![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > onovuni | Structured version Visualization version GIF version |
Description: A variant of onfununi 8380 for operations. (Contributed by Eric Schmidt, 26-May-2009.) (Revised by Mario Carneiro, 11-Sep-2015.) |
Ref | Expression |
---|---|
onovuni.1 | ⊢ (Lim 𝑦 → (𝐴𝐹𝑦) = ∪ 𝑥 ∈ 𝑦 (𝐴𝐹𝑥)) |
onovuni.2 | ⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ On ∧ 𝑥 ⊆ 𝑦) → (𝐴𝐹𝑥) ⊆ (𝐴𝐹𝑦)) |
Ref | Expression |
---|---|
onovuni | ⊢ ((𝑆 ∈ 𝑇 ∧ 𝑆 ⊆ On ∧ 𝑆 ≠ ∅) → (𝐴𝐹∪ 𝑆) = ∪ 𝑥 ∈ 𝑆 (𝐴𝐹𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | onovuni.1 | . . . 4 ⊢ (Lim 𝑦 → (𝐴𝐹𝑦) = ∪ 𝑥 ∈ 𝑦 (𝐴𝐹𝑥)) | |
2 | oveq2 7439 | . . . . . 6 ⊢ (𝑧 = 𝑦 → (𝐴𝐹𝑧) = (𝐴𝐹𝑦)) | |
3 | eqid 2735 | . . . . . 6 ⊢ (𝑧 ∈ V ↦ (𝐴𝐹𝑧)) = (𝑧 ∈ V ↦ (𝐴𝐹𝑧)) | |
4 | ovex 7464 | . . . . . 6 ⊢ (𝐴𝐹𝑦) ∈ V | |
5 | 2, 3, 4 | fvmpt 7016 | . . . . 5 ⊢ (𝑦 ∈ V → ((𝑧 ∈ V ↦ (𝐴𝐹𝑧))‘𝑦) = (𝐴𝐹𝑦)) |
6 | 5 | elv 3483 | . . . 4 ⊢ ((𝑧 ∈ V ↦ (𝐴𝐹𝑧))‘𝑦) = (𝐴𝐹𝑦) |
7 | oveq2 7439 | . . . . . . . 8 ⊢ (𝑧 = 𝑥 → (𝐴𝐹𝑧) = (𝐴𝐹𝑥)) | |
8 | ovex 7464 | . . . . . . . 8 ⊢ (𝐴𝐹𝑥) ∈ V | |
9 | 7, 3, 8 | fvmpt 7016 | . . . . . . 7 ⊢ (𝑥 ∈ V → ((𝑧 ∈ V ↦ (𝐴𝐹𝑧))‘𝑥) = (𝐴𝐹𝑥)) |
10 | 9 | elv 3483 | . . . . . 6 ⊢ ((𝑧 ∈ V ↦ (𝐴𝐹𝑧))‘𝑥) = (𝐴𝐹𝑥) |
11 | 10 | a1i 11 | . . . . 5 ⊢ (𝑥 ∈ 𝑦 → ((𝑧 ∈ V ↦ (𝐴𝐹𝑧))‘𝑥) = (𝐴𝐹𝑥)) |
12 | 11 | iuneq2i 5018 | . . . 4 ⊢ ∪ 𝑥 ∈ 𝑦 ((𝑧 ∈ V ↦ (𝐴𝐹𝑧))‘𝑥) = ∪ 𝑥 ∈ 𝑦 (𝐴𝐹𝑥) |
13 | 1, 6, 12 | 3eqtr4g 2800 | . . 3 ⊢ (Lim 𝑦 → ((𝑧 ∈ V ↦ (𝐴𝐹𝑧))‘𝑦) = ∪ 𝑥 ∈ 𝑦 ((𝑧 ∈ V ↦ (𝐴𝐹𝑧))‘𝑥)) |
