MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onovuni Structured version   Visualization version   GIF version

Theorem onovuni 8344
Description: A variant of onfununi 8343 for operations. (Contributed by Eric Schmidt, 26-May-2009.) (Revised by Mario Carneiro, 11-Sep-2015.)
Hypotheses
Ref Expression
onovuni.1 (Lim 𝑦 → (𝐴𝐹𝑦) = 𝑥𝑦 (𝐴𝐹𝑥))
onovuni.2 ((𝑥 ∈ On ∧ 𝑦 ∈ On ∧ 𝑥𝑦) → (𝐴𝐹𝑥) ⊆ (𝐴𝐹𝑦))
Assertion
Ref Expression
onovuni ((𝑆𝑇𝑆 ⊆ On ∧ 𝑆 ≠ ∅) → (𝐴𝐹 𝑆) = 𝑥𝑆 (𝐴𝐹𝑥))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐹,𝑦   𝑥,𝑆,𝑦   𝑥,𝑇
Allowed substitution hint:   𝑇(𝑦)

Proof of Theorem onovuni
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 onovuni.1 . . . 4 (Lim 𝑦 → (𝐴𝐹𝑦) = 𝑥𝑦 (𝐴𝐹𝑥))
2 oveq2 7419 . . . . . 6 (𝑧 = 𝑦 → (𝐴𝐹𝑧) = (𝐴𝐹𝑦))
3 eqid 2730 . . . . . 6 (𝑧 ∈ V ↦ (𝐴𝐹𝑧)) = (𝑧 ∈ V ↦ (𝐴𝐹𝑧))
4 ovex 7444 . . . . . 6 (𝐴𝐹𝑦) ∈ V
52, 3, 4fvmpt 6997 . . . . 5 (𝑦 ∈ V → ((𝑧 ∈ V ↦ (𝐴𝐹𝑧))‘𝑦) = (𝐴𝐹𝑦))
65elv 3478 . . . 4 ((𝑧 ∈ V ↦ (𝐴𝐹𝑧))‘𝑦) = (𝐴𝐹𝑦)
7 oveq2 7419 . . . . . . . 8 (𝑧 = 𝑥 → (𝐴𝐹𝑧) = (𝐴𝐹𝑥))
8 ovex 7444 . . . . . . . 8 (𝐴𝐹𝑥) ∈ V
97, 3, 8fvmpt 6997 . . . . . . 7 (𝑥 ∈ V → ((𝑧 ∈ V ↦ (𝐴𝐹𝑧))‘𝑥) = (𝐴𝐹𝑥))
109elv 3478 . . . . . 6 ((𝑧 ∈ V ↦ (𝐴𝐹𝑧))‘𝑥) = (𝐴𝐹𝑥)
1110a1i 11 . . . . 5 (𝑥𝑦 → ((𝑧 ∈ V ↦ (𝐴𝐹𝑧))‘𝑥) = (𝐴𝐹𝑥))
1211iuneq2i 5017 . . . 4 𝑥𝑦 ((𝑧 ∈ V ↦ (𝐴𝐹𝑧))‘𝑥) = 𝑥𝑦 (𝐴𝐹𝑥)
131, 6, 123eqtr4g 2795 . . 3 (Lim 𝑦 → ((𝑧 ∈ V ↦ (𝐴𝐹𝑧))‘𝑦) = 𝑥𝑦 ((𝑧 ∈ V ↦ (𝐴𝐹𝑧))‘𝑥))
14 onovuni.2 . . . 4 ((𝑥 ∈ On ∧ 𝑦 ∈ On ∧ 𝑥𝑦) → (𝐴𝐹𝑥) ⊆ (𝐴𝐹𝑦))
1514, 10, 63sstr4g 4026 . . 3 ((𝑥 ∈ On ∧ 𝑦 ∈ On ∧ 𝑥𝑦) → ((𝑧 ∈ V ↦ (𝐴𝐹𝑧))‘𝑥) ⊆ ((𝑧 ∈ V ↦ (𝐴𝐹𝑧))‘𝑦))
1613, 15onfununi 8343 . 2 ((𝑆𝑇𝑆 ⊆ On ∧ 𝑆 ≠ ∅) → ((𝑧 ∈ V ↦ (𝐴𝐹𝑧))‘ 𝑆) = 𝑥𝑆 ((𝑧 ∈ V ↦ (𝐴𝐹𝑧))‘𝑥))
17 uniexg 7732 . . . 4 (𝑆𝑇 𝑆 ∈ V)
18 oveq2 7419 . . . . 5 (𝑧 = 𝑆 → (𝐴𝐹𝑧) = (𝐴𝐹 𝑆))
19 ovex 7444 . . . . 5 (𝐴𝐹 𝑆) ∈ V
2018, 3, 19fvmpt 6997 . . . 4 ( 𝑆 ∈ V → ((𝑧 ∈ V ↦ (𝐴𝐹𝑧))‘ 𝑆) = (𝐴𝐹 𝑆))
2117, 20syl 17 . . 3 (𝑆𝑇 → ((𝑧 ∈ V ↦ (𝐴𝐹𝑧))‘ 𝑆) = (𝐴𝐹 𝑆))
22213ad2ant1 1131 . 2 ((𝑆𝑇𝑆 ⊆ On ∧ 𝑆 ≠ ∅) → ((𝑧 ∈ V ↦ (𝐴𝐹𝑧))‘ 𝑆) = (𝐴𝐹 𝑆))
2310a1i 11 . . . 4 (𝑥𝑆 → ((𝑧 ∈ V ↦ (𝐴𝐹𝑧))‘𝑥) = (𝐴𝐹𝑥))
2423iuneq2i 5017 . . 3 𝑥𝑆 ((𝑧 ∈ V ↦ (𝐴𝐹𝑧))‘𝑥) = 𝑥𝑆 (𝐴𝐹𝑥)
2524a1i 11 . 2 ((𝑆𝑇𝑆 ⊆ On ∧ 𝑆 ≠ ∅) → 𝑥𝑆 ((𝑧 ∈ V ↦ (𝐴𝐹𝑧))‘𝑥) = 𝑥𝑆 (𝐴𝐹𝑥))
2616, 22, 253eqtr3d 2778 1 ((𝑆𝑇𝑆 ⊆ On ∧ 𝑆 ≠ ∅) → (𝐴𝐹 𝑆) = 𝑥𝑆 (𝐴𝐹𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1085   = wceq 1539  wcel 2104  wne 2938  Vcvv 3472  wss 3947  c0 4321   cuni 4907   ciun 4996  cmpt 5230  Oncon0 6363  Lim wlim 6364  cfv 6542  (class class class)co 7411
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pr 5426  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-ord 6366  df-on 6367  df-lim 6368  df-iota 6494  df-fun 6544  df-fv 6550  df-ov 7414
This theorem is referenced by:  onoviun  8345
  Copyright terms: Public domain W3C validator