| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > ococ | Structured version Visualization version GIF version | ||
| Description: Complement of complement of a closed subspace of Hilbert space. Theorem 3.7(ii) of [Beran] p. 102. (Contributed by NM, 11-Oct-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ococ | ⊢ (𝐴 ∈ Cℋ → (⊥‘(⊥‘𝐴)) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2fveq3 6881 | . . 3 ⊢ (𝐴 = if(𝐴 ∈ Cℋ , 𝐴, ℋ) → (⊥‘(⊥‘𝐴)) = (⊥‘(⊥‘if(𝐴 ∈ Cℋ , 𝐴, ℋ)))) | |
| 2 | id 22 | . . 3 ⊢ (𝐴 = if(𝐴 ∈ Cℋ , 𝐴, ℋ) → 𝐴 = if(𝐴 ∈ Cℋ , 𝐴, ℋ)) | |
| 3 | 1, 2 | eqeq12d 2751 | . 2 ⊢ (𝐴 = if(𝐴 ∈ Cℋ , 𝐴, ℋ) → ((⊥‘(⊥‘𝐴)) = 𝐴 ↔ (⊥‘(⊥‘if(𝐴 ∈ Cℋ , 𝐴, ℋ))) = if(𝐴 ∈ Cℋ , 𝐴, ℋ))) |
| 4 | ifchhv 31225 | . . 3 ⊢ if(𝐴 ∈ Cℋ , 𝐴, ℋ) ∈ Cℋ | |
| 5 | 4 | ococi 31386 | . 2 ⊢ (⊥‘(⊥‘if(𝐴 ∈ Cℋ , 𝐴, ℋ))) = if(𝐴 ∈ Cℋ , 𝐴, ℋ) |
| 6 | 3, 5 | dedth 4559 | 1 ⊢ (𝐴 ∈ Cℋ → (⊥‘(⊥‘𝐴)) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 ifcif 4500 ‘cfv 6531 ℋchba 30900 Cℋ cch 30910 ⊥cort 30911 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-inf2 9655 ax-cc 10449 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 ax-addf 11208 ax-mulf 11209 ax-hilex 30980 ax-hfvadd 30981 ax-hvcom 30982 ax-hvass 30983 ax-hv0cl 30984 ax-hvaddid 30985 ax-hfvmul 30986 ax-hvmulid 30987 ax-hvmulass 30988 ax-hvdistr1 30989 ax-hvdistr2 30990 ax-hvmul0 30991 ax-hfi 31060 ax-his1 31063 ax-his2 31064 ax-his3 31065 ax-his4 31066 ax-hcompl 31183 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-iin 4970 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-isom 6540 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-oadd 8484 df-omul 8485 df-er 8719 df-map 8842 df-pm 8843 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-fi 9423 df-sup 9454 df-inf 9455 df-oi 9524 df-card 9953 df-acn 9956 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-n0 12502 df-z 12589 df-uz 12853 df-q 12965 df-rp 13009 df-xneg 13128 df-xadd 13129 df-xmul 13130 df-ico 13368 df-icc 13369 df-fz 13525 df-fl 13809 df-seq 14020 df-exp 14080 df-cj 15118 df-re 15119 df-im 15120 df-sqrt 15254 df-abs 15255 df-clim 15504 df-rlim 15505 df-rest 17436 df-topgen 17457 df-psmet 21307 df-xmet 21308 df-met 21309 df-bl 21310 df-mopn 21311 df-fbas 21312 df-fg 21313 df-top 22832 df-topon 22849 df-bases 22884 df-cld 22957 df-ntr 22958 df-cls 22959 df-nei 23036 df-lm 23167 df-haus 23253 df-fil 23784 df-fm 23876 df-flim 23877 df-flf 23878 df-cfil 25207 df-cau 25208 df-cmet 25209 df-grpo 30474 df-gid 30475 df-ginv 30476 df-gdiv 30477 df-ablo 30526 df-vc 30540 df-nv 30573 df-va 30576 df-ba 30577 df-sm 30578 df-0v 30579 df-vs 30580 df-nmcv 30581 df-ims 30582 df-ssp 30703 df-ph 30794 df-cbn 30844 df-hnorm 30949 df-hba 30950 df-hvsub 30952 df-hlim 30953 df-hcau 30954 df-sh 31188 df-ch 31202 df-oc 31233 df-ch0 31234 |
| This theorem is referenced by: dfch2 31388 ococin 31389 shlub 31395 pjhtheu2 31397 shjshseli 31474 chsscon1 31482 chpsscon1 31485 chpsscon2 31486 chdmm2 31507 chdmm3 31508 chdmm4 31509 chdmj1 31510 chdmj2 31511 chdmj3 31512 chdmj4 31513 fh2 31600 hstle 32211 hstoh 32213 mddmd 32282 |
| Copyright terms: Public domain | W3C validator |