MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onovuni Structured version   Visualization version   GIF version

Theorem onovuni 8398
Description: A variant of onfununi 8397 for operations. (Contributed by Eric Schmidt, 26-May-2009.) (Revised by Mario Carneiro, 11-Sep-2015.)
Hypotheses
Ref Expression
onovuni.1 (Lim 𝑦 → (𝐴𝐹𝑦) = 𝑥𝑦 (𝐴𝐹𝑥))
onovuni.2 ((𝑥 ∈ On ∧ 𝑦 ∈ On ∧ 𝑥𝑦) → (𝐴𝐹𝑥) ⊆ (𝐴𝐹𝑦))
Assertion
Ref Expression
onovuni ((𝑆𝑇𝑆 ⊆ On ∧ 𝑆 ≠ ∅) → (𝐴𝐹 𝑆) = 𝑥𝑆 (𝐴𝐹𝑥))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐹,𝑦   𝑥,𝑆,𝑦   𝑥,𝑇
Allowed substitution hint:   𝑇(𝑦)

Proof of Theorem onovuni
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 onovuni.1 . . . 4 (Lim 𝑦 → (𝐴𝐹𝑦) = 𝑥𝑦 (𝐴𝐹𝑥))
2 oveq2 7456 . . . . . 6 (𝑧 = 𝑦 → (𝐴𝐹𝑧) = (𝐴𝐹𝑦))
3 eqid 2740 . . . . . 6 (𝑧 ∈ V ↦ (𝐴𝐹𝑧)) = (𝑧 ∈ V ↦ (𝐴𝐹𝑧))
4 ovex 7481 . . . . . 6 (𝐴𝐹𝑦) ∈ V
52, 3, 4fvmpt 7029 . . . . 5 (𝑦 ∈ V → ((𝑧 ∈ V ↦ (𝐴𝐹𝑧))‘𝑦) = (𝐴𝐹𝑦))
65elv 3493 . . . 4 ((𝑧 ∈ V ↦ (𝐴𝐹𝑧))‘𝑦) = (𝐴𝐹𝑦)
7 oveq2 7456 . . . . . . . 8 (𝑧 = 𝑥 → (𝐴𝐹𝑧) = (𝐴𝐹𝑥))
8 ovex 7481 . . . . . . . 8 (𝐴𝐹𝑥) ∈ V
97, 3, 8fvmpt 7029 . . . . . . 7 (𝑥 ∈ V → ((𝑧 ∈ V ↦ (𝐴𝐹𝑧))‘𝑥) = (𝐴𝐹𝑥))
109elv 3493 . . . . . 6 ((𝑧 ∈ V ↦ (𝐴𝐹𝑧))‘𝑥) = (𝐴𝐹𝑥)
1110a1i 11 . . . . 5 (𝑥𝑦 → ((𝑧 ∈ V ↦ (𝐴𝐹𝑧))‘𝑥) = (𝐴𝐹𝑥))
1211iuneq2i 5036 . . . 4 𝑥𝑦 ((𝑧 ∈ V ↦ (𝐴𝐹𝑧))‘𝑥) = 𝑥𝑦 (𝐴𝐹𝑥)
131, 6, 123eqtr4g 2805 . . 3 (Lim 𝑦 → ((𝑧 ∈ V ↦ (𝐴𝐹𝑧))‘𝑦) = 𝑥𝑦 ((𝑧 ∈ V ↦ (𝐴𝐹𝑧))‘𝑥))
14 onovuni.2 . . . 4 ((𝑥 ∈ On ∧ 𝑦 ∈ On ∧ 𝑥𝑦) → (𝐴𝐹𝑥) ⊆ (𝐴𝐹𝑦))
1514, 10, 63sstr4g 4054 . . 3 ((𝑥 ∈ On ∧ 𝑦 ∈ On ∧ 𝑥𝑦) → ((𝑧 ∈ V ↦ (𝐴𝐹𝑧))‘𝑥) ⊆ ((𝑧 ∈ V ↦ (𝐴𝐹𝑧))‘𝑦))
1613, 15onfununi 8397 . 2 ((𝑆𝑇𝑆 ⊆ On ∧ 𝑆 ≠ ∅) → ((𝑧 ∈ V ↦ (𝐴𝐹𝑧))‘ 𝑆) = 𝑥𝑆 ((𝑧 ∈ V ↦ (𝐴𝐹𝑧))‘𝑥))
17 uniexg 7775 . . . 4 (𝑆𝑇 𝑆 ∈ V)
18 oveq2 7456 . . . . 5 (𝑧 = 𝑆 → (𝐴𝐹𝑧) = (𝐴𝐹 𝑆))
19 ovex 7481 . . . . 5 (𝐴𝐹 𝑆) ∈ V
2018, 3, 19fvmpt 7029 . . . 4 ( 𝑆 ∈ V → ((𝑧 ∈ V ↦ (𝐴𝐹𝑧))‘ 𝑆) = (𝐴𝐹 𝑆))
2117, 20syl 17 . . 3 (𝑆𝑇 → ((𝑧 ∈ V ↦ (𝐴𝐹𝑧))‘ 𝑆) = (𝐴𝐹 𝑆))
22213ad2ant1 1133 . 2 ((𝑆𝑇𝑆 ⊆ On ∧ 𝑆 ≠ ∅) → ((𝑧 ∈ V ↦ (𝐴𝐹𝑧))‘ 𝑆) = (𝐴𝐹 𝑆))
2310a1i 11 . . . 4 (𝑥𝑆 → ((𝑧 ∈ V ↦ (𝐴𝐹𝑧))‘𝑥) = (𝐴𝐹𝑥))
2423iuneq2i 5036 . . 3 𝑥𝑆 ((𝑧 ∈ V ↦ (𝐴𝐹𝑧))‘𝑥) = 𝑥𝑆 (𝐴𝐹𝑥)
2524a1i 11 . 2 ((𝑆𝑇𝑆 ⊆ On ∧ 𝑆 ≠ ∅) → 𝑥𝑆 ((𝑧 ∈ V ↦ (𝐴𝐹𝑧))‘𝑥) = 𝑥𝑆 (𝐴𝐹𝑥))
2616, 22, 253eqtr3d 2788 1 ((𝑆𝑇𝑆 ⊆ On ∧ 𝑆 ≠ ∅) → (𝐴𝐹 𝑆) = 𝑥𝑆 (𝐴𝐹𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1087   = wceq 1537  wcel 2108  wne 2946  Vcvv 3488  wss 3976  c0 4352   cuni 4931   ciun 5015  cmpt 5249  Oncon0 6395  Lim wlim 6396  cfv 6573  (class class class)co 7448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-ord 6398  df-on 6399  df-lim 6400  df-iota 6525  df-fun 6575  df-fv 6581  df-ov 7451
This theorem is referenced by:  onoviun  8399
  Copyright terms: Public domain W3C validator