![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > onovuni | Structured version Visualization version GIF version |
Description: A variant of onfununi 8288 for operations. (Contributed by Eric Schmidt, 26-May-2009.) (Revised by Mario Carneiro, 11-Sep-2015.) |
Ref | Expression |
---|---|
onovuni.1 | ⊢ (Lim 𝑦 → (𝐴𝐹𝑦) = ∪ 𝑥 ∈ 𝑦 (𝐴𝐹𝑥)) |
onovuni.2 | ⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ On ∧ 𝑥 ⊆ 𝑦) → (𝐴𝐹𝑥) ⊆ (𝐴𝐹𝑦)) |
Ref | Expression |
---|---|
onovuni | ⊢ ((𝑆 ∈ 𝑇 ∧ 𝑆 ⊆ On ∧ 𝑆 ≠ ∅) → (𝐴𝐹∪ 𝑆) = ∪ 𝑥 ∈ 𝑆 (𝐴𝐹𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | onovuni.1 | . . . 4 ⊢ (Lim 𝑦 → (𝐴𝐹𝑦) = ∪ 𝑥 ∈ 𝑦 (𝐴𝐹𝑥)) | |
2 | oveq2 7366 | . . . . . 6 ⊢ (𝑧 = 𝑦 → (𝐴𝐹𝑧) = (𝐴𝐹𝑦)) | |
3 | eqid 2733 | . . . . . 6 ⊢ (𝑧 ∈ V ↦ (𝐴𝐹𝑧)) = (𝑧 ∈ V ↦ (𝐴𝐹𝑧)) | |
4 | ovex 7391 | . . . . . 6 ⊢ (𝐴𝐹𝑦) ∈ V | |
5 | 2, 3, 4 | fvmpt 6949 | . . . . 5 ⊢ (𝑦 ∈ V → ((𝑧 ∈ V ↦ (𝐴𝐹𝑧))‘𝑦) = (𝐴𝐹𝑦)) |
6 | 5 | elv 3450 | . . . 4 ⊢ ((𝑧 ∈ V ↦ (𝐴𝐹𝑧))‘𝑦) = (𝐴𝐹𝑦) |
7 | oveq2 7366 | . . . . . . . 8 ⊢ (𝑧 = 𝑥 → (𝐴𝐹𝑧) = (𝐴𝐹𝑥)) | |
8 | ovex 7391 | . . . . . . . 8 ⊢ (𝐴𝐹𝑥) ∈ V | |
9 | 7, 3, 8 | fvmpt 6949 | . . . . . . 7 ⊢ (𝑥 ∈ V → ((𝑧 ∈ V ↦ (𝐴𝐹𝑧))‘𝑥) = (𝐴𝐹𝑥)) |
10 | 9 | elv 3450 | . . . . . 6 ⊢ ((𝑧 ∈ V ↦ (𝐴𝐹𝑧))‘𝑥) = (𝐴𝐹𝑥) |
11 | 10 | a1i 11 | . . . . 5 ⊢ (𝑥 ∈ 𝑦 → ((𝑧 ∈ V ↦ (𝐴𝐹𝑧))‘𝑥) = (𝐴𝐹𝑥)) |
12 | 11 | iuneq2i 4976 | . . . 4 ⊢ ∪ 𝑥 ∈ 𝑦 ((𝑧 ∈ V ↦ (𝐴𝐹𝑧))‘𝑥) = ∪ 𝑥 ∈ 𝑦 (𝐴𝐹𝑥) |
13 | 1, 6, 12 | 3eqtr4g 2798 | . . 3 ⊢ (Lim 𝑦 → ((𝑧 ∈ V ↦ (𝐴𝐹𝑧))‘𝑦) = ∪ 𝑥 ∈ 𝑦 ((𝑧 ∈ V ↦ (𝐴𝐹𝑧))‘𝑥)) |
14 | onovuni.2 | . . . 4 ⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ On ∧ 𝑥 ⊆ 𝑦) → (𝐴𝐹𝑥) ⊆ (𝐴𝐹𝑦)) | |
15 | 14, 10, 6 | 3sstr4g 3990 | . . 3 ⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ On ∧ 𝑥 ⊆ 𝑦) → ((𝑧 ∈ V ↦ (𝐴𝐹𝑧))‘𝑥) ⊆ ((𝑧 ∈ V ↦ (𝐴𝐹𝑧))‘𝑦)) |
