![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > onovuni | Structured version Visualization version GIF version |
Description: A variant of onfununi 8397 for operations. (Contributed by Eric Schmidt, 26-May-2009.) (Revised by Mario Carneiro, 11-Sep-2015.) |
Ref | Expression |
---|---|
onovuni.1 | ⊢ (Lim 𝑦 → (𝐴𝐹𝑦) = ∪ 𝑥 ∈ 𝑦 (𝐴𝐹𝑥)) |
onovuni.2 | ⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ On ∧ 𝑥 ⊆ 𝑦) → (𝐴𝐹𝑥) ⊆ (𝐴𝐹𝑦)) |
Ref | Expression |
---|---|
onovuni | ⊢ ((𝑆 ∈ 𝑇 ∧ 𝑆 ⊆ On ∧ 𝑆 ≠ ∅) → (𝐴𝐹∪ 𝑆) = ∪ 𝑥 ∈ 𝑆 (𝐴𝐹𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | onovuni.1 | . . . 4 ⊢ (Lim 𝑦 → (𝐴𝐹𝑦) = ∪ 𝑥 ∈ 𝑦 (𝐴𝐹𝑥)) | |
2 | oveq2 7456 | . . . . . 6 ⊢ (𝑧 = 𝑦 → (𝐴𝐹𝑧) = (𝐴𝐹𝑦)) | |
3 | eqid 2740 | . . . . . 6 ⊢ (𝑧 ∈ V ↦ (𝐴𝐹𝑧)) = (𝑧 ∈ V ↦ (𝐴𝐹𝑧)) | |
4 | ovex 7481 | . . . . . 6 ⊢ (𝐴𝐹𝑦) ∈ V | |
5 | 2, 3, 4 | fvmpt 7029 | . . . . 5 ⊢ (𝑦 ∈ V → ((𝑧 ∈ V ↦ (𝐴𝐹𝑧))‘𝑦) = (𝐴𝐹𝑦)) |
6 | 5 | elv 3493 | . . . 4 ⊢ ((𝑧 ∈ V ↦ (𝐴𝐹𝑧))‘𝑦) = (𝐴𝐹𝑦) |
7 | oveq2 7456 | . . . . . . . 8 ⊢ (𝑧 = 𝑥 → (𝐴𝐹𝑧) = (𝐴𝐹𝑥)) | |
8 | ovex 7481 | . . . . . . . 8 ⊢ (𝐴𝐹𝑥) ∈ V | |
9 | 7, 3, 8 | fvmpt 7029 | . . . . . . 7 ⊢ (𝑥 ∈ V → ((𝑧 ∈ V ↦ (𝐴𝐹𝑧))‘𝑥) = (𝐴𝐹𝑥)) |
10 | 9 | elv 3493 | . . . . . 6 ⊢ ((𝑧 ∈ V ↦ (𝐴𝐹𝑧))‘𝑥) = (𝐴𝐹𝑥) |
11 | 10 | a1i 11 | . . . . 5 ⊢ (𝑥 ∈ 𝑦 → ((𝑧 ∈ V ↦ (𝐴𝐹𝑧))‘𝑥) = (𝐴𝐹𝑥)) |
12 | 11 | iuneq2i 5036 | . . . 4 ⊢ ∪ 𝑥 ∈ 𝑦 ((𝑧 ∈ V ↦ (𝐴𝐹𝑧))‘𝑥) = ∪ 𝑥 ∈ 𝑦 (𝐴𝐹𝑥) |
13 | 1, 6, 12 | 3eqtr4g 2805 | . . 3 ⊢ (Lim 𝑦 → ((𝑧 ∈ V ↦ (𝐴𝐹𝑧))‘𝑦) = ∪ 𝑥 ∈ 𝑦 ((𝑧 ∈ V ↦ (𝐴𝐹𝑧))‘𝑥)) |
