Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  finxpreclem5 Structured version   Visualization version   GIF version

Theorem finxpreclem5 37361
Description: Lemma for ↑↑ recursion theorems. (Contributed by ML, 24-Oct-2020.)
Hypothesis
Ref Expression
finxpreclem5.1 𝐹 = (𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))
Assertion
Ref Expression
finxpreclem5 ((𝑛 ∈ ω ∧ 1o𝑛) → (¬ 𝑥 ∈ (V × 𝑈) → (𝐹‘⟨𝑛, 𝑥⟩) = ⟨𝑛, 𝑥⟩))
Distinct variable group:   𝑥,𝑛
Allowed substitution hints:   𝑈(𝑥,𝑛)   𝐹(𝑥,𝑛)

Proof of Theorem finxpreclem5
StepHypRef Expression
1 df-ov 7451 . . 3 (𝑛𝐹𝑥) = (𝐹‘⟨𝑛, 𝑥⟩)
2 vex 3492 . . . . . 6 𝑥 ∈ V
3 0ex 5325 . . . . . . 7 ∅ ∈ V
4 opex 5484 . . . . . . . 8 𝑛, (1st𝑥)⟩ ∈ V
5 opex 5484 . . . . . . . 8 𝑛, 𝑥⟩ ∈ V
64, 5ifex 4598 . . . . . . 7 if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩) ∈ V
73, 6ifex 4598 . . . . . 6 if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)) ∈ V
8 finxpreclem5.1 . . . . . . 7 𝐹 = (𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))
98ovmpt4g 7597 . . . . . 6 ((𝑛 ∈ ω ∧ 𝑥 ∈ V ∧ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)) ∈ V) → (𝑛𝐹𝑥) = if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))
102, 7, 9mp3an23 1453 . . . . 5 (𝑛 ∈ ω → (𝑛𝐹𝑥) = if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))
1110ad2antrr 725 . . . 4 (((𝑛 ∈ ω ∧ 1o𝑛) ∧ ¬ 𝑥 ∈ (V × 𝑈)) → (𝑛𝐹𝑥) = if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))
12 1on 8534 . . . . . . . . . . 11 1o ∈ On
1312onirri 6508 . . . . . . . . . 10 ¬ 1o ∈ 1o
14 eleq2 2833 . . . . . . . . . 10 (𝑛 = 1o → (1o𝑛 ↔ 1o ∈ 1o))
1513, 14mtbiri 327 . . . . . . . . 9 (𝑛 = 1o → ¬ 1o𝑛)
1615con2i 139 . . . . . . . 8 (1o𝑛 → ¬ 𝑛 = 1o)
1716intnanrd 489 . . . . . . 7 (1o𝑛 → ¬ (𝑛 = 1o𝑥𝑈))
1817iffalsed 4559 . . . . . 6 (1o𝑛 → if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)) = if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))
1918adantl 481 . . . . 5 ((𝑛 ∈ ω ∧ 1o𝑛) → if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)) = if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))
20 iffalse 4557 . . . . 5 𝑥 ∈ (V × 𝑈) → if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩) = ⟨𝑛, 𝑥⟩)
2119, 20sylan9eq 2800 . . . 4 (((𝑛 ∈ ω ∧ 1o𝑛) ∧ ¬ 𝑥 ∈ (V × 𝑈)) → if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)) = ⟨𝑛, 𝑥⟩)
2211, 21eqtrd 2780 . . 3 (((𝑛 ∈ ω ∧ 1o𝑛) ∧ ¬ 𝑥 ∈ (V × 𝑈)) → (𝑛𝐹𝑥) = ⟨𝑛, 𝑥⟩)
231, 22eqtr3id 2794 . 2 (((𝑛 ∈ ω ∧ 1o𝑛) ∧ ¬ 𝑥 ∈ (V × 𝑈)) → (𝐹‘⟨𝑛, 𝑥⟩) = ⟨𝑛, 𝑥⟩)
2423ex 412 1 ((𝑛 ∈ ω ∧ 1o𝑛) → (¬ 𝑥 ∈ (V × 𝑈) → (𝐹‘⟨𝑛, 𝑥⟩) = ⟨𝑛, 𝑥⟩))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1537  wcel 2108  Vcvv 3488  c0 4352  ifcif 4548  cop 4654   cuni 4931   × cxp 5698  cfv 6573  (class class class)co 7448  cmpo 7450  ωcom 7903  1st c1st 8028  1oc1o 8515
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-ord 6398  df-on 6399  df-suc 6401  df-iota 6525  df-fun 6575  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1o 8522
This theorem is referenced by:  finxpreclem6  37362
  Copyright terms: Public domain W3C validator