| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > om0 | Structured version Visualization version GIF version | ||
| Description: Ordinal multiplication with zero. Definition 8.15(a) of [TakeutiZaring] p. 62. Definition 2.5 of [Schloeder] p. 4. See om0x 8483 for a way to remove the antecedent 𝐴 ∈ On. (Contributed by NM, 17-Sep-1995.) (Revised by Mario Carneiro, 8-Sep-2013.) |
| Ref | Expression |
|---|---|
| om0 | ⊢ (𝐴 ∈ On → (𝐴 ·o ∅) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0elon 6387 | . . 3 ⊢ ∅ ∈ On | |
| 2 | omv 8476 | . . 3 ⊢ ((𝐴 ∈ On ∧ ∅ ∈ On) → (𝐴 ·o ∅) = (rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅)‘∅)) | |
| 3 | 1, 2 | mpan2 691 | . 2 ⊢ (𝐴 ∈ On → (𝐴 ·o ∅) = (rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅)‘∅)) |
| 4 | 0ex 5262 | . . 3 ⊢ ∅ ∈ V | |
| 5 | 4 | rdg0 8389 | . 2 ⊢ (rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅)‘∅) = ∅ |
| 6 | 3, 5 | eqtrdi 2780 | 1 ⊢ (𝐴 ∈ On → (𝐴 ·o ∅) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3447 ∅c0 4296 ↦ cmpt 5188 Oncon0 6332 ‘cfv 6511 (class class class)co 7387 reccrdg 8377 +o coa 8431 ·o comu 8432 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-omul 8439 |
| This theorem is referenced by: om0x 8483 oesuclem 8489 omcl 8500 om0r 8503 om1 8506 om1r 8507 omwordri 8536 om00 8539 odi 8543 omass 8544 omeulem1 8546 oen0 8550 oeoa 8561 oeoelem 8562 oeeui 8566 nnm0 8569 nnm0r 8574 nneob 8620 cantnfle 9624 cantnfp1 9634 fin1a2lem6 10358 onexlimgt 43232 om0suclim 43265 oaabsb 43283 dflim5 43318 onmcl 43320 omcl3g 43323 |
| Copyright terms: Public domain | W3C validator |