Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lhpoc2N Structured version   Visualization version   GIF version

Theorem lhpoc2N 40009
Description: The orthocomplement of an atom is a co-atom (lattice hyperplane). (Contributed by NM, 20-Jun-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
lhpoc.b 𝐵 = (Base‘𝐾)
lhpoc.o = (oc‘𝐾)
lhpoc.a 𝐴 = (Atoms‘𝐾)
lhpoc.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
lhpoc2N ((𝐾 ∈ HL ∧ 𝑊𝐵) → (𝑊𝐴 ↔ ( 𝑊) ∈ 𝐻))

Proof of Theorem lhpoc2N
StepHypRef Expression
1 hlop 39355 . . . 4 (𝐾 ∈ HL → 𝐾 ∈ OP)
2 lhpoc.b . . . . 5 𝐵 = (Base‘𝐾)
3 lhpoc.o . . . . 5 = (oc‘𝐾)
42, 3opoccl 39187 . . . 4 ((𝐾 ∈ OP ∧ 𝑊𝐵) → ( 𝑊) ∈ 𝐵)
51, 4sylan 580 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐵) → ( 𝑊) ∈ 𝐵)
6 lhpoc.a . . . 4 𝐴 = (Atoms‘𝐾)
7 lhpoc.h . . . 4 𝐻 = (LHyp‘𝐾)
82, 3, 6, 7lhpoc 40008 . . 3 ((𝐾 ∈ HL ∧ ( 𝑊) ∈ 𝐵) → (( 𝑊) ∈ 𝐻 ↔ ( ‘( 𝑊)) ∈ 𝐴))
95, 8syldan 591 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐵) → (( 𝑊) ∈ 𝐻 ↔ ( ‘( 𝑊)) ∈ 𝐴))
102, 3opococ 39188 . . . 4 ((𝐾 ∈ OP ∧ 𝑊𝐵) → ( ‘( 𝑊)) = 𝑊)
111, 10sylan 580 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐵) → ( ‘( 𝑊)) = 𝑊)
1211eleq1d 2813 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐵) → (( ‘( 𝑊)) ∈ 𝐴𝑊𝐴))
139, 12bitr2d 280 1 ((𝐾 ∈ HL ∧ 𝑊𝐵) → (𝑊𝐴 ↔ ( 𝑊) ∈ 𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  cfv 6511  Basecbs 17179  occoc 17228  OPcops 39165  Atomscatm 39256  HLchlt 39343  LHypclh 39978
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-proset 18255  df-poset 18274  df-plt 18289  df-lub 18305  df-glb 18306  df-p0 18384  df-p1 18385  df-oposet 39169  df-ol 39171  df-oml 39172  df-covers 39259  df-ats 39260  df-hlat 39344  df-lhyp 39982
This theorem is referenced by:  lhprelat3N  40034
  Copyright terms: Public domain W3C validator