| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > onovuni | Structured version Visualization version GIF version | ||
| Description: A variant of onfununi 8355 for operations. (Contributed by Eric Schmidt, 26-May-2009.) (Revised by Mario Carneiro, 11-Sep-2015.) |
| Ref | Expression |
|---|---|
| onovuni.1 | ⊢ (Lim 𝑦 → (𝐴𝐹𝑦) = ∪ 𝑥 ∈ 𝑦 (𝐴𝐹𝑥)) |
| onovuni.2 | ⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ On ∧ 𝑥 ⊆ 𝑦) → (𝐴𝐹𝑥) ⊆ (𝐴𝐹𝑦)) |
| Ref | Expression |
|---|---|
| onovuni | ⊢ ((𝑆 ∈ 𝑇 ∧ 𝑆 ⊆ On ∧ 𝑆 ≠ ∅) → (𝐴𝐹∪ 𝑆) = ∪ 𝑥 ∈ 𝑆 (𝐴𝐹𝑥)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | onovuni.1 | . . . 4 ⊢ (Lim 𝑦 → (𝐴𝐹𝑦) = ∪ 𝑥 ∈ 𝑦 (𝐴𝐹𝑥)) | |
| 2 | oveq2 7413 | . . . . . 6 ⊢ (𝑧 = 𝑦 → (𝐴𝐹𝑧) = (𝐴𝐹𝑦)) | |
| 3 | eqid 2735 | . . . . . 6 ⊢ (𝑧 ∈ V ↦ (𝐴𝐹𝑧)) = (𝑧 ∈ V ↦ (𝐴𝐹𝑧)) | |
| 4 | ovex 7438 | . . . . . 6 ⊢ (𝐴𝐹𝑦) ∈ V | |
| 5 | 2, 3, 4 | fvmpt 6986 | . . . . 5 ⊢ (𝑦 ∈ V → ((𝑧 ∈ V ↦ (𝐴𝐹𝑧))‘𝑦) = (𝐴𝐹𝑦)) |
| 6 | 5 | elv 3464 | . . . 4 ⊢ ((𝑧 ∈ V ↦ (𝐴𝐹𝑧))‘𝑦) = (𝐴𝐹𝑦) |
| 7 | oveq2 7413 | . . . . . . . 8 ⊢ (𝑧 = 𝑥 → (𝐴𝐹𝑧) = (𝐴𝐹𝑥)) | |
| 8 | ovex 7438 | . . . . . . . 8 ⊢ (𝐴𝐹𝑥) ∈ V | |
| 9 | 7, 3, 8 | fvmpt 6986 | . . . . . . 7 ⊢ (𝑥 ∈ V → ((𝑧 ∈ V ↦ (𝐴𝐹𝑧))‘𝑥) = (𝐴𝐹𝑥)) |
| 10 | 9 | elv 3464 | . . . . . 6 ⊢ ((𝑧 ∈ V ↦ (𝐴𝐹𝑧))‘𝑥) = (𝐴𝐹𝑥) |
| 11 | 10 | a1i 11 | . . . . 5 ⊢ (𝑥 ∈ 𝑦 → ((𝑧 ∈ V ↦ (𝐴𝐹𝑧))‘𝑥) = (𝐴𝐹𝑥)) |
| 12 | 11 | iuneq2i 4989 | . . . 4 ⊢ ∪ 𝑥 ∈ 𝑦 ((𝑧 ∈ V ↦ (𝐴𝐹𝑧))‘𝑥) = ∪ 𝑥 ∈ 𝑦 (𝐴𝐹𝑥) |
| 13 | 1, 6, 12 | 3eqtr4g 2795 | . . 3 ⊢ (Lim 𝑦 → ((𝑧 ∈ V ↦ (𝐴𝐹𝑧))‘𝑦) = ∪ 𝑥 ∈ 𝑦 ((𝑧 ∈ V ↦ (𝐴𝐹𝑧))‘𝑥)) |
