Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > alephle | Structured version Visualization version GIF version |
Description: The argument of the aleph function is less than or equal to its value. Exercise 2 of [TakeutiZaring] p. 91. (Later, in alephfp2 9723, we will that equality can sometimes hold.) (Contributed by NM, 9-Nov-2003.) (Proof shortened by Mario Carneiro, 22-Feb-2013.) |
Ref | Expression |
---|---|
alephle | ⊢ (𝐴 ∈ On → 𝐴 ⊆ (ℵ‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . 3 ⊢ (𝑥 = 𝑦 → 𝑥 = 𝑦) | |
2 | fveq2 6717 | . . 3 ⊢ (𝑥 = 𝑦 → (ℵ‘𝑥) = (ℵ‘𝑦)) | |
3 | 1, 2 | sseq12d 3934 | . 2 ⊢ (𝑥 = 𝑦 → (𝑥 ⊆ (ℵ‘𝑥) ↔ 𝑦 ⊆ (ℵ‘𝑦))) |
4 | id 22 | . . 3 ⊢ (𝑥 = 𝐴 → 𝑥 = 𝐴) | |
5 | fveq2 6717 | . . 3 ⊢ (𝑥 = 𝐴 → (ℵ‘𝑥) = (ℵ‘𝐴)) | |
6 | 4, 5 | sseq12d 3934 | . 2 ⊢ (𝑥 = 𝐴 → (𝑥 ⊆ (ℵ‘𝑥) ↔ 𝐴 ⊆ (ℵ‘𝐴))) |
7 | alephord2i 9691 | . . . . . 6 ⊢ (𝑥 ∈ On → (𝑦 ∈ 𝑥 → (ℵ‘𝑦) ∈ (ℵ‘𝑥))) | |
8 | 7 | imp 410 | . . . . 5 ⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ 𝑥) → (ℵ‘𝑦) ∈ (ℵ‘𝑥)) |
9 | onelon 6238 | . . . . . 6 ⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ 𝑥) → 𝑦 ∈ On) | |
10 | alephon 9683 | . . . . . 6 ⊢ (ℵ‘𝑥) ∈ On | |
11 | ontr2 6260 | . . . . . 6 ⊢ ((𝑦 ∈ On ∧ (ℵ‘𝑥) ∈ On) → ((𝑦 ⊆ (ℵ‘𝑦) ∧ (ℵ‘𝑦) ∈ (ℵ‘𝑥)) → 𝑦 ∈ (ℵ‘𝑥))) | |
12 | 9, 10, 11 | sylancl 589 | . . . . 5 ⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ 𝑥) → ((𝑦 ⊆ (ℵ‘𝑦) ∧ (ℵ‘𝑦) ∈ (ℵ‘𝑥)) → 𝑦 ∈ (ℵ‘𝑥))) |
13 | 8, 12 | mpan2d 694 | . . . 4 ⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ 𝑥) → (𝑦 ⊆ (ℵ‘𝑦) → 𝑦 ∈ (ℵ‘𝑥))) |
14 | 13 | ralimdva 3100 | . . 3 ⊢ (𝑥 ∈ On → (∀𝑦 ∈ 𝑥 𝑦 ⊆ (ℵ‘𝑦) → ∀𝑦 ∈ 𝑥 𝑦 ∈ (ℵ‘𝑥))) |
15 | 10 | onirri 6320 | . . . . 5 ⊢ ¬ (ℵ‘𝑥) ∈ (ℵ‘𝑥) |
16 | eleq1 2825 | . . . . . 6 ⊢ (𝑦 = (ℵ‘𝑥) → (𝑦 ∈ (ℵ‘𝑥) ↔ (ℵ‘𝑥) ∈ (ℵ‘𝑥))) | |
17 | 16 | rspccv 3534 | . . . . 5 ⊢ (∀𝑦 ∈ 𝑥 𝑦 ∈ (ℵ‘𝑥) → ((ℵ‘𝑥) ∈ 𝑥 → (ℵ‘𝑥) ∈ (ℵ‘𝑥))) |
18 | 15, 17 | mtoi 202 | . . . 4 ⊢ (∀𝑦 ∈ 𝑥 𝑦 ∈ (ℵ‘𝑥) → ¬ (ℵ‘𝑥) ∈ 𝑥) |
19 | ontri1 6247 | . . . . 5 ⊢ ((𝑥 ∈ On ∧ (ℵ‘𝑥) ∈ On) → (𝑥 ⊆ (ℵ‘𝑥) ↔ ¬ (ℵ‘𝑥) ∈ 𝑥)) | |
20 | 10, 19 | mpan2 691 | . . . 4 ⊢ (𝑥 ∈ On → (𝑥 ⊆ (ℵ‘𝑥) ↔ ¬ (ℵ‘𝑥) ∈ 𝑥)) |
21 | 18, 20 | syl5ibr 249 | . . 3 ⊢ (𝑥 ∈ On → (∀𝑦 ∈ 𝑥 𝑦 ∈ (ℵ‘𝑥) → 𝑥 ⊆ (ℵ‘𝑥))) |
22 | 14, 21 | syld 47 | . 2 ⊢ (𝑥 ∈ On → (∀𝑦 ∈ 𝑥 𝑦 ⊆ (ℵ‘𝑦) → 𝑥 ⊆ (ℵ‘𝑥))) |
23 | 3, 6, 22 | tfis3 7636 | 1 ⊢ (𝐴 ∈ On → 𝐴 ⊆ (ℵ‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1543 ∈ wcel 2110 ∀wral 3061 ⊆ wss 3866 Oncon0 6213 ‘cfv 6380 ℵcale 9552 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-inf2 9256 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-int 4860 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-se 5510 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-isom 6389 df-riota 7170 df-om 7645 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-er 8391 df-en 8627 df-dom 8628 df-sdom 8629 df-fin 8630 df-oi 9126 df-har 9173 df-card 9555 df-aleph 9556 |
This theorem is referenced by: cardaleph 9703 alephfp 9722 winafp 10311 |
Copyright terms: Public domain | W3C validator |