Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dochoc | Structured version Visualization version GIF version |
Description: Double negative law for orthocomplement of a closed subspace. (Contributed by NM, 14-Mar-2014.) |
Ref | Expression |
---|---|
dochoc.h | ⊢ 𝐻 = (LHyp‘𝐾) |
dochoc.i | ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) |
dochoc.o | ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
dochoc | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ ran 𝐼) → ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2739 | . . . 4 ⊢ (oc‘𝐾) = (oc‘𝐾) | |
2 | dochoc.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
3 | dochoc.i | . . . 4 ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) | |
4 | dochoc.o | . . . 4 ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) | |
5 | 1, 2, 3, 4 | dochvalr 39026 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ ran 𝐼) → ( ⊥ ‘𝑋) = (𝐼‘((oc‘𝐾)‘(◡𝐼‘𝑋)))) |
6 | 5 | fveq2d 6690 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ ran 𝐼) → ( ⊥ ‘( ⊥ ‘𝑋)) = ( ⊥ ‘(𝐼‘((oc‘𝐾)‘(◡𝐼‘𝑋))))) |
7 | hlop 37031 | . . . . . . 7 ⊢ (𝐾 ∈ HL → 𝐾 ∈ OP) | |
8 | 7 | ad2antrr 726 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ ran 𝐼) → 𝐾 ∈ OP) |
9 | eqid 2739 | . . . . . . 7 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
10 | 9, 2, 3 | dihcnvcl 38940 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ ran 𝐼) → (◡𝐼‘𝑋) ∈ (Base‘𝐾)) |
11 | 9, 1 | opoccl 36863 | . . . . . 6 ⊢ ((𝐾 ∈ OP ∧ (◡𝐼‘𝑋) ∈ (Base‘𝐾)) → ((oc‘𝐾)‘(◡𝐼‘𝑋)) ∈ (Base‘𝐾)) |
12 | 8, 10, 11 | syl2anc 587 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ ran 𝐼) → ((oc‘𝐾)‘(◡𝐼‘𝑋)) ∈ (Base‘𝐾)) |
13 | 9, 2, 3 | dihcl 38939 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((oc‘𝐾)‘(◡𝐼‘𝑋)) ∈ (Base‘𝐾)) → (𝐼‘((oc‘𝐾)‘(◡𝐼‘𝑋))) ∈ ran 𝐼) |
14 | 12, 13 | syldan 594 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ ran 𝐼) → (𝐼‘((oc‘𝐾)‘(◡𝐼‘𝑋))) ∈ ran 𝐼) |
15 | 1, 2, 3, 4 | dochvalr 39026 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐼‘((oc‘𝐾)‘(◡𝐼‘𝑋))) ∈ ran 𝐼) → ( ⊥ ‘(𝐼‘((oc‘𝐾)‘(◡𝐼‘𝑋)))) = (𝐼‘((oc‘𝐾)‘(◡𝐼‘(𝐼‘((oc‘𝐾)‘(◡𝐼‘𝑋))))))) |
16 | 14, 15 | syldan 594 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ ran 𝐼) → ( ⊥ ‘(𝐼‘((oc‘𝐾)‘(◡𝐼‘𝑋)))) = (𝐼‘((oc‘𝐾)‘(◡𝐼‘(𝐼‘((oc‘𝐾)‘(◡𝐼‘𝑋))))))) |
17 | 9, 2, 3 | dihcnvid1 38941 | . . . . . . . 8 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((oc‘𝐾)‘(◡𝐼‘𝑋)) ∈ (Base‘𝐾)) → (◡𝐼‘(𝐼‘((oc‘𝐾)‘(◡𝐼‘𝑋)))) = ((oc‘𝐾)‘(◡𝐼‘𝑋))) |
18 | 12, 17 | syldan 594 | . . . . . . 7 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ ran 𝐼) → (◡𝐼‘(𝐼‘((oc‘𝐾)‘(◡𝐼‘𝑋)))) = ((oc‘𝐾)‘(◡𝐼‘𝑋))) |
19 | 18 | fveq2d 6690 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ ran 𝐼) → ((oc‘𝐾)‘(◡𝐼‘(𝐼‘((oc‘𝐾)‘(◡𝐼‘𝑋))))) = ((oc‘𝐾)‘((oc‘𝐾)‘(◡𝐼‘𝑋)))) |
20 | 9, 1 | opococ 36864 | . . . . . . 7 ⊢ ((𝐾 ∈ OP ∧ (◡𝐼‘𝑋) ∈ (Base‘𝐾)) → ((oc‘𝐾)‘((oc‘𝐾)‘(◡𝐼‘𝑋))) = (◡𝐼‘𝑋)) |
21 | 8, 10, 20 | syl2anc 587 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ ran 𝐼) → ((oc‘𝐾)‘((oc‘𝐾)‘(◡𝐼‘𝑋))) = (◡𝐼‘𝑋)) |
22 | 19, 21 | eqtrd 2774 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ ran 𝐼) → ((oc‘𝐾)‘(◡𝐼‘(𝐼‘((oc‘𝐾)‘(◡𝐼‘𝑋))))) = (◡𝐼‘𝑋)) |
23 | 22 | fveq2d 6690 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ ran 𝐼) → (𝐼‘((oc‘𝐾)‘(◡𝐼‘(𝐼‘((oc‘𝐾)‘(◡𝐼‘𝑋)))))) = (𝐼‘(◡𝐼‘𝑋))) |
24 | 2, 3 | dihcnvid2 38942 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ ran 𝐼) → (𝐼‘(◡𝐼‘𝑋)) = 𝑋) |
25 | 23, 24 | eqtrd 2774 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ ran 𝐼) → (𝐼‘((oc‘𝐾)‘(◡𝐼‘(𝐼‘((oc‘𝐾)‘(◡𝐼‘𝑋)))))) = 𝑋) |
26 | 16, 25 | eqtrd 2774 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ ran 𝐼) → ( ⊥ ‘(𝐼‘((oc‘𝐾)‘(◡𝐼‘𝑋)))) = 𝑋) |
