MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onmsuc Structured version   Visualization version   GIF version

Theorem onmsuc 8157
Description: Multiplication with successor. Theorem 4J(A2) of [Enderton] p. 80. (Contributed by NM, 20-Sep-1995.) (Revised by Mario Carneiro, 14-Nov-2014.)
Assertion
Ref Expression
onmsuc ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (𝐴 ·o suc 𝐵) = ((𝐴 ·o 𝐵) +o 𝐴))

Proof of Theorem onmsuc
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 peano2 7605 . . . . 5 (𝐵 ∈ ω → suc 𝐵 ∈ ω)
2 nnon 7589 . . . . 5 (suc 𝐵 ∈ ω → suc 𝐵 ∈ On)
31, 2syl 17 . . . 4 (𝐵 ∈ ω → suc 𝐵 ∈ On)
4 omv 8140 . . . 4 ((𝐴 ∈ On ∧ suc 𝐵 ∈ On) → (𝐴 ·o suc 𝐵) = (rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅)‘suc 𝐵))
53, 4sylan2 594 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (𝐴 ·o suc 𝐵) = (rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅)‘suc 𝐵))
61adantl 484 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → suc 𝐵 ∈ ω)
76fvresd 6693 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → ((rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅) ↾ ω)‘suc 𝐵) = (rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅)‘suc 𝐵))
85, 7eqtr4d 2862 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (𝐴 ·o suc 𝐵) = ((rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅) ↾ ω)‘suc 𝐵))
9 ovex 7192 . . . . 5 (𝐴 ·o 𝐵) ∈ V
10 oveq1 7166 . . . . . 6 (𝑥 = (𝐴 ·o 𝐵) → (𝑥 +o 𝐴) = ((𝐴 ·o 𝐵) +o 𝐴))
11 eqid 2824 . . . . . 6 (𝑥 ∈ V ↦ (𝑥 +o 𝐴)) = (𝑥 ∈ V ↦ (𝑥 +o 𝐴))
12 ovex 7192 . . . . . 6 ((𝐴 ·o 𝐵) +o 𝐴) ∈ V
1310, 11, 12fvmpt 6771 . . . . 5 ((𝐴 ·o 𝐵) ∈ V → ((𝑥 ∈ V ↦ (𝑥 +o 𝐴))‘(𝐴 ·o 𝐵)) = ((𝐴 ·o 𝐵) +o 𝐴))
149, 13ax-mp 5 . . . 4 ((𝑥 ∈ V ↦ (𝑥 +o 𝐴))‘(𝐴 ·o 𝐵)) = ((𝐴 ·o 𝐵) +o 𝐴)
15 nnon 7589 . . . . . . 7 (𝐵 ∈ ω → 𝐵 ∈ On)
16 omv 8140 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o 𝐵) = (rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅)‘𝐵))
1715, 16sylan2 594 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (𝐴 ·o 𝐵) = (rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅)‘𝐵))
18 fvres 6692 . . . . . . 7 (𝐵 ∈ ω → ((rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅) ↾ ω)‘𝐵) = (rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅)‘𝐵))
1918adantl 484 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → ((rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅) ↾ ω)‘𝐵) = (rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅)‘𝐵))
2017, 19eqtr4d 2862 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (𝐴 ·o 𝐵) = ((rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅) ↾ ω)‘𝐵))
2120fveq2d 6677 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → ((𝑥 ∈ V ↦ (𝑥 +o 𝐴))‘(𝐴 ·o 𝐵)) = ((𝑥 ∈ V ↦ (𝑥 +o 𝐴))‘((rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅) ↾ ω)‘𝐵)))
2214, 21syl5eqr 2873 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → ((𝐴 ·o 𝐵) +o 𝐴) = ((𝑥 ∈ V ↦ (𝑥 +o 𝐴))‘((rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅) ↾ ω)‘𝐵)))
23 frsuc 8075 . . . 4 (𝐵 ∈ ω → ((rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅) ↾ ω)‘suc 𝐵) = ((𝑥 ∈ V ↦ (𝑥 +o 𝐴))‘((rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅) ↾ ω)‘𝐵)))
2423adantl 484 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → ((rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅) ↾ ω)‘suc 𝐵) = ((𝑥 ∈ V ↦ (𝑥 +o 𝐴))‘((rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅) ↾ ω)‘𝐵)))
2522, 24eqtr4d 2862 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → ((𝐴 ·o 𝐵) +o 𝐴) = ((rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅) ↾ ω)‘suc 𝐵))
268, 25eqtr4d 2862 1 ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (𝐴 ·o suc 𝐵) = ((𝐴 ·o 𝐵) +o 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1536  wcel 2113  Vcvv 3497  c0 4294  cmpt 5149  cres 5560  Oncon0 6194  suc csuc 6196  cfv 6358  (class class class)co 7159  ωcom 7583  reccrdg 8048   +o coa 8102   ·o comu 8103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-ral 3146  df-rex 3147  df-reu 3148  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-omul 8110
This theorem is referenced by:  om1  8171  nnmsuc  8236
  Copyright terms: Public domain W3C validator