MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onmsuc Structured version   Visualization version   GIF version

Theorem onmsuc 8444
Description: Multiplication with successor. Theorem 4J(A2) of [Enderton] p. 80. (Contributed by NM, 20-Sep-1995.) (Revised by Mario Carneiro, 14-Nov-2014.)
Assertion
Ref Expression
onmsuc ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (𝐴 ·o suc 𝐵) = ((𝐴 ·o 𝐵) +o 𝐴))

Proof of Theorem onmsuc
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 peano2 7820 . . . . 5 (𝐵 ∈ ω → suc 𝐵 ∈ ω)
2 nnon 7802 . . . . 5 (suc 𝐵 ∈ ω → suc 𝐵 ∈ On)
31, 2syl 17 . . . 4 (𝐵 ∈ ω → suc 𝐵 ∈ On)
4 omv 8427 . . . 4 ((𝐴 ∈ On ∧ suc 𝐵 ∈ On) → (𝐴 ·o suc 𝐵) = (rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅)‘suc 𝐵))
53, 4sylan2 593 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (𝐴 ·o suc 𝐵) = (rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅)‘suc 𝐵))
61adantl 481 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → suc 𝐵 ∈ ω)
76fvresd 6842 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → ((rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅) ↾ ω)‘suc 𝐵) = (rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅)‘suc 𝐵))
85, 7eqtr4d 2769 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (𝐴 ·o suc 𝐵) = ((rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅) ↾ ω)‘suc 𝐵))
9 ovex 7379 . . . . 5 (𝐴 ·o 𝐵) ∈ V
10 oveq1 7353 . . . . . 6 (𝑥 = (𝐴 ·o 𝐵) → (𝑥 +o 𝐴) = ((𝐴 ·o 𝐵) +o 𝐴))
11 eqid 2731 . . . . . 6 (𝑥 ∈ V ↦ (𝑥 +o 𝐴)) = (𝑥 ∈ V ↦ (𝑥 +o 𝐴))
12 ovex 7379 . . . . . 6 ((𝐴 ·o 𝐵) +o 𝐴) ∈ V
1310, 11, 12fvmpt 6929 . . . . 5 ((𝐴 ·o 𝐵) ∈ V → ((𝑥 ∈ V ↦ (𝑥 +o 𝐴))‘(𝐴 ·o 𝐵)) = ((𝐴 ·o 𝐵) +o 𝐴))
149, 13ax-mp 5 . . . 4 ((𝑥 ∈ V ↦ (𝑥 +o 𝐴))‘(𝐴 ·o 𝐵)) = ((𝐴 ·o 𝐵) +o 𝐴)
15 nnon 7802 . . . . . . 7 (𝐵 ∈ ω → 𝐵 ∈ On)
16 omv 8427 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o 𝐵) = (rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅)‘𝐵))
1715, 16sylan2 593 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (𝐴 ·o 𝐵) = (rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅)‘𝐵))
18 fvres 6841 . . . . . . 7 (𝐵 ∈ ω → ((rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅) ↾ ω)‘𝐵) = (rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅)‘𝐵))
1918adantl 481 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → ((rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅) ↾ ω)‘𝐵) = (rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅)‘𝐵))
2017, 19eqtr4d 2769 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (𝐴 ·o 𝐵) = ((rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅) ↾ ω)‘𝐵))
2120fveq2d 6826 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → ((𝑥 ∈ V ↦ (𝑥 +o 𝐴))‘(𝐴 ·o 𝐵)) = ((𝑥 ∈ V ↦ (𝑥 +o 𝐴))‘((rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅) ↾ ω)‘𝐵)))
2214, 21eqtr3id 2780 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → ((𝐴 ·o 𝐵) +o 𝐴) = ((𝑥 ∈ V ↦ (𝑥 +o 𝐴))‘((rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅) ↾ ω)‘𝐵)))
23 frsuc 8356 . . . 4 (𝐵 ∈ ω → ((rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅) ↾ ω)‘suc 𝐵) = ((𝑥 ∈ V ↦ (𝑥 +o 𝐴))‘((rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅) ↾ ω)‘𝐵)))
2423adantl 481 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → ((rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅) ↾ ω)‘suc 𝐵) = ((𝑥 ∈ V ↦ (𝑥 +o 𝐴))‘((rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅) ↾ ω)‘𝐵)))
2522, 24eqtr4d 2769 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → ((𝐴 ·o 𝐵) +o 𝐴) = ((rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅) ↾ ω)‘suc 𝐵))
268, 25eqtr4d 2769 1 ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (𝐴 ·o suc 𝐵) = ((𝐴 ·o 𝐵) +o 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  Vcvv 3436  c0 4283  cmpt 5172  cres 5618  Oncon0 6306  suc csuc 6308  cfv 6481  (class class class)co 7346  ωcom 7796  reccrdg 8328   +o coa 8382   ·o comu 8383
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-omul 8390
This theorem is referenced by:  om1  8457  nnmsuc  8522  onmcl  43370
  Copyright terms: Public domain W3C validator