16 | 13, 15 | onfununi 8288 | . 2 ⊢ ((𝑆 ∈ 𝑇 ∧ 𝑆 ⊆ On ∧ 𝑆 ≠ ∅) → ((𝑧 ∈ V ↦ (𝐴𝐹𝑧))‘∪ 𝑆) = ∪ 𝑥 ∈ 𝑆 ((𝑧 ∈ V ↦ (𝐴𝐹𝑧))‘𝑥)) |
17 | uniexg 7678 | . . . 4 ⊢ (𝑆 ∈ 𝑇 → ∪ 𝑆 ∈ V) | |
18 | oveq2 7366 | . . . . 5 ⊢ (𝑧 = ∪ 𝑆 → (𝐴𝐹𝑧) = (𝐴𝐹∪ 𝑆)) | |
19 | ovex 7391 | . . . . 5 ⊢ (𝐴𝐹∪ 𝑆) ∈ V | |
20 | 18, 3, 19 | fvmpt 6949 | . . . 4 ⊢ (∪ 𝑆 ∈ V → ((𝑧 ∈ V ↦ (𝐴𝐹𝑧))‘∪ 𝑆) = (𝐴𝐹∪ 𝑆)) |
21 | 17, 20 | syl 17 | . . 3 ⊢ (𝑆 ∈ 𝑇 → ((𝑧 ∈ V ↦ (𝐴𝐹𝑧))‘∪ 𝑆) = (𝐴𝐹∪ 𝑆)) |
22 | 21 | 3ad2ant1 1134 | . 2 ⊢ ((𝑆 ∈ 𝑇 ∧ 𝑆 ⊆ On ∧ 𝑆 ≠ ∅) → ((𝑧 ∈ V ↦ (𝐴𝐹𝑧))‘∪ 𝑆) = (𝐴𝐹∪ 𝑆)) |
23 | 10 | a1i 11 | . . . 4 ⊢ (𝑥 ∈ 𝑆 → ((𝑧 ∈ V ↦ (𝐴𝐹𝑧))‘𝑥) = (𝐴𝐹𝑥)) |
24 | 23 | iuneq2i 4976 | . . 3 ⊢ ∪ 𝑥 ∈ 𝑆 ((𝑧 ∈ V ↦ (𝐴𝐹𝑧))‘𝑥) = ∪ 𝑥 ∈ 𝑆 (𝐴𝐹𝑥) |
25 | 24 | a1i 11 | . 2 ⊢ ((𝑆 ∈ 𝑇 ∧ 𝑆 ⊆ On ∧ 𝑆 ≠ ∅) → ∪ 𝑥 ∈ 𝑆 ((𝑧 ∈ V ↦ (𝐴𝐹𝑧))‘𝑥) = ∪ 𝑥 ∈ 𝑆 (𝐴𝐹𝑥)) |
26 | 16, 22, 25 | 3eqtr3d 2781 | 1 ⊢ ((𝑆 ∈ 𝑇 ∧ 𝑆 ⊆ On ∧ 𝑆 ≠ ∅) → (𝐴𝐹∪ 𝑆) = ∪ 𝑥 ∈ 𝑆 (𝐴𝐹𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 ≠ wne 2940 Vcvv 3444 ⊆ wss 3911 ∅c0 4283 ∪ cuni 4866 ∪ ciun 4955 ↦ cmpt 5189 Oncon0 6318 Lim wlim 6319 ‘cfv 6497 (class class class)co 7358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5257 ax-nul 5264 ax-pr 5385 ax-un 7673 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3407 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3930 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-iun 4957 df-br 5107 df-opab 5169 df-mpt 5190 df-tr 5224 df-id 5532 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5589 df-we 5591 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-ord 6321 df-on 6322 df-lim 6323 df-iota 6449 df-fun 6499 df-fv 6505 df-ov 7361 |
This theorem is referenced by: onoviun 8290 |
Copyright terms: Public domain | W3C validator |