Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lhpoc2N Structured version   Visualization version   GIF version

Theorem lhpoc2N 37037
Description: The orthocomplement of an atom is a co-atom (lattice hyperplane). (Contributed by NM, 20-Jun-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
lhpoc.b 𝐵 = (Base‘𝐾)
lhpoc.o = (oc‘𝐾)
lhpoc.a 𝐴 = (Atoms‘𝐾)
lhpoc.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
lhpoc2N ((𝐾 ∈ HL ∧ 𝑊𝐵) → (𝑊𝐴 ↔ ( 𝑊) ∈ 𝐻))

Proof of Theorem lhpoc2N
StepHypRef Expression
1 hlop 36384 . . . 4 (𝐾 ∈ HL → 𝐾 ∈ OP)
2 lhpoc.b . . . . 5 𝐵 = (Base‘𝐾)
3 lhpoc.o . . . . 5 = (oc‘𝐾)
42, 3opoccl 36216 . . . 4 ((𝐾 ∈ OP ∧ 𝑊𝐵) → ( 𝑊) ∈ 𝐵)
51, 4sylan 580 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐵) → ( 𝑊) ∈ 𝐵)
6 lhpoc.a . . . 4 𝐴 = (Atoms‘𝐾)
7 lhpoc.h . . . 4 𝐻 = (LHyp‘𝐾)
82, 3, 6, 7lhpoc 37036 . . 3 ((𝐾 ∈ HL ∧ ( 𝑊) ∈ 𝐵) → (( 𝑊) ∈ 𝐻 ↔ ( ‘( 𝑊)) ∈ 𝐴))
95, 8syldan 591 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐵) → (( 𝑊) ∈ 𝐻 ↔ ( ‘( 𝑊)) ∈ 𝐴))
102, 3opococ 36217 . . . 4 ((𝐾 ∈ OP ∧ 𝑊𝐵) → ( ‘( 𝑊)) = 𝑊)
111, 10sylan 580 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐵) → ( ‘( 𝑊)) = 𝑊)
1211eleq1d 2902 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐵) → (( ‘( 𝑊)) ∈ 𝐴𝑊𝐴))
139, 12bitr2d 281 1 ((𝐾 ∈ HL ∧ 𝑊𝐵) → (𝑊𝐴 ↔ ( 𝑊) ∈ 𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1530  wcel 2107  cfv 6354  Basecbs 16478  occoc 16568  OPcops 36194  Atomscatm 36285  HLchlt 36372  LHypclh 37006
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-rep 5187  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7455
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-ral 3148  df-rex 3149  df-reu 3150  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-op 4571  df-uni 4838  df-iun 4919  df-br 5064  df-opab 5126  df-mpt 5144  df-id 5459  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7108  df-ov 7153  df-proset 17533  df-poset 17551  df-plt 17563  df-lub 17579  df-glb 17580  df-p0 17644  df-p1 17645  df-oposet 36198  df-ol 36200  df-oml 36201  df-covers 36288  df-ats 36289  df-hlat 36373  df-lhyp 37010
This theorem is referenced by:  lhprelat3N  37062
  Copyright terms: Public domain W3C validator