Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lhpoc2N Structured version   Visualization version   GIF version

Theorem lhpoc2N 39998
Description: The orthocomplement of an atom is a co-atom (lattice hyperplane). (Contributed by NM, 20-Jun-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
lhpoc.b 𝐵 = (Base‘𝐾)
lhpoc.o = (oc‘𝐾)
lhpoc.a 𝐴 = (Atoms‘𝐾)
lhpoc.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
lhpoc2N ((𝐾 ∈ HL ∧ 𝑊𝐵) → (𝑊𝐴 ↔ ( 𝑊) ∈ 𝐻))

Proof of Theorem lhpoc2N
StepHypRef Expression
1 hlop 39344 . . . 4 (𝐾 ∈ HL → 𝐾 ∈ OP)
2 lhpoc.b . . . . 5 𝐵 = (Base‘𝐾)
3 lhpoc.o . . . . 5 = (oc‘𝐾)
42, 3opoccl 39176 . . . 4 ((𝐾 ∈ OP ∧ 𝑊𝐵) → ( 𝑊) ∈ 𝐵)
51, 4sylan 580 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐵) → ( 𝑊) ∈ 𝐵)
6 lhpoc.a . . . 4 𝐴 = (Atoms‘𝐾)
7 lhpoc.h . . . 4 𝐻 = (LHyp‘𝐾)
82, 3, 6, 7lhpoc 39997 . . 3 ((𝐾 ∈ HL ∧ ( 𝑊) ∈ 𝐵) → (( 𝑊) ∈ 𝐻 ↔ ( ‘( 𝑊)) ∈ 𝐴))
95, 8syldan 591 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐵) → (( 𝑊) ∈ 𝐻 ↔ ( ‘( 𝑊)) ∈ 𝐴))
102, 3opococ 39177 . . . 4 ((𝐾 ∈ OP ∧ 𝑊𝐵) → ( ‘( 𝑊)) = 𝑊)
111, 10sylan 580 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐵) → ( ‘( 𝑊)) = 𝑊)
1211eleq1d 2824 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐵) → (( ‘( 𝑊)) ∈ 𝐴𝑊𝐴))
139, 12bitr2d 280 1 ((𝐾 ∈ HL ∧ 𝑊𝐵) → (𝑊𝐴 ↔ ( 𝑊) ∈ 𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  cfv 6563  Basecbs 17245  occoc 17306  OPcops 39154  Atomscatm 39245  HLchlt 39332  LHypclh 39967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-proset 18352  df-poset 18371  df-plt 18388  df-lub 18404  df-glb 18405  df-p0 18483  df-p1 18484  df-oposet 39158  df-ol 39160  df-oml 39161  df-covers 39248  df-ats 39249  df-hlat 39333  df-lhyp 39971
This theorem is referenced by:  lhprelat3N  40023
  Copyright terms: Public domain W3C validator