![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > om0 | Structured version Visualization version GIF version |
Description: Ordinal multiplication with zero. Definition 8.15(a) of [TakeutiZaring] p. 62. Definition 2.5 of [Schloeder] p. 4. See om0x 8575 for a way to remove the antecedent 𝐴 ∈ On. (Contributed by NM, 17-Sep-1995.) (Revised by Mario Carneiro, 8-Sep-2013.) |
Ref | Expression |
---|---|
om0 | ⊢ (𝐴 ∈ On → (𝐴 ·o ∅) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0elon 6449 | . . 3 ⊢ ∅ ∈ On | |
2 | omv 8568 | . . 3 ⊢ ((𝐴 ∈ On ∧ ∅ ∈ On) → (𝐴 ·o ∅) = (rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅)‘∅)) | |
3 | 1, 2 | mpan2 690 | . 2 ⊢ (𝐴 ∈ On → (𝐴 ·o ∅) = (rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅)‘∅)) |
4 | 0ex 5325 | . . 3 ⊢ ∅ ∈ V | |
5 | 4 | rdg0 8477 | . 2 ⊢ (rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅)‘∅) = ∅ |
6 | 3, 5 | eqtrdi 2796 | 1 ⊢ (𝐴 ∈ On → (𝐴 ·o ∅) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ∅c0 4352 ↦ cmpt 5249 Oncon0 6395 ‘cfv 6573 (class class class)co 7448 reccrdg 8465 +o coa 8519 ·o comu 8520 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-omul 8527 |
This theorem is referenced by: om0x 8575 oesuclem 8581 omcl 8592 om0r 8595 om1 8598 om1r 8599 omwordri 8628 om00 8631 odi 8635 omass 8636 omeulem1 8638 oen0 8642 oeoa 8653 oeoelem 8654 oeeui 8658 nnm0 8661 nnm0r 8666 nneob 8712 cantnfle 9740 cantnfp1 9750 fin1a2lem6 10474 onexlimgt 43204 om0suclim 43238 oaabsb 43256 dflim5 43291 onmcl 43293 omcl3g 43296 |
Copyright terms: Public domain | W3C validator |