Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lhpoc2N Structured version   Visualization version   GIF version

Theorem lhpoc2N 38029
Description: The orthocomplement of an atom is a co-atom (lattice hyperplane). (Contributed by NM, 20-Jun-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
lhpoc.b 𝐵 = (Base‘𝐾)
lhpoc.o = (oc‘𝐾)
lhpoc.a 𝐴 = (Atoms‘𝐾)
lhpoc.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
lhpoc2N ((𝐾 ∈ HL ∧ 𝑊𝐵) → (𝑊𝐴 ↔ ( 𝑊) ∈ 𝐻))

Proof of Theorem lhpoc2N
StepHypRef Expression
1 hlop 37376 . . . 4 (𝐾 ∈ HL → 𝐾 ∈ OP)
2 lhpoc.b . . . . 5 𝐵 = (Base‘𝐾)
3 lhpoc.o . . . . 5 = (oc‘𝐾)
42, 3opoccl 37208 . . . 4 ((𝐾 ∈ OP ∧ 𝑊𝐵) → ( 𝑊) ∈ 𝐵)
51, 4sylan 580 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐵) → ( 𝑊) ∈ 𝐵)
6 lhpoc.a . . . 4 𝐴 = (Atoms‘𝐾)
7 lhpoc.h . . . 4 𝐻 = (LHyp‘𝐾)
82, 3, 6, 7lhpoc 38028 . . 3 ((𝐾 ∈ HL ∧ ( 𝑊) ∈ 𝐵) → (( 𝑊) ∈ 𝐻 ↔ ( ‘( 𝑊)) ∈ 𝐴))
95, 8syldan 591 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐵) → (( 𝑊) ∈ 𝐻 ↔ ( ‘( 𝑊)) ∈ 𝐴))
102, 3opococ 37209 . . . 4 ((𝐾 ∈ OP ∧ 𝑊𝐵) → ( ‘( 𝑊)) = 𝑊)
111, 10sylan 580 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐵) → ( ‘( 𝑊)) = 𝑊)
1211eleq1d 2823 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐵) → (( ‘( 𝑊)) ∈ 𝐴𝑊𝐴))
139, 12bitr2d 279 1 ((𝐾 ∈ HL ∧ 𝑊𝐵) → (𝑊𝐴 ↔ ( 𝑊) ∈ 𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  cfv 6433  Basecbs 16912  occoc 16970  OPcops 37186  Atomscatm 37277  HLchlt 37364  LHypclh 37998
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-proset 18013  df-poset 18031  df-plt 18048  df-lub 18064  df-glb 18065  df-p0 18143  df-p1 18144  df-oposet 37190  df-ol 37192  df-oml 37193  df-covers 37280  df-ats 37281  df-hlat 37365  df-lhyp 38002
This theorem is referenced by:  lhprelat3N  38054
  Copyright terms: Public domain W3C validator