Step | Hyp | Ref
| Expression |
1 | | peano2 7737 |
. . . . 5
⊢ (𝐵 ∈ ω → suc 𝐵 ∈
ω) |
2 | | nnon 7718 |
. . . . 5
⊢ (suc
𝐵 ∈ ω → suc
𝐵 ∈
On) |
3 | 1, 2 | syl 17 |
. . . 4
⊢ (𝐵 ∈ ω → suc 𝐵 ∈ On) |
4 | | omv 8342 |
. . . 4
⊢ ((𝐴 ∈ On ∧ suc 𝐵 ∈ On) → (𝐴 ·o suc 𝐵) = (rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅)‘suc 𝐵)) |
5 | 3, 4 | sylan2 593 |
. . 3
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (𝐴 ·o suc 𝐵) = (rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅)‘suc 𝐵)) |
6 | 1 | adantl 482 |
. . . 4
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → suc
𝐵 ∈
ω) |
7 | 6 | fvresd 6794 |
. . 3
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ ω) →
((rec((𝑥 ∈ V ↦
(𝑥 +o 𝐴)), ∅) ↾
ω)‘suc 𝐵) =
(rec((𝑥 ∈ V ↦
(𝑥 +o 𝐴)), ∅)‘suc 𝐵)) |
8 | 5, 7 | eqtr4d 2781 |
. 2
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (𝐴 ·o suc 𝐵) = ((rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅) ↾ ω)‘suc
𝐵)) |
9 | | ovex 7308 |
. . . . 5
⊢ (𝐴 ·o 𝐵) ∈ V |
10 | | oveq1 7282 |
. . . . . 6
⊢ (𝑥 = (𝐴 ·o 𝐵) → (𝑥 +o 𝐴) = ((𝐴 ·o 𝐵) +o 𝐴)) |
11 | | eqid 2738 |
. . . . . 6
⊢ (𝑥 ∈ V ↦ (𝑥 +o 𝐴)) = (𝑥 ∈ V ↦ (𝑥 +o 𝐴)) |
12 | | ovex 7308 |
. . . . . 6
⊢ ((𝐴 ·o 𝐵) +o 𝐴) ∈ V |
13 | 10, 11, 12 | fvmpt 6875 |
. . . . 5
⊢ ((𝐴 ·o 𝐵) ∈ V → ((𝑥 ∈ V ↦ (𝑥 +o 𝐴))‘(𝐴 ·o 𝐵)) = ((𝐴 ·o 𝐵) +o 𝐴)) |
14 | 9, 13 | ax-mp 5 |
. . . 4
⊢ ((𝑥 ∈ V ↦ (𝑥 +o 𝐴))‘(𝐴 ·o 𝐵)) = ((𝐴 ·o 𝐵) +o 𝐴) |
15 | | nnon 7718 |
. . . . . . 7
⊢ (𝐵 ∈ ω → 𝐵 ∈ On) |
16 | | omv 8342 |
. . . . . . 7
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o 𝐵) = (rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅)‘𝐵)) |
17 | 15, 16 | sylan2 593 |
. . . . . 6
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (𝐴 ·o 𝐵) = (rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅)‘𝐵)) |
18 | | fvres 6793 |
. . . . . . 7
⊢ (𝐵 ∈ ω →
((rec((𝑥 ∈ V ↦
(𝑥 +o 𝐴)), ∅) ↾
ω)‘𝐵) =
(rec((𝑥 ∈ V ↦
(𝑥 +o 𝐴)), ∅)‘𝐵)) |
19 | 18 | adantl 482 |
. . . . . 6
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ ω) →
((rec((𝑥 ∈ V ↦
(𝑥 +o 𝐴)), ∅) ↾
ω)‘𝐵) =
(rec((𝑥 ∈ V ↦
(𝑥 +o 𝐴)), ∅)‘𝐵)) |
20 | 17, 19 | eqtr4d 2781 |
. . . . 5
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (𝐴 ·o 𝐵) = ((rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅) ↾ ω)‘𝐵)) |
21 | 20 | fveq2d 6778 |
. . . 4
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → ((𝑥 ∈ V ↦ (𝑥 +o 𝐴))‘(𝐴 ·o 𝐵)) = ((𝑥 ∈ V ↦ (𝑥 +o 𝐴))‘((rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅) ↾ ω)‘𝐵))) |
22 | 14, 21 | eqtr3id 2792 |
. . 3
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → ((𝐴 ·o 𝐵) +o 𝐴) = ((𝑥 ∈ V ↦ (𝑥 +o 𝐴))‘((rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅) ↾ ω)‘𝐵))) |
23 | | frsuc 8268 |
. . . 4
⊢ (𝐵 ∈ ω →
((rec((𝑥 ∈ V ↦
(𝑥 +o 𝐴)), ∅) ↾
ω)‘suc 𝐵) =
((𝑥 ∈ V ↦ (𝑥 +o 𝐴))‘((rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅) ↾ ω)‘𝐵))) |
24 | 23 | adantl 482 |
. . 3
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ ω) →
((rec((𝑥 ∈ V ↦
(𝑥 +o 𝐴)), ∅) ↾
ω)‘suc 𝐵) =
((𝑥 ∈ V ↦ (𝑥 +o 𝐴))‘((rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅) ↾ ω)‘𝐵))) |
25 | 22, 24 | eqtr4d 2781 |
. 2
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → ((𝐴 ·o 𝐵) +o 𝐴) = ((rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅) ↾ ω)‘suc
𝐵)) |
26 | 8, 25 | eqtr4d 2781 |
1
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (𝐴 ·o suc 𝐵) = ((𝐴 ·o 𝐵) +o 𝐴)) |