Description: Multiplication with successor. Definition 8.15 of [TakeutiZaring] p. 62. Definition 2.5 of [Schloeder] p. 4. (Contributed by NM, 17-Sep-1995.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
omsuc ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o suc 𝐵) = ((𝐴 ·o 𝐵) +o 𝐴))

Proof of Theorem omsuc
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 rdgsuc 8465 . . 3 (𝐵 ∈ On → (rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅)‘suc 𝐵) = ((𝑥 ∈ V ↦ (𝑥 +o 𝐴))‘(rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅)‘𝐵)))
21adantl 481 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅)‘suc 𝐵) = ((𝑥 ∈ V ↦ (𝑥 +o 𝐴))‘(rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅)‘𝐵)))
3 onsuc 7832 . . 3 (𝐵 ∈ On → suc 𝐵 ∈ On)
4 omv 8551 . . 3 ((𝐴 ∈ On ∧ suc 𝐵 ∈ On) → (𝐴 ·o suc 𝐵) = (rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅)‘suc 𝐵))
53, 4sylan2 593 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o suc 𝐵) = (rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅)‘suc 𝐵))
6 ovex 7465 . . . 4 (𝐴 ·o 𝐵) ∈ V
7 oveq1 7439 . . . . 5 (𝑥 = (𝐴 ·o 𝐵) → (𝑥 +o 𝐴) = ((𝐴 ·o 𝐵) +o 𝐴))
8 eqid 2736 . . . . 5 (𝑥 ∈ V ↦ (𝑥 +o 𝐴)) = (𝑥 ∈ V ↦ (𝑥 +o 𝐴))
9 ovex 7465 . . . . 5 ((𝐴 ·o 𝐵) +o 𝐴) ∈ V
107, 8, 9fvmpt 7015 . . . 4 ((𝐴 ·o 𝐵) ∈ V → ((𝑥 ∈ V ↦ (𝑥 +o 𝐴))‘(𝐴 ·o 𝐵)) = ((𝐴 ·o 𝐵) +o 𝐴))
116, 10ax-mp 5 . . 3 ((𝑥 ∈ V ↦ (𝑥 +o 𝐴))‘(𝐴 ·o 𝐵)) = ((𝐴 ·o 𝐵) +o 𝐴)
12 omv 8551 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o 𝐵) = (rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅)‘𝐵))
1312fveq2d 6909 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝑥 ∈ V ↦ (𝑥 +o 𝐴))‘(𝐴 ·o 𝐵)) = ((𝑥 ∈ V ↦ (𝑥 +o 𝐴))‘(rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅)‘𝐵)))
1411, 13eqtr3id 2790 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ·o 𝐵) +o 𝐴) = ((𝑥 ∈ V ↦ (𝑥 +o 𝐴))‘(rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅)‘𝐵)))
152, 5, 143eqtr4d 2786 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o suc 𝐵) = ((𝐴 ·o 𝐵) +o 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  Vcvv 3479  c0 4332  cmpt 5224  Oncon0 6383  suc csuc 6385  cfv 6560  (class class class)co 7432  reccrdg 8450   +o coa 8504   ·o comu 8505
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pr 5431  ax-un 7756
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-ov 7435  df-oprab 7436  df-mpo 7437  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-omul 8512
This theorem is referenced by:  omcl  8575  om0r  8578  om1r  8582  omordi  8605  omwordri  8611  omlimcl  8617  odi  8618  omass  8619  oneo  8620  omeulem1  8621  omeulem2  8622  oeoelem  8637  oaabs2  8688  omxpenlem  9114  cantnflt  9713  cantnflem1d  9729  infxpenc  10059  onexomgt  43258  omlimcl2  43259  onexoegt  43261  om0suclim  43294  oaomoencom  43335  omabs2  43350  naddwordnexlem0  43414  naddwordnexlem3  43417  om2  43422
  Copyright terms: Public domain W3C validator