27 | 6, 26 | eqtrd 2774 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ ran 𝐼) → ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1542 ∈ wcel 2114 ◡ccnv 5534 ran crn 5536 ‘cfv 6349 Basecbs 16598 occoc 16688 OPcops 36841 HLchlt 37019 LHypclh 37653 DIsoHcdih 38897 ocHcoch 39016 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2711 ax-rep 5164 ax-sep 5177 ax-nul 5184 ax-pow 5242 ax-pr 5306 ax-un 7491 ax-cnex 10683 ax-resscn 10684 ax-1cn 10685 ax-icn 10686 ax-addcl 10687 ax-addrcl 10688 ax-mulcl 10689 ax-mulrcl 10690 ax-mulcom 10691 ax-addass 10692 ax-mulass 10693 ax-distr 10694 ax-i2m1 10695 ax-1ne0 10696 ax-1rid 10697 ax-rnegex 10698 ax-rrecex 10699 ax-cnre 10700 ax-pre-lttri 10701 ax-pre-lttrn 10702 ax-pre-ltadd 10703 ax-pre-mulgt0 10704 ax-riotaBAD 36622 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2541 df-eu 2571 df-clab 2718 df-cleq 2731 df-clel 2812 df-nfc 2882 df-ne 2936 df-nel 3040 df-ral 3059 df-rex 3060 df-reu 3061 df-rmo 3062 df-rab 3063 df-v 3402 df-sbc 3686 df-csb 3801 df-dif 3856 df-un 3858 df-in 3860 df-ss 3870 df-pss 3872 df-nul 4222 df-if 4425 df-pw 4500 df-sn 4527 df-pr 4529 df-tp 4531 df-op 4533 df-uni 4807 df-int 4847 df-iun 4893 df-iin 4894 df-br 5041 df-opab 5103 df-mpt 5121 df-tr 5147 df-id 5439 df-eprel 5444 df-po 5452 df-so 5453 df-fr 5493 df-we 5495 df-xp 5541 df-rel 5542 df-cnv 5543 df-co 5544 df-dm 5545 df-rn 5546 df-res 5547 df-ima 5548 df-pred 6139 df-ord 6185 df-on 6186 df-lim 6187 df-suc 6188 df-iota 6307 df-fun 6351 df-fn 6352 df-f 6353 df-f1 6354 df-fo 6355 df-f1o 6356 df-fv 6357 df-riota 7139 df-ov 7185 df-oprab 7186 df-mpo 7187 df-om 7612 df-1st 7726 df-2nd 7727 df-tpos 7933 df-undef 7980 df-wrecs 7988 df-recs 8049 df-rdg 8087 df-1o 8143 df-er 8332 df-map 8451 df-en 8568 df-dom 8569 df-sdom 8570 df-fin 8571 df-pnf 10767 df-mnf 10768 df-xr 10769 df-ltxr 10770 df-le 10771 df-sub 10962 df-neg 10963 df-nn 11729 df-2 11791 df-3 11792 df-4 11793 df-5 11794 df-6 11795 df-n0 11989 df-z 12075 df-uz 12337 df-fz 12994 df-struct 16600 df-ndx 16601 df-slot 16602 df-base 16604 df-sets 16605 df-ress 16606 df-plusg 16693 df-mulr 16694 df-sca 16696 df-vsca 16697 df-0g 16830 df-proset 17666 df-poset 17684 df-plt 17696 df-lub 17712 df-glb 17713 df-join 17714 df-meet 17715 df-p0 17777 df-p1 17778 df-lat 17784 df-clat 17846 df-mgm 17980 df-sgrp 18029 df-mnd 18040 df-submnd 18085 df-grp 18234 df-minusg 18235 df-sbg 18236 df-subg 18406 df-cntz 18577 df-lsm 18891 df-cmn 19038 df-abl 19039 df-mgp 19371 df-ur 19383 df-ring 19430 df-oppr 19507 df-dvdsr 19525 df-unit 19526 df-invr 19556 df-dvr 19567 df-drng 19635 df-lmod 19767 df-lss 19835 df-lsp 19875 df-lvec 20006 df-oposet 36845 df-ol 36847 df-oml 36848 df-covers 36935 df-ats 36936 df-atl 36967 df-cvlat 36991 df-hlat 37020 df-llines 37167 df-lplanes 37168 df-lvols 37169 df-lines 37170 df-psubsp 37172 df-pmap 37173 df-padd 37465 df-lhyp 37657 df-laut 37658 df-ldil 37773 df-ltrn 37774 df-trl 37828 df-tendo 38424 df-edring 38426 df-disoa 38698 df-dvech 38748 df-dib 38808 df-dic 38842 df-dih 38898 df-doch 39017 |
This theorem is referenced by: dochsscl 39037 dochoccl 39038 dochord 39039 dochord2N 39040 dochord3 39041 dochn0nv 39044 dihoml4 39046 dochocsp 39048 dochocsn 39050 dochsat 39052 dochdmj1 39059 dochnoncon 39060 dochdmm1 39079 djhexmid 39080 djhlsmcl 39083 dochsatshpb 39121 dochsnkr2cl 39143 dochpolN 39159 lcfl7lem 39168 lcfl6 39169 lcfl8 39171 lcfl9a 39174 lclkrlem2e 39180 lclkrlem2j 39185 lclkrlem2s 39194 lcfrlem14 39225 lcfrlem23 39234 mapdordlem2 39306 |
Copyright terms: Public domain | W3C validator |