14 | onovuni.2 | . . . 4 ⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ On ∧ 𝑥 ⊆ 𝑦) → (𝐴𝐹𝑥) ⊆ (𝐴𝐹𝑦)) | |
15 | 14, 10, 6 | 3sstr4g 4041 | . . 3 ⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ On ∧ 𝑥 ⊆ 𝑦) → ((𝑧 ∈ V ↦ (𝐴𝐹𝑧))‘𝑥) ⊆ ((𝑧 ∈ V ↦ (𝐴𝐹𝑧))‘𝑦)) |
16 | 13, 15 | onfununi 8380 | . 2 ⊢ ((𝑆 ∈ 𝑇 ∧ 𝑆 ⊆ On ∧ 𝑆 ≠ ∅) → ((𝑧 ∈ V ↦ (𝐴𝐹𝑧))‘∪ 𝑆) = ∪ 𝑥 ∈ 𝑆 ((𝑧 ∈ V ↦ (𝐴𝐹𝑧))‘𝑥)) |
17 | uniexg 7759 | . . . 4 ⊢ (𝑆 ∈ 𝑇 → ∪ 𝑆 ∈ V) | |
18 | oveq2 7439 | . . . . 5 ⊢ (𝑧 = ∪ 𝑆 → (𝐴𝐹𝑧) = (𝐴𝐹∪ 𝑆)) | |
19 | ovex 7464 | . . . . 5 ⊢ (𝐴𝐹∪ 𝑆) ∈ V | |
20 | 18, 3, 19 | fvmpt 7016 | . . . 4 ⊢ (∪ 𝑆 ∈ V → ((𝑧 ∈ V ↦ (𝐴𝐹𝑧))‘∪ 𝑆) = (𝐴𝐹∪ 𝑆)) |
21 | 17, 20 | syl 17 | . . 3 ⊢ (𝑆 ∈ 𝑇 → ((𝑧 ∈ V ↦ (𝐴𝐹𝑧))‘∪ 𝑆) = (𝐴𝐹∪ 𝑆)) |
22 | 21 | 3ad2ant1 1132 | . 2 ⊢ ((𝑆 ∈ 𝑇 ∧ 𝑆 ⊆ On ∧ 𝑆 ≠ ∅) → ((𝑧 ∈ V ↦ (𝐴𝐹𝑧))‘∪ 𝑆) = (𝐴𝐹∪ 𝑆)) |
23 | 10 | a1i 11 | . . . 4 ⊢ (𝑥 ∈ 𝑆 → ((𝑧 ∈ V ↦ (𝐴𝐹𝑧))‘𝑥) = (𝐴𝐹𝑥)) |
24 | 23 | iuneq2i 5018 | . . 3 ⊢ ∪ 𝑥 ∈ 𝑆 ((𝑧 ∈ V ↦ (𝐴𝐹𝑧))‘𝑥) = ∪ 𝑥 ∈ 𝑆 (𝐴𝐹𝑥) |
25 | 24 | a1i 11 | . 2 ⊢ ((𝑆 ∈ 𝑇 ∧ 𝑆 ⊆ On ∧ 𝑆 ≠ ∅) → ∪ 𝑥 ∈ 𝑆 ((𝑧 ∈ V ↦ (𝐴𝐹𝑧))‘𝑥) = ∪ 𝑥 ∈ 𝑆 (𝐴𝐹𝑥)) |
26 | 16, 22, 25 | 3eqtr3d 2783 | 1 ⊢ ((𝑆 ∈ 𝑇 ∧ 𝑆 ⊆ On ∧ 𝑆 ≠ ∅) → (𝐴𝐹∪ 𝑆) = ∪ 𝑥 ∈ 𝑆 (𝐴𝐹𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 ≠ wne 2938 Vcvv 3478 ⊆ wss 3963 ∅c0 4339 ∪ cuni 4912 ∪ ciun 4996 ↦ cmpt 5231 Oncon0 6386 Lim wlim 6387 ‘cfv 6563 (class class class)co 7431 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-ord 6389 df-on 6390 df-lim 6391 df-iota 6516 df-fun 6565 df-fv 6571 df-ov 7434 |
This theorem is referenced by: onoviun 8382 |
Copyright terms: Public domain | W3C validator |