| 14 | onovuni.2 | . . . 4 ⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ On ∧ 𝑥 ⊆ 𝑦) → (𝐴𝐹𝑥) ⊆ (𝐴𝐹𝑦)) | |
| 15 | 14, 10, 6 | 3sstr4g 4012 | . . 3 ⊢ ((𝑥 ∈ On ∧ 𝑦 ∈ On ∧ 𝑥 ⊆ 𝑦) → ((𝑧 ∈ V ↦ (𝐴𝐹𝑧))‘𝑥) ⊆ ((𝑧 ∈ V ↦ (𝐴𝐹𝑧))‘𝑦)) |
| 16 | 13, 15 | onfununi 8355 | . 2 ⊢ ((𝑆 ∈ 𝑇 ∧ 𝑆 ⊆ On ∧ 𝑆 ≠ ∅) → ((𝑧 ∈ V ↦ (𝐴𝐹𝑧))‘∪ 𝑆) = ∪ 𝑥 ∈ 𝑆 ((𝑧 ∈ V ↦ (𝐴𝐹𝑧))‘𝑥)) |
| 17 | uniexg 7734 | . . . 4 ⊢ (𝑆 ∈ 𝑇 → ∪ 𝑆 ∈ V) | |
| 18 | oveq2 7413 | . . . . 5 ⊢ (𝑧 = ∪ 𝑆 → (𝐴𝐹𝑧) = (𝐴𝐹∪ 𝑆)) | |
| 19 | ovex 7438 | . . . . 5 ⊢ (𝐴𝐹∪ 𝑆) ∈ V | |
| 20 | 18, 3, 19 | fvmpt 6986 | . . . 4 ⊢ (∪ 𝑆 ∈ V → ((𝑧 ∈ V ↦ (𝐴𝐹𝑧))‘∪ 𝑆) = (𝐴𝐹∪ 𝑆)) |
| 21 | 17, 20 | syl 17 | . . 3 ⊢ (𝑆 ∈ 𝑇 → ((𝑧 ∈ V ↦ (𝐴𝐹𝑧))‘∪ 𝑆) = (𝐴𝐹∪ 𝑆)) |
| 22 | 21 | 3ad2ant1 1133 | . 2 ⊢ ((𝑆 ∈ 𝑇 ∧ 𝑆 ⊆ On ∧ 𝑆 ≠ ∅) → ((𝑧 ∈ V ↦ (𝐴𝐹𝑧))‘∪ 𝑆) = (𝐴𝐹∪ 𝑆)) |
| 23 | 10 | a1i 11 | . . . 4 ⊢ (𝑥 ∈ 𝑆 → ((𝑧 ∈ V ↦ (𝐴𝐹𝑧))‘𝑥) = (𝐴𝐹𝑥)) |
| 24 | 23 | iuneq2i 4989 | . . 3 ⊢ ∪ 𝑥 ∈ 𝑆 ((𝑧 ∈ V ↦ (𝐴𝐹𝑧))‘𝑥) = ∪ 𝑥 ∈ 𝑆 (𝐴𝐹𝑥) |
| 25 | 24 | a1i 11 | . 2 ⊢ ((𝑆 ∈ 𝑇 ∧ 𝑆 ⊆ On ∧ 𝑆 ≠ ∅) → ∪ 𝑥 ∈ 𝑆 ((𝑧 ∈ V ↦ (𝐴𝐹𝑧))‘𝑥) = ∪ 𝑥 ∈ 𝑆 (𝐴𝐹𝑥)) |
| 26 | 16, 22, 25 | 3eqtr3d 2778 | 1 ⊢ ((𝑆 ∈ 𝑇 ∧ 𝑆 ⊆ On ∧ 𝑆 ≠ ∅) → (𝐴𝐹∪ 𝑆) = ∪ 𝑥 ∈ 𝑆 (𝐴𝐹𝑥)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 Vcvv 3459 ⊆ wss 3926 ∅c0 4308 ∪ cuni 4883 ∪ ciun 4967 ↦ cmpt 5201 Oncon0 6352 Lim wlim 6353 ‘cfv 6531 (class class class)co 7405 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-ord 6355 df-on 6356 df-lim 6357 df-iota 6484 df-fun 6533 df-fv 6539 df-ov 7408 |
| This theorem is referenced by: onoviun 8357 |
| Copyright terms: Public domain | W3C validator |