![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > onovuni | Structured version Visualization version GIF version |
Description: A variant of onfununi 7821 for operations. (Contributed by Eric Schmidt, 26-May-2009.) (Revised by Mario Carneiro, 11-Sep-2015.) |
Ref | Expression |
---|---|
onovuni.1 | ⊢ (Lim 𝑦 → (𝐴𝐹𝑦) = ∪ 𝑥 ∈ 𝑦 (𝐴𝐹𝑥)) |
onovuni.2 | ⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ On ∧ 𝑥 ⊆ 𝑦) → (𝐴𝐹𝑥) ⊆ (𝐴𝐹𝑦)) |
Ref | Expression |
---|---|
onovuni | ⊢ ((𝑆 ∈ 𝑇 ∧ 𝑆 ⊆ On ∧ 𝑆 ≠ ∅) → (𝐴𝐹∪ 𝑆) = ∪ 𝑥 ∈ 𝑆 (𝐴𝐹𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | onovuni.1 | . . . 4 ⊢ (Lim 𝑦 → (𝐴𝐹𝑦) = ∪ 𝑥 ∈ 𝑦 (𝐴𝐹𝑥)) | |
2 | oveq2 7015 | . . . . . 6 ⊢ (𝑧 = 𝑦 → (𝐴𝐹𝑧) = (𝐴𝐹𝑦)) | |
3 | eqid 2793 | . . . . . 6 ⊢ (𝑧 ∈ V ↦ (𝐴𝐹𝑧)) = (𝑧 ∈ V ↦ (𝐴𝐹𝑧)) | |
4 | ovex 7039 | . . . . . 6 ⊢ (𝐴𝐹𝑦) ∈ V | |
5 | 2, 3, 4 | fvmpt 6626 | . . . . 5 ⊢ (𝑦 ∈ V → ((𝑧 ∈ V ↦ (𝐴𝐹𝑧))‘𝑦) = (𝐴𝐹𝑦)) |
6 | 5 | elv 3437 | . . . 4 ⊢ ((𝑧 ∈ V ↦ (𝐴𝐹𝑧))‘𝑦) = (𝐴𝐹𝑦) |
7 | oveq2 7015 | . . . . . . . 8 ⊢ (𝑧 = 𝑥 → (𝐴𝐹𝑧) = (𝐴𝐹𝑥)) | |
8 | ovex 7039 | . . . . . . . 8 ⊢ (𝐴𝐹𝑥) ∈ V | |
9 | 7, 3, 8 | fvmpt 6626 | . . . . . . 7 ⊢ (𝑥 ∈ V → ((𝑧 ∈ V ↦ (𝐴𝐹𝑧))‘𝑥) = (𝐴𝐹𝑥)) |
10 | 9 | elv 3437 | . . . . . 6 ⊢ ((𝑧 ∈ V ↦ (𝐴𝐹𝑧))‘𝑥) = (𝐴𝐹𝑥) |
11 | 10 | a1i 11 | . . . . 5 ⊢ (𝑥 ∈ 𝑦 → ((𝑧 ∈ V ↦ (𝐴𝐹𝑧))‘𝑥) = (𝐴𝐹𝑥)) |
12 | 11 | iuneq2i 4839 | . . . 4 ⊢ ∪ 𝑥 ∈ 𝑦 ((𝑧 ∈ V ↦ (𝐴𝐹𝑧))‘𝑥) = ∪ 𝑥 ∈ 𝑦 (𝐴𝐹𝑥) |
13 | 1, 6, 12 | 3eqtr4g 2854 | . . 3 ⊢ (Lim 𝑦 → ((𝑧 ∈ V ↦ (𝐴𝐹𝑧))‘𝑦) = ∪ 𝑥 ∈ 𝑦 ((𝑧 ∈ V ↦ (𝐴𝐹𝑧))‘𝑥)) |
14 | onovuni.2 | . . . 4 ⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ On ∧ 𝑥 ⊆ 𝑦) → (𝐴𝐹𝑥) ⊆ (𝐴𝐹𝑦)) | |
15 | 14, 10, 6 | 3sstr4g 3928 | . . 3 ⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ On ∧ 𝑥 ⊆ 𝑦) → ((𝑧 ∈ V ↦ (𝐴𝐹𝑧))‘𝑥) ⊆ ((𝑧 ∈ V ↦ (𝐴𝐹𝑧))‘𝑦)) |
16 | 13, 15 | onfununi 7821 | . 2 ⊢ ((𝑆 ∈ 𝑇 ∧ 𝑆 ⊆ On ∧ 𝑆 ≠ ∅) → ((𝑧 ∈ V ↦ (𝐴𝐹𝑧))‘∪ 𝑆) = ∪ 𝑥 ∈ 𝑆 ((𝑧 ∈ V ↦ (𝐴𝐹𝑧))‘𝑥)) |
17 | uniexg 7316 | . . . 4 ⊢ (𝑆 ∈ 𝑇 → ∪ 𝑆 ∈ V) | |
