Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > om0 | Structured version Visualization version GIF version |
Description: Ordinal multiplication with zero. Definition 8.15(a) of [TakeutiZaring] p. 62. See om0x 8311 for a way to remove the antecedent 𝐴 ∈ On. (Contributed by NM, 17-Sep-1995.) (Revised by Mario Carneiro, 8-Sep-2013.) |
Ref | Expression |
---|---|
om0 | ⊢ (𝐴 ∈ On → (𝐴 ·o ∅) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0elon 6304 | . . 3 ⊢ ∅ ∈ On | |
2 | omv 8304 | . . 3 ⊢ ((𝐴 ∈ On ∧ ∅ ∈ On) → (𝐴 ·o ∅) = (rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅)‘∅)) | |
3 | 1, 2 | mpan2 687 | . 2 ⊢ (𝐴 ∈ On → (𝐴 ·o ∅) = (rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅)‘∅)) |
4 | 0ex 5226 | . . 3 ⊢ ∅ ∈ V | |
5 | 4 | rdg0 8223 | . 2 ⊢ (rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅)‘∅) = ∅ |
6 | 3, 5 | eqtrdi 2795 | 1 ⊢ (𝐴 ∈ On → (𝐴 ·o ∅) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ∅c0 4253 ↦ cmpt 5153 Oncon0 6251 ‘cfv 6418 (class class class)co 7255 reccrdg 8211 +o coa 8264 ·o comu 8265 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-omul 8272 |
This theorem is referenced by: om0x 8311 oesuclem 8317 omcl 8328 om0r 8331 om1 8335 om1r 8336 omwordri 8365 om00 8368 odi 8372 omass 8373 omeulem1 8375 oen0 8379 oeoa 8390 oeoelem 8391 oeeui 8395 nnm0 8398 nnm0r 8403 nneob 8446 cantnfle 9359 cantnfp1 9369 fin1a2lem6 10092 |
Copyright terms: Public domain | W3C validator |