Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > om0 | Structured version Visualization version GIF version |
Description: Ordinal multiplication with zero. Definition 8.15(a) of [TakeutiZaring] p. 62. See om0x 8369 for a way to remove the antecedent 𝐴 ∈ On. (Contributed by NM, 17-Sep-1995.) (Revised by Mario Carneiro, 8-Sep-2013.) |
Ref | Expression |
---|---|
om0 | ⊢ (𝐴 ∈ On → (𝐴 ·o ∅) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0elon 6323 | . . 3 ⊢ ∅ ∈ On | |
2 | omv 8362 | . . 3 ⊢ ((𝐴 ∈ On ∧ ∅ ∈ On) → (𝐴 ·o ∅) = (rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅)‘∅)) | |
3 | 1, 2 | mpan2 687 | . 2 ⊢ (𝐴 ∈ On → (𝐴 ·o ∅) = (rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅)‘∅)) |
4 | 0ex 5234 | . . 3 ⊢ ∅ ∈ V | |
5 | 4 | rdg0 8272 | . 2 ⊢ (rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅)‘∅) = ∅ |
6 | 3, 5 | eqtrdi 2789 | 1 ⊢ (𝐴 ∈ On → (𝐴 ·o ∅) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2101 Vcvv 3434 ∅c0 4259 ↦ cmpt 5160 Oncon0 6270 ‘cfv 6447 (class class class)co 7295 reccrdg 8260 +o coa 8314 ·o comu 8315 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2103 ax-9 2111 ax-10 2132 ax-11 2149 ax-12 2166 ax-ext 2704 ax-sep 5226 ax-nul 5233 ax-pr 5355 ax-un 7608 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2063 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2884 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3223 df-rab 3224 df-v 3436 df-sbc 3719 df-csb 3835 df-dif 3892 df-un 3894 df-in 3896 df-ss 3906 df-pss 3908 df-nul 4260 df-if 4463 df-pw 4538 df-sn 4565 df-pr 4567 df-op 4571 df-uni 4842 df-iun 4929 df-br 5078 df-opab 5140 df-mpt 5161 df-tr 5195 df-id 5491 df-eprel 5497 df-po 5505 df-so 5506 df-fr 5546 df-we 5548 df-xp 5597 df-rel 5598 df-cnv 5599 df-co 5600 df-dm 5601 df-rn 5602 df-res 5603 df-ima 5604 df-pred 6206 df-ord 6273 df-on 6274 df-lim 6275 df-suc 6276 df-iota 6399 df-fun 6449 df-fn 6450 df-f 6451 df-f1 6452 df-fo 6453 df-f1o 6454 df-fv 6455 df-ov 7298 df-oprab 7299 df-mpo 7300 df-om 7733 df-2nd 7852 df-frecs 8117 df-wrecs 8148 df-recs 8222 df-rdg 8261 df-omul 8322 |
This theorem is referenced by: om0x 8369 oesuclem 8375 omcl 8386 om0r 8389 om1 8393 om1r 8394 omwordri 8423 om00 8426 odi 8430 omass 8431 omeulem1 8433 oen0 8437 oeoa 8448 oeoelem 8449 oeeui 8453 nnm0 8456 nnm0r 8461 nneob 8506 cantnfle 9457 cantnfp1 9467 fin1a2lem6 10189 |
Copyright terms: Public domain | W3C validator |