| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > alephle | Structured version Visualization version GIF version | ||
| Description: The argument of the aleph function is less than or equal to its value. Exercise 2 of [TakeutiZaring] p. 91. (Later, in alephfp2 9992, we will that equality can sometimes hold.) (Contributed by NM, 9-Nov-2003.) (Proof shortened by Mario Carneiro, 22-Feb-2013.) |
| Ref | Expression |
|---|---|
| alephle | ⊢ (𝐴 ∈ On → 𝐴 ⊆ (ℵ‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . . 3 ⊢ (𝑥 = 𝑦 → 𝑥 = 𝑦) | |
| 2 | fveq2 6817 | . . 3 ⊢ (𝑥 = 𝑦 → (ℵ‘𝑥) = (ℵ‘𝑦)) | |
| 3 | 1, 2 | sseq12d 3966 | . 2 ⊢ (𝑥 = 𝑦 → (𝑥 ⊆ (ℵ‘𝑥) ↔ 𝑦 ⊆ (ℵ‘𝑦))) |
| 4 | id 22 | . . 3 ⊢ (𝑥 = 𝐴 → 𝑥 = 𝐴) | |
| 5 | fveq2 6817 | . . 3 ⊢ (𝑥 = 𝐴 → (ℵ‘𝑥) = (ℵ‘𝐴)) | |
| 6 | 4, 5 | sseq12d 3966 | . 2 ⊢ (𝑥 = 𝐴 → (𝑥 ⊆ (ℵ‘𝑥) ↔ 𝐴 ⊆ (ℵ‘𝐴))) |
| 7 | alephord2i 9960 | . . . . . 6 ⊢ (𝑥 ∈ On → (𝑦 ∈ 𝑥 → (ℵ‘𝑦) ∈ (ℵ‘𝑥))) | |
| 8 | 7 | imp 406 | . . . . 5 ⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ 𝑥) → (ℵ‘𝑦) ∈ (ℵ‘𝑥)) |
| 9 | onelon 6327 | . . . . . 6 ⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ 𝑥) → 𝑦 ∈ On) | |
| 10 | alephon 9952 | . . . . . 6 ⊢ (ℵ‘𝑥) ∈ On | |
| 11 | ontr2 6350 | . . . . . 6 ⊢ ((𝑦 ∈ On ∧ (ℵ‘𝑥) ∈ On) → ((𝑦 ⊆ (ℵ‘𝑦) ∧ (ℵ‘𝑦) ∈ (ℵ‘𝑥)) → 𝑦 ∈ (ℵ‘𝑥))) | |
| 12 | 9, 10, 11 | sylancl 586 | . . . . 5 ⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ 𝑥) → ((𝑦 ⊆ (ℵ‘𝑦) ∧ (ℵ‘𝑦) ∈ (ℵ‘𝑥)) → 𝑦 ∈ (ℵ‘𝑥))) |
| 13 | 8, 12 | mpan2d 694 | . . . 4 ⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ 𝑥) → (𝑦 ⊆ (ℵ‘𝑦) → 𝑦 ∈ (ℵ‘𝑥))) |
| 14 | 13 | ralimdva 3142 | . . 3 ⊢ (𝑥 ∈ On → (∀𝑦 ∈ 𝑥 𝑦 ⊆ (ℵ‘𝑦) → ∀𝑦 ∈ 𝑥 𝑦 ∈ (ℵ‘𝑥))) |
| 15 | 10 | onirri 6416 | . . . . 5 ⊢ ¬ (ℵ‘𝑥) ∈ (ℵ‘𝑥) |
| 16 | eleq1 2817 | . . . . . 6 ⊢ (𝑦 = (ℵ‘𝑥) → (𝑦 ∈ (ℵ‘𝑥) ↔ (ℵ‘𝑥) ∈ (ℵ‘𝑥))) | |
| 17 | 16 | rspccv 3572 | . . . . 5 ⊢ (∀𝑦 ∈ 𝑥 𝑦 ∈ (ℵ‘𝑥) → ((ℵ‘𝑥) ∈ 𝑥 → (ℵ‘𝑥) ∈ (ℵ‘𝑥))) |
| 18 | 15, 17 | mtoi 199 | . . . 4 ⊢ (∀𝑦 ∈ 𝑥 𝑦 ∈ (ℵ‘𝑥) → ¬ (ℵ‘𝑥) ∈ 𝑥) |
| 19 | ontri1 6336 | . . . . 5 ⊢ ((𝑥 ∈ On ∧ (ℵ‘𝑥) ∈ On) → (𝑥 ⊆ (ℵ‘𝑥) ↔ ¬ (ℵ‘𝑥) ∈ 𝑥)) | |
| 20 | 10, 19 | mpan2 691 | . . . 4 ⊢ (𝑥 ∈ On → (𝑥 ⊆ (ℵ‘𝑥) ↔ ¬ (ℵ‘𝑥) ∈ 𝑥)) |
| 21 | 18, 20 | imbitrrid 246 | . . 3 ⊢ (𝑥 ∈ On → (∀𝑦 ∈ 𝑥 𝑦 ∈ (ℵ‘𝑥) → 𝑥 ⊆ (ℵ‘𝑥))) |
| 22 | 14, 21 | syld 47 | . 2 ⊢ (𝑥 ∈ On → (∀𝑦 ∈ 𝑥 𝑦 ⊆ (ℵ‘𝑦) → 𝑥 ⊆ (ℵ‘𝑥))) |
| 23 | 3, 6, 22 | tfis3 7783 | 1 ⊢ (𝐴 ∈ On → 𝐴 ⊆ (ℵ‘𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2110 ∀wral 3045 ⊆ wss 3900 Oncon0 6302 ‘cfv 6477 ℵcale 9821 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-inf2 9526 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3344 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-isom 6486 df-riota 7298 df-ov 7344 df-om 7792 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-oi 9391 df-har 9438 df-card 9824 df-aleph 9825 |
| This theorem is referenced by: cardaleph 9972 alephfp 9991 winafp 10580 |
| Copyright terms: Public domain | W3C validator |