MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onmsuc Structured version   Visualization version   GIF version

Theorem onmsuc 8475
Description: Multiplication with successor. Theorem 4J(A2) of [Enderton] p. 80. (Contributed by NM, 20-Sep-1995.) (Revised by Mario Carneiro, 14-Nov-2014.)
Assertion
Ref Expression
onmsuc ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (𝐴 ·o suc 𝐵) = ((𝐴 ·o 𝐵) +o 𝐴))

Proof of Theorem onmsuc
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 peano2 7827 . . . . 5 (𝐵 ∈ ω → suc 𝐵 ∈ ω)
2 nnon 7808 . . . . 5 (suc 𝐵 ∈ ω → suc 𝐵 ∈ On)
31, 2syl 17 . . . 4 (𝐵 ∈ ω → suc 𝐵 ∈ On)
4 omv 8458 . . . 4 ((𝐴 ∈ On ∧ suc 𝐵 ∈ On) → (𝐴 ·o suc 𝐵) = (rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅)‘suc 𝐵))
53, 4sylan2 593 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (𝐴 ·o suc 𝐵) = (rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅)‘suc 𝐵))
61adantl 482 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → suc 𝐵 ∈ ω)
76fvresd 6862 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → ((rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅) ↾ ω)‘suc 𝐵) = (rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅)‘suc 𝐵))
85, 7eqtr4d 2779 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (𝐴 ·o suc 𝐵) = ((rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅) ↾ ω)‘suc 𝐵))
9 ovex 7390 . . . . 5 (𝐴 ·o 𝐵) ∈ V
10 oveq1 7364 . . . . . 6 (𝑥 = (𝐴 ·o 𝐵) → (𝑥 +o 𝐴) = ((𝐴 ·o 𝐵) +o 𝐴))
11 eqid 2736 . . . . . 6 (𝑥 ∈ V ↦ (𝑥 +o 𝐴)) = (𝑥 ∈ V ↦ (𝑥 +o 𝐴))
12 ovex 7390 . . . . . 6 ((𝐴 ·o 𝐵) +o 𝐴) ∈ V
1310, 11, 12fvmpt 6948 . . . . 5 ((𝐴 ·o 𝐵) ∈ V → ((𝑥 ∈ V ↦ (𝑥 +o 𝐴))‘(𝐴 ·o 𝐵)) = ((𝐴 ·o 𝐵) +o 𝐴))
149, 13ax-mp 5 . . . 4 ((𝑥 ∈ V ↦ (𝑥 +o 𝐴))‘(𝐴 ·o 𝐵)) = ((𝐴 ·o 𝐵) +o 𝐴)
15 nnon 7808 . . . . . . 7 (𝐵 ∈ ω → 𝐵 ∈ On)
16 omv 8458 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o 𝐵) = (rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅)‘𝐵))
1715, 16sylan2 593 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (𝐴 ·o 𝐵) = (rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅)‘𝐵))
18 fvres 6861 . . . . . . 7 (𝐵 ∈ ω → ((rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅) ↾ ω)‘𝐵) = (rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅)‘𝐵))
1918adantl 482 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → ((rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅) ↾ ω)‘𝐵) = (rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅)‘𝐵))
2017, 19eqtr4d 2779 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (𝐴 ·o 𝐵) = ((rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅) ↾ ω)‘𝐵))
2120fveq2d 6846 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → ((𝑥 ∈ V ↦ (𝑥 +o 𝐴))‘(𝐴 ·o 𝐵)) = ((𝑥 ∈ V ↦ (𝑥 +o 𝐴))‘((rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅) ↾ ω)‘𝐵)))
2214, 21eqtr3id 2790 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → ((𝐴 ·o 𝐵) +o 𝐴) = ((𝑥 ∈ V ↦ (𝑥 +o 𝐴))‘((rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅) ↾ ω)‘𝐵)))
23 frsuc 8383 . . . 4 (𝐵 ∈ ω → ((rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅) ↾ ω)‘suc 𝐵) = ((𝑥 ∈ V ↦ (𝑥 +o 𝐴))‘((rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅) ↾ ω)‘𝐵)))
2423adantl 482 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → ((rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅) ↾ ω)‘suc 𝐵) = ((𝑥 ∈ V ↦ (𝑥 +o 𝐴))‘((rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅) ↾ ω)‘𝐵)))
2522, 24eqtr4d 2779 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → ((𝐴 ·o 𝐵) +o 𝐴) = ((rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅) ↾ ω)‘suc 𝐵))
268, 25eqtr4d 2779 1 ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (𝐴 ·o suc 𝐵) = ((𝐴 ·o 𝐵) +o 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  Vcvv 3445  c0 4282  cmpt 5188  cres 5635  Oncon0 6317  suc csuc 6319  cfv 6496  (class class class)co 7357  ωcom 7802  reccrdg 8355   +o coa 8409   ·o comu 8410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pr 5384  ax-un 7672
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-omul 8417
This theorem is referenced by:  om1  8489  nnmsuc  8554
  Copyright terms: Public domain W3C validator