18 | oveq2 7015 | . . . . 5 ⊢ (𝑧 = ∪ 𝑆 → (𝐴𝐹𝑧) = (𝐴𝐹∪ 𝑆)) | |
19 | ovex 7039 | . . . . 5 ⊢ (𝐴𝐹∪ 𝑆) ∈ V | |
20 | 18, 3, 19 | fvmpt 6626 | . . . 4 ⊢ (∪ 𝑆 ∈ V → ((𝑧 ∈ V ↦ (𝐴𝐹𝑧))‘∪ 𝑆) = (𝐴𝐹∪ 𝑆)) |
21 | 17, 20 | syl 17 | . . 3 ⊢ (𝑆 ∈ 𝑇 → ((𝑧 ∈ V ↦ (𝐴𝐹𝑧))‘∪ 𝑆) = (𝐴𝐹∪ 𝑆)) |
22 | 21 | 3ad2ant1 1124 | . 2 ⊢ ((𝑆 ∈ 𝑇 ∧ 𝑆 ⊆ On ∧ 𝑆 ≠ ∅) → ((𝑧 ∈ V ↦ (𝐴𝐹𝑧))‘∪ 𝑆) = (𝐴𝐹∪ 𝑆)) |
23 | 10 | a1i 11 | . . . 4 ⊢ (𝑥 ∈ 𝑆 → ((𝑧 ∈ V ↦ (𝐴𝐹𝑧))‘𝑥) = (𝐴𝐹𝑥)) |
24 | 23 | iuneq2i 4839 | . . 3 ⊢ ∪ 𝑥 ∈ 𝑆 ((𝑧 ∈ V ↦ (𝐴𝐹𝑧))‘𝑥) = ∪ 𝑥 ∈ 𝑆 (𝐴𝐹𝑥) |
25 | 24 | a1i 11 | . 2 ⊢ ((𝑆 ∈ 𝑇 ∧ 𝑆 ⊆ On ∧ 𝑆 ≠ ∅) → ∪ 𝑥 ∈ 𝑆 ((𝑧 ∈ V ↦ (𝐴𝐹𝑧))‘𝑥) = ∪ 𝑥 ∈ 𝑆 (𝐴𝐹𝑥)) |
26 | 16, 22, 25 | 3eqtr3d 2837 | 1 ⊢ ((𝑆 ∈ 𝑇 ∧ 𝑆 ⊆ On ∧ 𝑆 ≠ ∅) → (𝐴𝐹∪ 𝑆) = ∪ 𝑥 ∈ 𝑆 (𝐴𝐹𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1078 = wceq 1520 ∈ wcel 2079 ≠ wne 2982 Vcvv 3432 ⊆ wss 3854 ∅c0 4206 ∪ cuni 4739 ∪ ciun 4819 ↦ cmpt 5035 Oncon0 6058 Lim wlim 6059 ‘cfv 6217 (class class class)co 7007 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1775 ax-4 1789 ax-5 1886 ax-6 1945 ax-7 1990 ax-8 2081 ax-9 2089 ax-10 2110 ax-11 2124 ax-12 2139 ax-13 2342 ax-ext 2767 ax-sep 5088 ax-nul 5095 ax-pr 5214 ax-un 7310 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1079 df-3an 1080 df-tru 1523 df-ex 1760 df-nf 1764 df-sb 2041 df-mo 2574 df-eu 2610 df-clab 2774 df-cleq 2786 df-clel 2861 df-nfc 2933 df-ne 2983 df-ral 3108 df-rex 3109 df-rab 3112 df-v 3434 df-sbc 3702 df-dif 3857 df-un 3859 df-in 3861 df-ss 3869 df-pss 3871 df-nul 4207 df-if 4376 df-sn 4467 df-pr 4469 df-tp 4471 df-op 4473 df-uni 4740 df-iun 4821 df-br 4957 df-opab 5019 df-mpt 5036 df-tr 5058 df-id 5340 df-eprel 5345 df-po 5354 df-so 5355 df-fr 5394 df-we 5396 df-xp 5441 df-rel 5442 df-cnv 5443 df-co 5444 df-dm 5445 df-ord 6061 df-on 6062 df-lim 6063 df-iota 6181 df-fun 6219 df-fv 6225 df-ov 7010 |
This theorem is referenced by: onoviun 7823 |
Copyright terms: Public domain | W3C validator |