MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephle Structured version   Visualization version   GIF version

Theorem alephle 9702
Description: The argument of the aleph function is less than or equal to its value. Exercise 2 of [TakeutiZaring] p. 91. (Later, in alephfp2 9723, we will that equality can sometimes hold.) (Contributed by NM, 9-Nov-2003.) (Proof shortened by Mario Carneiro, 22-Feb-2013.)
Assertion
Ref Expression
alephle (𝐴 ∈ On → 𝐴 ⊆ (ℵ‘𝐴))

Proof of Theorem alephle
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 22 . . 3 (𝑥 = 𝑦𝑥 = 𝑦)
2 fveq2 6717 . . 3 (𝑥 = 𝑦 → (ℵ‘𝑥) = (ℵ‘𝑦))
31, 2sseq12d 3934 . 2 (𝑥 = 𝑦 → (𝑥 ⊆ (ℵ‘𝑥) ↔ 𝑦 ⊆ (ℵ‘𝑦)))
4 id 22 . . 3 (𝑥 = 𝐴𝑥 = 𝐴)
5 fveq2 6717 . . 3 (𝑥 = 𝐴 → (ℵ‘𝑥) = (ℵ‘𝐴))
64, 5sseq12d 3934 . 2 (𝑥 = 𝐴 → (𝑥 ⊆ (ℵ‘𝑥) ↔ 𝐴 ⊆ (ℵ‘𝐴)))
7 alephord2i 9691 . . . . . 6 (𝑥 ∈ On → (𝑦𝑥 → (ℵ‘𝑦) ∈ (ℵ‘𝑥)))
87imp 410 . . . . 5 ((𝑥 ∈ On ∧ 𝑦𝑥) → (ℵ‘𝑦) ∈ (ℵ‘𝑥))
9 onelon 6238 . . . . . 6 ((𝑥 ∈ On ∧ 𝑦𝑥) → 𝑦 ∈ On)
10 alephon 9683 . . . . . 6 (ℵ‘𝑥) ∈ On
11 ontr2 6260 . . . . . 6 ((𝑦 ∈ On ∧ (ℵ‘𝑥) ∈ On) → ((𝑦 ⊆ (ℵ‘𝑦) ∧ (ℵ‘𝑦) ∈ (ℵ‘𝑥)) → 𝑦 ∈ (ℵ‘𝑥)))
129, 10, 11sylancl 589 . . . . 5 ((𝑥 ∈ On ∧ 𝑦𝑥) → ((𝑦 ⊆ (ℵ‘𝑦) ∧ (ℵ‘𝑦) ∈ (ℵ‘𝑥)) → 𝑦 ∈ (ℵ‘𝑥)))
138, 12mpan2d 694 . . . 4 ((𝑥 ∈ On ∧ 𝑦𝑥) → (𝑦 ⊆ (ℵ‘𝑦) → 𝑦 ∈ (ℵ‘𝑥)))
1413ralimdva 3100 . . 3 (𝑥 ∈ On → (∀𝑦𝑥 𝑦 ⊆ (ℵ‘𝑦) → ∀𝑦𝑥 𝑦 ∈ (ℵ‘𝑥)))
1510onirri 6320 . . . . 5 ¬ (ℵ‘𝑥) ∈ (ℵ‘𝑥)
16 eleq1 2825 . . . . . 6 (𝑦 = (ℵ‘𝑥) → (𝑦 ∈ (ℵ‘𝑥) ↔ (ℵ‘𝑥) ∈ (ℵ‘𝑥)))
1716rspccv 3534 . . . . 5 (∀𝑦𝑥 𝑦 ∈ (ℵ‘𝑥) → ((ℵ‘𝑥) ∈ 𝑥 → (ℵ‘𝑥) ∈ (ℵ‘𝑥)))
1815, 17mtoi 202 . . . 4 (∀𝑦𝑥 𝑦 ∈ (ℵ‘𝑥) → ¬ (ℵ‘𝑥) ∈ 𝑥)
19 ontri1 6247 . . . . 5 ((𝑥 ∈ On ∧ (ℵ‘𝑥) ∈ On) → (𝑥 ⊆ (ℵ‘𝑥) ↔ ¬ (ℵ‘𝑥) ∈ 𝑥))
2010, 19mpan2 691 . . . 4 (𝑥 ∈ On → (𝑥 ⊆ (ℵ‘𝑥) ↔ ¬ (ℵ‘𝑥) ∈ 𝑥))
2118, 20syl5ibr 249 . . 3 (𝑥 ∈ On → (∀𝑦𝑥 𝑦 ∈ (ℵ‘𝑥) → 𝑥 ⊆ (ℵ‘𝑥)))
2214, 21syld 47 . 2 (𝑥 ∈ On → (∀𝑦𝑥 𝑦 ⊆ (ℵ‘𝑦) → 𝑥 ⊆ (ℵ‘𝑥)))
233, 6, 22tfis3 7636 1 (𝐴 ∈ On → 𝐴 ⊆ (ℵ‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1543  wcel 2110  wral 3061  wss 3866  Oncon0 6213  cfv 6380  cale 9552
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-inf2 9256
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-se 5510  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-isom 6389  df-riota 7170  df-om 7645  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-er 8391  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-oi 9126  df-har 9173  df-card 9555  df-aleph 9556
This theorem is referenced by:  cardaleph  9703  alephfp  9722  winafp  10311
  Copyright terms: Public domain W3C validator