MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wfelirr Structured version   Visualization version   GIF version

Theorem wfelirr 9238
Description: A well-founded set is not a member of itself. This proof does not require the axiom of regularity, unlike elirr 9045. (Contributed by Mario Carneiro, 2-Jan-2017.)
Assertion
Ref Expression
wfelirr (𝐴 (𝑅1 “ On) → ¬ 𝐴𝐴)

Proof of Theorem wfelirr
StepHypRef Expression
1 rankon 9208 . . 3 (rank‘𝐴) ∈ On
21onirri 6278 . 2 ¬ (rank‘𝐴) ∈ (rank‘𝐴)
3 rankelb 9237 . 2 (𝐴 (𝑅1 “ On) → (𝐴𝐴 → (rank‘𝐴) ∈ (rank‘𝐴)))
42, 3mtoi 202 1 (𝐴 (𝑅1 “ On) → ¬ 𝐴𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wcel 2115   cuni 4819  cima 5539  Oncon0 6172  cfv 6336  𝑅1cr1 9175  rankcrnk 9176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5184  ax-nul 5191  ax-pow 5247  ax-pr 5311  ax-un 7444
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3014  df-ral 3137  df-rex 3138  df-reu 3139  df-rab 3141  df-v 3481  df-sbc 3758  df-csb 3866  df-dif 3921  df-un 3923  df-in 3925  df-ss 3935  df-pss 3937  df-nul 4275  df-if 4449  df-pw 4522  df-sn 4549  df-pr 4551  df-tp 4553  df-op 4555  df-uni 4820  df-int 4858  df-iun 4902  df-br 5048  df-opab 5110  df-mpt 5128  df-tr 5154  df-id 5441  df-eprel 5446  df-po 5455  df-so 5456  df-fr 5495  df-we 5497  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-om 7564  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-r1 9177  df-rank 9178
This theorem is referenced by:  r1wunlim  10144
  Copyright terms: Public domain W3C validator