MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephle Structured version   Visualization version   GIF version

Theorem alephle 10126
Description: The argument of the aleph function is less than or equal to its value. Exercise 2 of [TakeutiZaring] p. 91. (Later, in alephfp2 10147, we will that equality can sometimes hold.) (Contributed by NM, 9-Nov-2003.) (Proof shortened by Mario Carneiro, 22-Feb-2013.)
Assertion
Ref Expression
alephle (𝐴 ∈ On → 𝐴 ⊆ (ℵ‘𝐴))

Proof of Theorem alephle
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 22 . . 3 (𝑥 = 𝑦𝑥 = 𝑦)
2 fveq2 6907 . . 3 (𝑥 = 𝑦 → (ℵ‘𝑥) = (ℵ‘𝑦))
31, 2sseq12d 4029 . 2 (𝑥 = 𝑦 → (𝑥 ⊆ (ℵ‘𝑥) ↔ 𝑦 ⊆ (ℵ‘𝑦)))
4 id 22 . . 3 (𝑥 = 𝐴𝑥 = 𝐴)
5 fveq2 6907 . . 3 (𝑥 = 𝐴 → (ℵ‘𝑥) = (ℵ‘𝐴))
64, 5sseq12d 4029 . 2 (𝑥 = 𝐴 → (𝑥 ⊆ (ℵ‘𝑥) ↔ 𝐴 ⊆ (ℵ‘𝐴)))
7 alephord2i 10115 . . . . . 6 (𝑥 ∈ On → (𝑦𝑥 → (ℵ‘𝑦) ∈ (ℵ‘𝑥)))
87imp 406 . . . . 5 ((𝑥 ∈ On ∧ 𝑦𝑥) → (ℵ‘𝑦) ∈ (ℵ‘𝑥))
9 onelon 6411 . . . . . 6 ((𝑥 ∈ On ∧ 𝑦𝑥) → 𝑦 ∈ On)
10 alephon 10107 . . . . . 6 (ℵ‘𝑥) ∈ On
11 ontr2 6433 . . . . . 6 ((𝑦 ∈ On ∧ (ℵ‘𝑥) ∈ On) → ((𝑦 ⊆ (ℵ‘𝑦) ∧ (ℵ‘𝑦) ∈ (ℵ‘𝑥)) → 𝑦 ∈ (ℵ‘𝑥)))
129, 10, 11sylancl 586 . . . . 5 ((𝑥 ∈ On ∧ 𝑦𝑥) → ((𝑦 ⊆ (ℵ‘𝑦) ∧ (ℵ‘𝑦) ∈ (ℵ‘𝑥)) → 𝑦 ∈ (ℵ‘𝑥)))
138, 12mpan2d 694 . . . 4 ((𝑥 ∈ On ∧ 𝑦𝑥) → (𝑦 ⊆ (ℵ‘𝑦) → 𝑦 ∈ (ℵ‘𝑥)))
1413ralimdva 3165 . . 3 (𝑥 ∈ On → (∀𝑦𝑥 𝑦 ⊆ (ℵ‘𝑦) → ∀𝑦𝑥 𝑦 ∈ (ℵ‘𝑥)))
1510onirri 6499 . . . . 5 ¬ (ℵ‘𝑥) ∈ (ℵ‘𝑥)
16 eleq1 2827 . . . . . 6 (𝑦 = (ℵ‘𝑥) → (𝑦 ∈ (ℵ‘𝑥) ↔ (ℵ‘𝑥) ∈ (ℵ‘𝑥)))
1716rspccv 3619 . . . . 5 (∀𝑦𝑥 𝑦 ∈ (ℵ‘𝑥) → ((ℵ‘𝑥) ∈ 𝑥 → (ℵ‘𝑥) ∈ (ℵ‘𝑥)))
1815, 17mtoi 199 . . . 4 (∀𝑦𝑥 𝑦 ∈ (ℵ‘𝑥) → ¬ (ℵ‘𝑥) ∈ 𝑥)
19 ontri1 6420 . . . . 5 ((𝑥 ∈ On ∧ (ℵ‘𝑥) ∈ On) → (𝑥 ⊆ (ℵ‘𝑥) ↔ ¬ (ℵ‘𝑥) ∈ 𝑥))
2010, 19mpan2 691 . . . 4 (𝑥 ∈ On → (𝑥 ⊆ (ℵ‘𝑥) ↔ ¬ (ℵ‘𝑥) ∈ 𝑥))
2118, 20imbitrrid 246 . . 3 (𝑥 ∈ On → (∀𝑦𝑥 𝑦 ∈ (ℵ‘𝑥) → 𝑥 ⊆ (ℵ‘𝑥)))
2214, 21syld 47 . 2 (𝑥 ∈ On → (∀𝑦𝑥 𝑦 ⊆ (ℵ‘𝑦) → 𝑥 ⊆ (ℵ‘𝑥)))
233, 6, 22tfis3 7879 1 (𝐴 ∈ On → 𝐴 ⊆ (ℵ‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  wral 3059  wss 3963  Oncon0 6386  cfv 6563  cale 9974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-oi 9548  df-har 9595  df-card 9977  df-aleph 9978
This theorem is referenced by:  cardaleph  10127  alephfp  10146  winafp  10735
  Copyright terms: Public domain W3C validator