MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephle Structured version   Visualization version   GIF version

Theorem alephle 10048
Description: The argument of the aleph function is less than or equal to its value. Exercise 2 of [TakeutiZaring] p. 91. (Later, in alephfp2 10069, we will that equality can sometimes hold.) (Contributed by NM, 9-Nov-2003.) (Proof shortened by Mario Carneiro, 22-Feb-2013.)
Assertion
Ref Expression
alephle (𝐴 ∈ On → 𝐴 ⊆ (ℵ‘𝐴))

Proof of Theorem alephle
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 22 . . 3 (𝑥 = 𝑦𝑥 = 𝑦)
2 fveq2 6861 . . 3 (𝑥 = 𝑦 → (ℵ‘𝑥) = (ℵ‘𝑦))
31, 2sseq12d 3983 . 2 (𝑥 = 𝑦 → (𝑥 ⊆ (ℵ‘𝑥) ↔ 𝑦 ⊆ (ℵ‘𝑦)))
4 id 22 . . 3 (𝑥 = 𝐴𝑥 = 𝐴)
5 fveq2 6861 . . 3 (𝑥 = 𝐴 → (ℵ‘𝑥) = (ℵ‘𝐴))
64, 5sseq12d 3983 . 2 (𝑥 = 𝐴 → (𝑥 ⊆ (ℵ‘𝑥) ↔ 𝐴 ⊆ (ℵ‘𝐴)))
7 alephord2i 10037 . . . . . 6 (𝑥 ∈ On → (𝑦𝑥 → (ℵ‘𝑦) ∈ (ℵ‘𝑥)))
87imp 406 . . . . 5 ((𝑥 ∈ On ∧ 𝑦𝑥) → (ℵ‘𝑦) ∈ (ℵ‘𝑥))
9 onelon 6360 . . . . . 6 ((𝑥 ∈ On ∧ 𝑦𝑥) → 𝑦 ∈ On)
10 alephon 10029 . . . . . 6 (ℵ‘𝑥) ∈ On
11 ontr2 6383 . . . . . 6 ((𝑦 ∈ On ∧ (ℵ‘𝑥) ∈ On) → ((𝑦 ⊆ (ℵ‘𝑦) ∧ (ℵ‘𝑦) ∈ (ℵ‘𝑥)) → 𝑦 ∈ (ℵ‘𝑥)))
129, 10, 11sylancl 586 . . . . 5 ((𝑥 ∈ On ∧ 𝑦𝑥) → ((𝑦 ⊆ (ℵ‘𝑦) ∧ (ℵ‘𝑦) ∈ (ℵ‘𝑥)) → 𝑦 ∈ (ℵ‘𝑥)))
138, 12mpan2d 694 . . . 4 ((𝑥 ∈ On ∧ 𝑦𝑥) → (𝑦 ⊆ (ℵ‘𝑦) → 𝑦 ∈ (ℵ‘𝑥)))
1413ralimdva 3146 . . 3 (𝑥 ∈ On → (∀𝑦𝑥 𝑦 ⊆ (ℵ‘𝑦) → ∀𝑦𝑥 𝑦 ∈ (ℵ‘𝑥)))
1510onirri 6450 . . . . 5 ¬ (ℵ‘𝑥) ∈ (ℵ‘𝑥)
16 eleq1 2817 . . . . . 6 (𝑦 = (ℵ‘𝑥) → (𝑦 ∈ (ℵ‘𝑥) ↔ (ℵ‘𝑥) ∈ (ℵ‘𝑥)))
1716rspccv 3588 . . . . 5 (∀𝑦𝑥 𝑦 ∈ (ℵ‘𝑥) → ((ℵ‘𝑥) ∈ 𝑥 → (ℵ‘𝑥) ∈ (ℵ‘𝑥)))
1815, 17mtoi 199 . . . 4 (∀𝑦𝑥 𝑦 ∈ (ℵ‘𝑥) → ¬ (ℵ‘𝑥) ∈ 𝑥)
19 ontri1 6369 . . . . 5 ((𝑥 ∈ On ∧ (ℵ‘𝑥) ∈ On) → (𝑥 ⊆ (ℵ‘𝑥) ↔ ¬ (ℵ‘𝑥) ∈ 𝑥))
2010, 19mpan2 691 . . . 4 (𝑥 ∈ On → (𝑥 ⊆ (ℵ‘𝑥) ↔ ¬ (ℵ‘𝑥) ∈ 𝑥))
2118, 20imbitrrid 246 . . 3 (𝑥 ∈ On → (∀𝑦𝑥 𝑦 ∈ (ℵ‘𝑥) → 𝑥 ⊆ (ℵ‘𝑥)))
2214, 21syld 47 . 2 (𝑥 ∈ On → (∀𝑦𝑥 𝑦 ⊆ (ℵ‘𝑦) → 𝑥 ⊆ (ℵ‘𝑥)))
233, 6, 22tfis3 7837 1 (𝐴 ∈ On → 𝐴 ⊆ (ℵ‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3045  wss 3917  Oncon0 6335  cfv 6514  cale 9896
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-oi 9470  df-har 9517  df-card 9899  df-aleph 9900
This theorem is referenced by:  cardaleph  10049  alephfp  10068  winafp  10657
  Copyright terms: Public domain W3C validator