14 | onovuni.2 | . . . 4 ⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ On ∧ 𝑥 ⊆ 𝑦) → (𝐴𝐹𝑥) ⊆ (𝐴𝐹𝑦)) | |
15 | 14, 10, 6 | 3sstr4g 4054 | . . 3 ⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ On ∧ 𝑥 ⊆ 𝑦) → ((𝑧 ∈ V ↦ (𝐴𝐹𝑧))‘𝑥) ⊆ ((𝑧 ∈ V ↦ (𝐴𝐹𝑧))‘𝑦)) |
16 | 13, 15 | onfununi 8397 | . 2 ⊢ ((𝑆 ∈ 𝑇 ∧ 𝑆 ⊆ On ∧ 𝑆 ≠ ∅) → ((𝑧 ∈ V ↦ (𝐴𝐹𝑧))‘∪ 𝑆) = ∪ 𝑥 ∈ 𝑆 ((𝑧 ∈ V ↦ (𝐴𝐹𝑧))‘𝑥)) |
17 | uniexg 7775 | . . . 4 ⊢ (𝑆 ∈ 𝑇 → ∪ 𝑆 ∈ V) | |
18 | oveq2 7456 | . . . . 5 ⊢ (𝑧 = ∪ 𝑆 → (𝐴𝐹𝑧) = (𝐴𝐹∪ 𝑆)) | |
19 | ovex 7481 | . . . . 5 ⊢ (𝐴𝐹∪ 𝑆) ∈ V | |
20 | 18, 3, 19 | fvmpt 7029 | . . . 4 ⊢ (∪ 𝑆 ∈ V → ((𝑧 ∈ V ↦ (𝐴𝐹𝑧))‘∪ 𝑆) = (𝐴𝐹∪ 𝑆)) |
21 | 17, 20 | syl 17 | . . 3 ⊢ (𝑆 ∈ 𝑇 → ((𝑧 ∈ V ↦ (𝐴𝐹𝑧))‘∪ 𝑆) = (𝐴𝐹∪ 𝑆)) |
22 | 21 | 3ad2ant1 1133 | . 2 ⊢ ((𝑆 ∈ 𝑇 ∧ 𝑆 ⊆ On ∧ 𝑆 ≠ ∅) → ((𝑧 ∈ V ↦ (𝐴𝐹𝑧))‘∪ 𝑆) = (𝐴𝐹∪ 𝑆)) |
23 | 10 | a1i 11 | . . . 4 ⊢ (𝑥 ∈ 𝑆 → ((𝑧 ∈ V ↦ (𝐴𝐹𝑧))‘𝑥) = (𝐴𝐹𝑥)) |
24 | 23 | iuneq2i 5036 | . . 3 ⊢ ∪ 𝑥 ∈ 𝑆 ((𝑧 ∈ V ↦ (𝐴𝐹𝑧))‘𝑥) = ∪ 𝑥 ∈ 𝑆 (𝐴𝐹𝑥) |
25 | 24 | a1i 11 | . 2 ⊢ ((𝑆 ∈ 𝑇 ∧ 𝑆 ⊆ On ∧ 𝑆 ≠ ∅) → ∪ 𝑥 ∈ 𝑆 ((𝑧 ∈ V ↦ (𝐴𝐹𝑧))‘𝑥) = ∪ 𝑥 ∈ 𝑆 (𝐴𝐹𝑥)) |
26 | 16, 22, 25 | 3eqtr3d 2788 | 1 ⊢ ((𝑆 ∈ 𝑇 ∧ 𝑆 ⊆ On ∧ 𝑆 ≠ ∅) → (𝐴𝐹∪ 𝑆) = ∪ 𝑥 ∈ 𝑆 (𝐴𝐹𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 Vcvv 3488 ⊆ wss 3976 ∅c0 4352 ∪ cuni 4931 ∪ ciun 5015 ↦ cmpt 5249 Oncon0 6395 Lim wlim 6396 ‘cfv 6573 (class class class)co 7448 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-ord 6398 df-on 6399 df-lim 6400 df-iota 6525 df-fun 6575 df-fv 6581 df-ov 7451 |
This theorem is referenced by: onoviun 8399 |
Copyright terms: Public domain | W3C validator |