MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onovuni Structured version   Visualization version   GIF version

Theorem onovuni 8338
Description: A variant of onfununi 8337 for operations. (Contributed by Eric Schmidt, 26-May-2009.) (Revised by Mario Carneiro, 11-Sep-2015.)
Hypotheses
Ref Expression
onovuni.1 (Lim 𝑦 → (𝐴𝐹𝑦) = 𝑥𝑦 (𝐴𝐹𝑥))
onovuni.2 ((𝑥 ∈ On ∧ 𝑦 ∈ On ∧ 𝑥𝑦) → (𝐴𝐹𝑥) ⊆ (𝐴𝐹𝑦))
Assertion
Ref Expression
onovuni ((𝑆𝑇𝑆 ⊆ On ∧ 𝑆 ≠ ∅) → (𝐴𝐹 𝑆) = 𝑥𝑆 (𝐴𝐹𝑥))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐹,𝑦   𝑥,𝑆,𝑦   𝑥,𝑇
Allowed substitution hint:   𝑇(𝑦)

Proof of Theorem onovuni
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 onovuni.1 . . . 4 (Lim 𝑦 → (𝐴𝐹𝑦) = 𝑥𝑦 (𝐴𝐹𝑥))
2 oveq2 7413 . . . . . 6 (𝑧 = 𝑦 → (𝐴𝐹𝑧) = (𝐴𝐹𝑦))
3 eqid 2732 . . . . . 6 (𝑧 ∈ V ↦ (𝐴𝐹𝑧)) = (𝑧 ∈ V ↦ (𝐴𝐹𝑧))
4 ovex 7438 . . . . . 6 (𝐴𝐹𝑦) ∈ V
52, 3, 4fvmpt 6995 . . . . 5 (𝑦 ∈ V → ((𝑧 ∈ V ↦ (𝐴𝐹𝑧))‘𝑦) = (𝐴𝐹𝑦))
65elv 3480 . . . 4 ((𝑧 ∈ V ↦ (𝐴𝐹𝑧))‘𝑦) = (𝐴𝐹𝑦)
7 oveq2 7413 . . . . . . . 8 (𝑧 = 𝑥 → (𝐴𝐹𝑧) = (𝐴𝐹𝑥))
8 ovex 7438 . . . . . . . 8 (𝐴𝐹𝑥) ∈ V
97, 3, 8fvmpt 6995 . . . . . . 7 (𝑥 ∈ V → ((𝑧 ∈ V ↦ (𝐴𝐹𝑧))‘𝑥) = (𝐴𝐹𝑥))
109elv 3480 . . . . . 6 ((𝑧 ∈ V ↦ (𝐴𝐹𝑧))‘𝑥) = (𝐴𝐹𝑥)
1110a1i 11 . . . . 5 (𝑥𝑦 → ((𝑧 ∈ V ↦ (𝐴𝐹𝑧))‘𝑥) = (𝐴𝐹𝑥))
1211iuneq2i 5017 . . . 4 𝑥𝑦 ((𝑧 ∈ V ↦ (𝐴𝐹𝑧))‘𝑥) = 𝑥𝑦 (𝐴𝐹𝑥)
131, 6, 123eqtr4g 2797 . . 3 (Lim 𝑦 → ((𝑧 ∈ V ↦ (𝐴𝐹𝑧))‘𝑦) = 𝑥𝑦 ((𝑧 ∈ V ↦ (𝐴𝐹𝑧))‘𝑥))
14 onovuni.2 . . . 4 ((𝑥 ∈ On ∧ 𝑦 ∈ On ∧ 𝑥𝑦) → (𝐴𝐹𝑥) ⊆ (𝐴𝐹𝑦))
1514, 10, 63sstr4g 4026 . . 3 ((𝑥 ∈ On ∧ 𝑦 ∈ On ∧ 𝑥𝑦) → ((𝑧 ∈ V ↦ (𝐴𝐹𝑧))‘𝑥) ⊆ ((𝑧 ∈ V ↦ (𝐴𝐹𝑧))‘𝑦))
1613, 15onfununi 8337 . 2 ((𝑆𝑇𝑆 ⊆ On ∧ 𝑆 ≠ ∅) → ((𝑧 ∈ V ↦ (𝐴𝐹𝑧))‘ 𝑆) = 𝑥𝑆 ((𝑧 ∈ V ↦ (𝐴𝐹𝑧))‘𝑥))
17 uniexg 7726 . . . 4 (𝑆𝑇 𝑆 ∈ V)
18 oveq2 7413 . . . . 5 (𝑧 = 𝑆 → (𝐴𝐹𝑧) = (𝐴𝐹 𝑆))
19 ovex 7438 . . . . 5 (𝐴𝐹 𝑆) ∈ V
2018, 3, 19fvmpt 6995 . . . 4 ( 𝑆 ∈ V → ((𝑧 ∈ V ↦ (𝐴𝐹𝑧))‘ 𝑆) = (𝐴𝐹 𝑆))
2117, 20syl 17 . . 3 (𝑆𝑇 → ((𝑧 ∈ V ↦ (𝐴𝐹𝑧))‘ 𝑆) = (𝐴𝐹 𝑆))
22213ad2ant1 1133 . 2 ((𝑆𝑇𝑆 ⊆ On ∧ 𝑆 ≠ ∅) → ((𝑧 ∈ V ↦ (𝐴𝐹𝑧))‘ 𝑆) = (𝐴𝐹 𝑆))
2310a1i 11 . . . 4 (𝑥𝑆 → ((𝑧 ∈ V ↦ (𝐴𝐹𝑧))‘𝑥) = (𝐴𝐹𝑥))
2423iuneq2i 5017 . . 3 𝑥𝑆 ((𝑧 ∈ V ↦ (𝐴𝐹𝑧))‘𝑥) = 𝑥𝑆 (𝐴𝐹𝑥)
2524a1i 11 . 2 ((𝑆𝑇𝑆 ⊆ On ∧ 𝑆 ≠ ∅) → 𝑥𝑆 ((𝑧 ∈ V ↦ (𝐴𝐹𝑧))‘𝑥) = 𝑥𝑆 (𝐴𝐹𝑥))
2616, 22, 253eqtr3d 2780 1 ((𝑆𝑇𝑆 ⊆ On ∧ 𝑆 ≠ ∅) → (𝐴𝐹 𝑆) = 𝑥𝑆 (𝐴𝐹𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1087   = wceq 1541  wcel 2106  wne 2940  Vcvv 3474  wss 3947  c0 4321   cuni 4907   ciun 4996  cmpt 5230  Oncon0 6361  Lim wlim 6362  cfv 6540  (class class class)co 7405
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-ord 6364  df-on 6365  df-lim 6366  df-iota 6492  df-fun 6542  df-fv 6548  df-ov 7408
This theorem is referenced by:  onoviun  8339
  Copyright terms: Public domain W3C validator