MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  om0 Structured version   Visualization version   GIF version

Theorem om0 8529
Description: Ordinal multiplication with zero. Definition 8.15(a) of [TakeutiZaring] p. 62. Definition 2.5 of [Schloeder] p. 4. See om0x 8531 for a way to remove the antecedent 𝐴 ∈ On. (Contributed by NM, 17-Sep-1995.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
om0 (𝐴 ∈ On → (𝐴 ·o ∅) = ∅)

Proof of Theorem om0
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 0elon 6407 . . 3 ∅ ∈ On
2 omv 8524 . . 3 ((𝐴 ∈ On ∧ ∅ ∈ On) → (𝐴 ·o ∅) = (rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅)‘∅))
31, 2mpan2 691 . 2 (𝐴 ∈ On → (𝐴 ·o ∅) = (rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅)‘∅))
4 0ex 5277 . . 3 ∅ ∈ V
54rdg0 8435 . 2 (rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅)‘∅) = ∅
63, 5eqtrdi 2786 1 (𝐴 ∈ On → (𝐴 ·o ∅) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  Vcvv 3459  c0 4308  cmpt 5201  Oncon0 6352  cfv 6531  (class class class)co 7405  reccrdg 8423   +o coa 8477   ·o comu 8478
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-omul 8485
This theorem is referenced by:  om0x  8531  oesuclem  8537  omcl  8548  om0r  8551  om1  8554  om1r  8555  omwordri  8584  om00  8587  odi  8591  omass  8592  omeulem1  8594  oen0  8598  oeoa  8609  oeoelem  8610  oeeui  8614  nnm0  8617  nnm0r  8622  nneob  8668  cantnfle  9685  cantnfp1  9695  fin1a2lem6  10419  onexlimgt  43267  om0suclim  43300  oaabsb  43318  dflim5  43353  onmcl  43355  omcl3g  43358
  Copyright terms: Public domain W3C validator