Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  finxpreclem5 Structured version   Visualization version   GIF version

Theorem finxpreclem5 37390
Description: Lemma for ↑↑ recursion theorems. (Contributed by ML, 24-Oct-2020.)
Hypothesis
Ref Expression
finxpreclem5.1 𝐹 = (𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))
Assertion
Ref Expression
finxpreclem5 ((𝑛 ∈ ω ∧ 1o𝑛) → (¬ 𝑥 ∈ (V × 𝑈) → (𝐹‘⟨𝑛, 𝑥⟩) = ⟨𝑛, 𝑥⟩))
Distinct variable group:   𝑥,𝑛
Allowed substitution hints:   𝑈(𝑥,𝑛)   𝐹(𝑥,𝑛)

Proof of Theorem finxpreclem5
StepHypRef Expression
1 df-ov 7393 . . 3 (𝑛𝐹𝑥) = (𝐹‘⟨𝑛, 𝑥⟩)
2 vex 3454 . . . . . 6 𝑥 ∈ V
3 0ex 5265 . . . . . . 7 ∅ ∈ V
4 opex 5427 . . . . . . . 8 𝑛, (1st𝑥)⟩ ∈ V
5 opex 5427 . . . . . . . 8 𝑛, 𝑥⟩ ∈ V
64, 5ifex 4542 . . . . . . 7 if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩) ∈ V
73, 6ifex 4542 . . . . . 6 if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)) ∈ V
8 finxpreclem5.1 . . . . . . 7 𝐹 = (𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))
98ovmpt4g 7539 . . . . . 6 ((𝑛 ∈ ω ∧ 𝑥 ∈ V ∧ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)) ∈ V) → (𝑛𝐹𝑥) = if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))
102, 7, 9mp3an23 1455 . . . . 5 (𝑛 ∈ ω → (𝑛𝐹𝑥) = if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))
1110ad2antrr 726 . . . 4 (((𝑛 ∈ ω ∧ 1o𝑛) ∧ ¬ 𝑥 ∈ (V × 𝑈)) → (𝑛𝐹𝑥) = if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))
12 1on 8449 . . . . . . . . . . 11 1o ∈ On
1312onirri 6450 . . . . . . . . . 10 ¬ 1o ∈ 1o
14 eleq2 2818 . . . . . . . . . 10 (𝑛 = 1o → (1o𝑛 ↔ 1o ∈ 1o))
1513, 14mtbiri 327 . . . . . . . . 9 (𝑛 = 1o → ¬ 1o𝑛)
1615con2i 139 . . . . . . . 8 (1o𝑛 → ¬ 𝑛 = 1o)
1716intnanrd 489 . . . . . . 7 (1o𝑛 → ¬ (𝑛 = 1o𝑥𝑈))
1817iffalsed 4502 . . . . . 6 (1o𝑛 → if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)) = if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))
1918adantl 481 . . . . 5 ((𝑛 ∈ ω ∧ 1o𝑛) → if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)) = if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))
20 iffalse 4500 . . . . 5 𝑥 ∈ (V × 𝑈) → if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩) = ⟨𝑛, 𝑥⟩)
2119, 20sylan9eq 2785 . . . 4 (((𝑛 ∈ ω ∧ 1o𝑛) ∧ ¬ 𝑥 ∈ (V × 𝑈)) → if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)) = ⟨𝑛, 𝑥⟩)
2211, 21eqtrd 2765 . . 3 (((𝑛 ∈ ω ∧ 1o𝑛) ∧ ¬ 𝑥 ∈ (V × 𝑈)) → (𝑛𝐹𝑥) = ⟨𝑛, 𝑥⟩)
231, 22eqtr3id 2779 . 2 (((𝑛 ∈ ω ∧ 1o𝑛) ∧ ¬ 𝑥 ∈ (V × 𝑈)) → (𝐹‘⟨𝑛, 𝑥⟩) = ⟨𝑛, 𝑥⟩)
2423ex 412 1 ((𝑛 ∈ ω ∧ 1o𝑛) → (¬ 𝑥 ∈ (V × 𝑈) → (𝐹‘⟨𝑛, 𝑥⟩) = ⟨𝑛, 𝑥⟩))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3450  c0 4299  ifcif 4491  cop 4598   cuni 4874   × cxp 5639  cfv 6514  (class class class)co 7390  cmpo 7392  ωcom 7845  1st c1st 7969  1oc1o 8430
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-ord 6338  df-on 6339  df-suc 6341  df-iota 6467  df-fun 6516  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1o 8437
This theorem is referenced by:  finxpreclem6  37391
  Copyright terms: Public domain W3C validator