| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > ococ | Structured version Visualization version GIF version | ||
| Description: Complement of complement of a closed subspace of Hilbert space. Theorem 3.7(ii) of [Beran] p. 102. (Contributed by NM, 11-Oct-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ococ | ⊢ (𝐴 ∈ Cℋ → (⊥‘(⊥‘𝐴)) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2fveq3 6833 | . . 3 ⊢ (𝐴 = if(𝐴 ∈ Cℋ , 𝐴, ℋ) → (⊥‘(⊥‘𝐴)) = (⊥‘(⊥‘if(𝐴 ∈ Cℋ , 𝐴, ℋ)))) | |
| 2 | id 22 | . . 3 ⊢ (𝐴 = if(𝐴 ∈ Cℋ , 𝐴, ℋ) → 𝐴 = if(𝐴 ∈ Cℋ , 𝐴, ℋ)) | |
| 3 | 1, 2 | eqeq12d 2749 | . 2 ⊢ (𝐴 = if(𝐴 ∈ Cℋ , 𝐴, ℋ) → ((⊥‘(⊥‘𝐴)) = 𝐴 ↔ (⊥‘(⊥‘if(𝐴 ∈ Cℋ , 𝐴, ℋ))) = if(𝐴 ∈ Cℋ , 𝐴, ℋ))) |
| 4 | ifchhv 31226 | . . 3 ⊢ if(𝐴 ∈ Cℋ , 𝐴, ℋ) ∈ Cℋ | |
| 5 | 4 | ococi 31387 | . 2 ⊢ (⊥‘(⊥‘if(𝐴 ∈ Cℋ , 𝐴, ℋ))) = if(𝐴 ∈ Cℋ , 𝐴, ℋ) |
| 6 | 3, 5 | dedth 4533 | 1 ⊢ (𝐴 ∈ Cℋ → (⊥‘(⊥‘𝐴)) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 ifcif 4474 ‘cfv 6486 ℋchba 30901 Cℋ cch 30911 ⊥cort 30912 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-inf2 9538 ax-cc 10333 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 ax-pre-sup 11091 ax-addf 11092 ax-mulf 11093 ax-hilex 30981 ax-hfvadd 30982 ax-hvcom 30983 ax-hvass 30984 ax-hv0cl 30985 ax-hvaddid 30986 ax-hfvmul 30987 ax-hvmulid 30988 ax-hvmulass 30989 ax-hvdistr1 30990 ax-hvdistr2 30991 ax-hvmul0 30992 ax-hfi 31061 ax-his1 31064 ax-his2 31065 ax-his3 31066 ax-his4 31067 ax-hcompl 31184 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-iin 4944 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-2o 8392 df-oadd 8395 df-omul 8396 df-er 8628 df-map 8758 df-pm 8759 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-fi 9302 df-sup 9333 df-inf 9334 df-oi 9403 df-card 9839 df-acn 9842 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-div 11782 df-nn 12133 df-2 12195 df-3 12196 df-4 12197 df-n0 12389 df-z 12476 df-uz 12739 df-q 12849 df-rp 12893 df-xneg 13013 df-xadd 13014 df-xmul 13015 df-ico 13253 df-icc 13254 df-fz 13410 df-fl 13698 df-seq 13911 df-exp 13971 df-cj 15008 df-re 15009 df-im 15010 df-sqrt 15144 df-abs 15145 df-clim 15397 df-rlim 15398 df-rest 17328 df-topgen 17349 df-psmet 21285 df-xmet 21286 df-met 21287 df-bl 21288 df-mopn 21289 df-fbas 21290 df-fg 21291 df-top 22810 df-topon 22827 df-bases 22862 df-cld 22935 df-ntr 22936 df-cls 22937 df-nei 23014 df-lm 23145 df-haus 23231 df-fil 23762 df-fm 23854 df-flim 23855 df-flf 23856 df-cfil 25183 df-cau 25184 df-cmet 25185 df-grpo 30475 df-gid 30476 df-ginv 30477 df-gdiv 30478 df-ablo 30527 df-vc 30541 df-nv 30574 df-va 30577 df-ba 30578 df-sm 30579 df-0v 30580 df-vs 30581 df-nmcv 30582 df-ims 30583 df-ssp 30704 df-ph 30795 df-cbn 30845 df-hnorm 30950 df-hba 30951 df-hvsub 30953 df-hlim 30954 df-hcau 30955 df-sh 31189 df-ch 31203 df-oc 31234 df-ch0 31235 |
| This theorem is referenced by: dfch2 31389 ococin 31390 shlub 31396 pjhtheu2 31398 shjshseli 31475 chsscon1 31483 chpsscon1 31486 chpsscon2 31487 chdmm2 31508 chdmm3 31509 chdmm4 31510 chdmj1 31511 chdmj2 31512 chdmj3 31513 chdmj4 31514 fh2 31601 hstle 32212 hstoh 32214 mddmd 32283 |
| Copyright terms: Public domain | W3C validator |