![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > alephle | Structured version Visualization version GIF version |
Description: The argument of the aleph function is less than or equal to its value. Exercise 2 of [TakeutiZaring] p. 91. (Later, in alephfp2 10103, we will that equality can sometimes hold.) (Contributed by NM, 9-Nov-2003.) (Proof shortened by Mario Carneiro, 22-Feb-2013.) |
Ref | Expression |
---|---|
alephle | ⊢ (𝐴 ∈ On → 𝐴 ⊆ (ℵ‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . 3 ⊢ (𝑥 = 𝑦 → 𝑥 = 𝑦) | |
2 | fveq2 6884 | . . 3 ⊢ (𝑥 = 𝑦 → (ℵ‘𝑥) = (ℵ‘𝑦)) | |
3 | 1, 2 | sseq12d 4010 | . 2 ⊢ (𝑥 = 𝑦 → (𝑥 ⊆ (ℵ‘𝑥) ↔ 𝑦 ⊆ (ℵ‘𝑦))) |
4 | id 22 | . . 3 ⊢ (𝑥 = 𝐴 → 𝑥 = 𝐴) | |
5 | fveq2 6884 | . . 3 ⊢ (𝑥 = 𝐴 → (ℵ‘𝑥) = (ℵ‘𝐴)) | |
6 | 4, 5 | sseq12d 4010 | . 2 ⊢ (𝑥 = 𝐴 → (𝑥 ⊆ (ℵ‘𝑥) ↔ 𝐴 ⊆ (ℵ‘𝐴))) |
7 | alephord2i 10071 | . . . . . 6 ⊢ (𝑥 ∈ On → (𝑦 ∈ 𝑥 → (ℵ‘𝑦) ∈ (ℵ‘𝑥))) | |
8 | 7 | imp 406 | . . . . 5 ⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ 𝑥) → (ℵ‘𝑦) ∈ (ℵ‘𝑥)) |
9 | onelon 6382 | . . . . . 6 ⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ 𝑥) → 𝑦 ∈ On) | |
10 | alephon 10063 | . . . . . 6 ⊢ (ℵ‘𝑥) ∈ On | |
11 | ontr2 6404 | . . . . . 6 ⊢ ((𝑦 ∈ On ∧ (ℵ‘𝑥) ∈ On) → ((𝑦 ⊆ (ℵ‘𝑦) ∧ (ℵ‘𝑦) ∈ (ℵ‘𝑥)) → 𝑦 ∈ (ℵ‘𝑥))) | |
12 | 9, 10, 11 | sylancl 585 | . . . . 5 ⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ 𝑥) → ((𝑦 ⊆ (ℵ‘𝑦) ∧ (ℵ‘𝑦) ∈ (ℵ‘𝑥)) → 𝑦 ∈ (ℵ‘𝑥))) |
13 | 8, 12 | mpan2d 691 | . . . 4 ⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ 𝑥) → (𝑦 ⊆ (ℵ‘𝑦) → 𝑦 ∈ (ℵ‘𝑥))) |
14 | 13 | ralimdva 3161 | . . 3 ⊢ (𝑥 ∈ On → (∀𝑦 ∈ 𝑥 𝑦 ⊆ (ℵ‘𝑦) → ∀𝑦 ∈ 𝑥 𝑦 ∈ (ℵ‘𝑥))) |
15 | 10 | onirri 6470 | . . . . 5 ⊢ ¬ (ℵ‘𝑥) ∈ (ℵ‘𝑥) |
16 | eleq1 2815 | . . . . . 6 ⊢ (𝑦 = (ℵ‘𝑥) → (𝑦 ∈ (ℵ‘𝑥) ↔ (ℵ‘𝑥) ∈ (ℵ‘𝑥))) | |
17 | 16 | rspccv 3603 | . . . . 5 ⊢ (∀𝑦 ∈ 𝑥 𝑦 ∈ (ℵ‘𝑥) → ((ℵ‘𝑥) ∈ 𝑥 → (ℵ‘𝑥) ∈ (ℵ‘𝑥))) |
18 | 15, 17 | mtoi 198 | . . . 4 ⊢ (∀𝑦 ∈ 𝑥 𝑦 ∈ (ℵ‘𝑥) → ¬ (ℵ‘𝑥) ∈ 𝑥) |
19 | ontri1 6391 | . . . . 5 ⊢ ((𝑥 ∈ On ∧ (ℵ‘𝑥) ∈ On) → (𝑥 ⊆ (ℵ‘𝑥) ↔ ¬ (ℵ‘𝑥) ∈ 𝑥)) | |
20 | 10, 19 | mpan2 688 | . . . 4 ⊢ (𝑥 ∈ On → (𝑥 ⊆ (ℵ‘𝑥) ↔ ¬ (ℵ‘𝑥) ∈ 𝑥)) |
21 | 18, 20 | imbitrrid 245 | . . 3 ⊢ (𝑥 ∈ On → (∀𝑦 ∈ 𝑥 𝑦 ∈ (ℵ‘𝑥) → 𝑥 ⊆ (ℵ‘𝑥))) |
22 | 14, 21 | syld 47 | . 2 ⊢ (𝑥 ∈ On → (∀𝑦 ∈ 𝑥 𝑦 ⊆ (ℵ‘𝑦) → 𝑥 ⊆ (ℵ‘𝑥))) |
23 | 3, 6, 22 | tfis3 7843 | 1 ⊢ (𝐴 ∈ On → 𝐴 ⊆ (ℵ‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ∀wral 3055 ⊆ wss 3943 Oncon0 6357 ‘cfv 6536 ℵcale 9930 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 ax-inf2 9635 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-int 4944 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-se 5625 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6293 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-isom 6545 df-riota 7360 df-ov 7407 df-om 7852 df-2nd 7972 df-frecs 8264 df-wrecs 8295 df-recs 8369 df-rdg 8408 df-1o 8464 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-oi 9504 df-har 9551 df-card 9933 df-aleph 9934 |
This theorem is referenced by: cardaleph 10083 alephfp 10102 winafp 10691 |
Copyright terms: Public domain | W3C validator |