Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onnoi Structured version   Visualization version   GIF version

Theorem onnoi 43473
Description: Every ordinal maps to a surreal number. (Contributed by RP, 21-Sep-2023.)
Hypothesis
Ref Expression
onnoi.on 𝐴 ∈ On
Assertion
Ref Expression
onnoi (𝐴 × {2o}) ∈ No

Proof of Theorem onnoi
StepHypRef Expression
1 onnoi.on . 2 𝐴 ∈ On
2 onno 43472 . 2 (𝐴 ∈ On → (𝐴 × {2o}) ∈ No )
31, 2ax-mp 5 1 (𝐴 × {2o}) ∈ No
Colors of variables: wff setvar class
Syntax hints:  wcel 2111  {csn 4576   × cxp 5614  Oncon0 6306  2oc2o 8379   No csur 27579
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-suc 6312  df-fun 6483  df-fn 6484  df-f 6485  df-1o 8385  df-2o 8386  df-no 27582
This theorem is referenced by:  0no  43474  1no  43475  2no  43476  3no  43477  4no  43478
  Copyright terms: Public domain W3C validator