![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > ococ | Structured version Visualization version GIF version |
Description: Complement of complement of a closed subspace of Hilbert space. Theorem 3.7(ii) of [Beran] p. 102. (Contributed by NM, 11-Oct-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ococ | ⊢ (𝐴 ∈ Cℋ → (⊥‘(⊥‘𝐴)) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2fveq3 6896 | . . 3 ⊢ (𝐴 = if(𝐴 ∈ Cℋ , 𝐴, ℋ) → (⊥‘(⊥‘𝐴)) = (⊥‘(⊥‘if(𝐴 ∈ Cℋ , 𝐴, ℋ)))) | |
2 | id 22 | . . 3 ⊢ (𝐴 = if(𝐴 ∈ Cℋ , 𝐴, ℋ) → 𝐴 = if(𝐴 ∈ Cℋ , 𝐴, ℋ)) | |
3 | 1, 2 | eqeq12d 2748 | . 2 ⊢ (𝐴 = if(𝐴 ∈ Cℋ , 𝐴, ℋ) → ((⊥‘(⊥‘𝐴)) = 𝐴 ↔ (⊥‘(⊥‘if(𝐴 ∈ Cℋ , 𝐴, ℋ))) = if(𝐴 ∈ Cℋ , 𝐴, ℋ))) |
4 | ifchhv 30492 | . . 3 ⊢ if(𝐴 ∈ Cℋ , 𝐴, ℋ) ∈ Cℋ | |
5 | 4 | ococi 30653 | . 2 ⊢ (⊥‘(⊥‘if(𝐴 ∈ Cℋ , 𝐴, ℋ))) = if(𝐴 ∈ Cℋ , 𝐴, ℋ) |
6 | 3, 5 | dedth 4586 | 1 ⊢ (𝐴 ∈ Cℋ → (⊥‘(⊥‘𝐴)) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 ifcif 4528 ‘cfv 6543 ℋchba 30167 Cℋ cch 30177 ⊥cort 30178 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-inf2 9635 ax-cc 10429 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 ax-pre-sup 11187 ax-addf 11188 ax-mulf 11189 ax-hilex 30247 ax-hfvadd 30248 ax-hvcom 30249 ax-hvass 30250 ax-hv0cl 30251 ax-hvaddid 30252 ax-hfvmul 30253 ax-hvmulid 30254 ax-hvmulass 30255 ax-hvdistr1 30256 ax-hvdistr2 30257 ax-hvmul0 30258 ax-hfi 30327 ax-his1 30330 ax-his2 30331 ax-his3 30332 ax-his4 30333 ax-hcompl 30450 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-iin 5000 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-1st 7974 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-1o 8465 df-oadd 8469 df-omul 8470 df-er 8702 df-map 8821 df-pm 8822 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-fi 9405 df-sup 9436 df-inf 9437 df-oi 9504 df-card 9933 df-acn 9936 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-div 11871 df-nn 12212 df-2 12274 df-3 12275 df-4 12276 df-n0 12472 df-z 12558 df-uz 12822 df-q 12932 df-rp 12974 df-xneg 13091 df-xadd 13092 df-xmul 13093 df-ico 13329 df-icc 13330 df-fz 13484 df-fl 13756 df-seq 13966 df-exp 14027 df-cj 15045 df-re 15046 df-im 15047 df-sqrt 15181 df-abs 15182 df-clim 15431 df-rlim 15432 df-rest 17367 df-topgen 17388 df-psmet 20935 df-xmet 20936 df-met 20937 df-bl 20938 df-mopn 20939 df-fbas 20940 df-fg 20941 df-top 22395 df-topon 22412 df-bases 22448 df-cld 22522 df-ntr 22523 df-cls 22524 df-nei 22601 df-lm 22732 df-haus 22818 df-fil 23349 df-fm 23441 df-flim 23442 df-flf 23443 df-cfil 24771 df-cau 24772 df-cmet 24773 df-grpo 29741 df-gid 29742 df-ginv 29743 df-gdiv 29744 df-ablo 29793 df-vc 29807 df-nv 29840 df-va 29843 df-ba 29844 df-sm 29845 df-0v 29846 df-vs 29847 df-nmcv 29848 df-ims 29849 df-ssp 29970 df-ph 30061 df-cbn 30111 df-hnorm 30216 df-hba 30217 df-hvsub 30219 df-hlim 30220 df-hcau 30221 df-sh 30455 df-ch 30469 df-oc 30500 df-ch0 30501 |
This theorem is referenced by: dfch2 30655 ococin 30656 shlub 30662 pjhtheu2 30664 shjshseli 30741 chsscon1 30749 chpsscon1 30752 chpsscon2 30753 chdmm2 30774 chdmm3 30775 chdmm4 30776 chdmj1 30777 chdmj2 30778 chdmj3 30779 chdmj4 30780 fh2 30867 hstle 31478 hstoh 31480 mddmd 31549 |
Copyright terms: Public domain | W3C validator |