MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephle Structured version   Visualization version   GIF version

Theorem alephle 9775
Description: The argument of the aleph function is less than or equal to its value. Exercise 2 of [TakeutiZaring] p. 91. (Later, in alephfp2 9796, we will that equality can sometimes hold.) (Contributed by NM, 9-Nov-2003.) (Proof shortened by Mario Carneiro, 22-Feb-2013.)
Assertion
Ref Expression
alephle (𝐴 ∈ On → 𝐴 ⊆ (ℵ‘𝐴))

Proof of Theorem alephle
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 22 . . 3 (𝑥 = 𝑦𝑥 = 𝑦)
2 fveq2 6756 . . 3 (𝑥 = 𝑦 → (ℵ‘𝑥) = (ℵ‘𝑦))
31, 2sseq12d 3950 . 2 (𝑥 = 𝑦 → (𝑥 ⊆ (ℵ‘𝑥) ↔ 𝑦 ⊆ (ℵ‘𝑦)))
4 id 22 . . 3 (𝑥 = 𝐴𝑥 = 𝐴)
5 fveq2 6756 . . 3 (𝑥 = 𝐴 → (ℵ‘𝑥) = (ℵ‘𝐴))
64, 5sseq12d 3950 . 2 (𝑥 = 𝐴 → (𝑥 ⊆ (ℵ‘𝑥) ↔ 𝐴 ⊆ (ℵ‘𝐴)))
7 alephord2i 9764 . . . . . 6 (𝑥 ∈ On → (𝑦𝑥 → (ℵ‘𝑦) ∈ (ℵ‘𝑥)))
87imp 406 . . . . 5 ((𝑥 ∈ On ∧ 𝑦𝑥) → (ℵ‘𝑦) ∈ (ℵ‘𝑥))
9 onelon 6276 . . . . . 6 ((𝑥 ∈ On ∧ 𝑦𝑥) → 𝑦 ∈ On)
10 alephon 9756 . . . . . 6 (ℵ‘𝑥) ∈ On
11 ontr2 6298 . . . . . 6 ((𝑦 ∈ On ∧ (ℵ‘𝑥) ∈ On) → ((𝑦 ⊆ (ℵ‘𝑦) ∧ (ℵ‘𝑦) ∈ (ℵ‘𝑥)) → 𝑦 ∈ (ℵ‘𝑥)))
129, 10, 11sylancl 585 . . . . 5 ((𝑥 ∈ On ∧ 𝑦𝑥) → ((𝑦 ⊆ (ℵ‘𝑦) ∧ (ℵ‘𝑦) ∈ (ℵ‘𝑥)) → 𝑦 ∈ (ℵ‘𝑥)))
138, 12mpan2d 690 . . . 4 ((𝑥 ∈ On ∧ 𝑦𝑥) → (𝑦 ⊆ (ℵ‘𝑦) → 𝑦 ∈ (ℵ‘𝑥)))
1413ralimdva 3102 . . 3 (𝑥 ∈ On → (∀𝑦𝑥 𝑦 ⊆ (ℵ‘𝑦) → ∀𝑦𝑥 𝑦 ∈ (ℵ‘𝑥)))
1510onirri 6358 . . . . 5 ¬ (ℵ‘𝑥) ∈ (ℵ‘𝑥)
16 eleq1 2826 . . . . . 6 (𝑦 = (ℵ‘𝑥) → (𝑦 ∈ (ℵ‘𝑥) ↔ (ℵ‘𝑥) ∈ (ℵ‘𝑥)))
1716rspccv 3549 . . . . 5 (∀𝑦𝑥 𝑦 ∈ (ℵ‘𝑥) → ((ℵ‘𝑥) ∈ 𝑥 → (ℵ‘𝑥) ∈ (ℵ‘𝑥)))
1815, 17mtoi 198 . . . 4 (∀𝑦𝑥 𝑦 ∈ (ℵ‘𝑥) → ¬ (ℵ‘𝑥) ∈ 𝑥)
19 ontri1 6285 . . . . 5 ((𝑥 ∈ On ∧ (ℵ‘𝑥) ∈ On) → (𝑥 ⊆ (ℵ‘𝑥) ↔ ¬ (ℵ‘𝑥) ∈ 𝑥))
2010, 19mpan2 687 . . . 4 (𝑥 ∈ On → (𝑥 ⊆ (ℵ‘𝑥) ↔ ¬ (ℵ‘𝑥) ∈ 𝑥))
2118, 20syl5ibr 245 . . 3 (𝑥 ∈ On → (∀𝑦𝑥 𝑦 ∈ (ℵ‘𝑥) → 𝑥 ⊆ (ℵ‘𝑥)))
2214, 21syld 47 . 2 (𝑥 ∈ On → (∀𝑦𝑥 𝑦 ⊆ (ℵ‘𝑦) → 𝑥 ⊆ (ℵ‘𝑥)))
233, 6, 22tfis3 7679 1 (𝐴 ∈ On → 𝐴 ⊆ (ℵ‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063  wss 3883  Oncon0 6251  cfv 6418  cale 9625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-oi 9199  df-har 9246  df-card 9628  df-aleph 9629
This theorem is referenced by:  cardaleph  9776  alephfp  9795  winafp  10384
  Copyright terms: Public domain W3C validator