MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wfelirr Structured version   Visualization version   GIF version

Theorem wfelirr 9571
Description: A well-founded set is not a member of itself. This proof does not require the axiom of regularity, unlike elirr 9344. (Contributed by Mario Carneiro, 2-Jan-2017.)
Assertion
Ref Expression
wfelirr (𝐴 (𝑅1 “ On) → ¬ 𝐴𝐴)

Proof of Theorem wfelirr
StepHypRef Expression
1 rankon 9541 . . 3 (rank‘𝐴) ∈ On
21onirri 6367 . 2 ¬ (rank‘𝐴) ∈ (rank‘𝐴)
3 rankelb 9570 . 2 (𝐴 (𝑅1 “ On) → (𝐴𝐴 → (rank‘𝐴) ∈ (rank‘𝐴)))
42, 3mtoi 198 1 (𝐴 (𝑅1 “ On) → ¬ 𝐴𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wcel 2106   cuni 4840  cima 5588  Oncon0 6260  cfv 6427  𝑅1cr1 9508  rankcrnk 9509
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5222  ax-nul 5229  ax-pow 5287  ax-pr 5351  ax-un 7579
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3071  df-rab 3073  df-v 3432  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4258  df-if 4461  df-pw 4536  df-sn 4563  df-pr 4565  df-op 4569  df-uni 4841  df-int 4881  df-iun 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5485  df-eprel 5491  df-po 5499  df-so 5500  df-fr 5540  df-we 5542  df-xp 5591  df-rel 5592  df-cnv 5593  df-co 5594  df-dm 5595  df-rn 5596  df-res 5597  df-ima 5598  df-pred 6196  df-ord 6263  df-on 6264  df-lim 6265  df-suc 6266  df-iota 6385  df-fun 6429  df-fn 6430  df-f 6431  df-f1 6432  df-fo 6433  df-f1o 6434  df-fv 6435  df-ov 7271  df-om 7704  df-2nd 7822  df-frecs 8085  df-wrecs 8116  df-recs 8190  df-rdg 8229  df-r1 9510  df-rank 9511
This theorem is referenced by:  r1wunlim  10481
  Copyright terms: Public domain W3C validator