![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dochoc | Structured version Visualization version GIF version |
Description: Double negative law for orthocomplement of a closed subspace. (Contributed by NM, 14-Mar-2014.) |
Ref | Expression |
---|---|
dochoc.h | β’ π» = (LHypβπΎ) |
dochoc.i | β’ πΌ = ((DIsoHβπΎ)βπ) |
dochoc.o | β’ β₯ = ((ocHβπΎ)βπ) |
Ref | Expression |
---|---|
dochoc | β’ (((πΎ β HL β§ π β π») β§ π β ran πΌ) β ( β₯ β( β₯ βπ)) = π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2730 | . . . 4 β’ (ocβπΎ) = (ocβπΎ) | |
2 | dochoc.h | . . . 4 β’ π» = (LHypβπΎ) | |
3 | dochoc.i | . . . 4 β’ πΌ = ((DIsoHβπΎ)βπ) | |
4 | dochoc.o | . . . 4 β’ β₯ = ((ocHβπΎ)βπ) | |
5 | 1, 2, 3, 4 | dochvalr 40533 | . . 3 β’ (((πΎ β HL β§ π β π») β§ π β ran πΌ) β ( β₯ βπ) = (πΌβ((ocβπΎ)β(β‘πΌβπ)))) |
6 | 5 | fveq2d 6896 | . 2 β’ (((πΎ β HL β§ π β π») β§ π β ran πΌ) β ( β₯ β( β₯ βπ)) = ( β₯ β(πΌβ((ocβπΎ)β(β‘πΌβπ))))) |
7 | hlop 38537 | . . . . . . 7 β’ (πΎ β HL β πΎ β OP) | |
8 | 7 | ad2antrr 722 | . . . . . 6 β’ (((πΎ β HL β§ π β π») β§ π β ran πΌ) β πΎ β OP) |
9 | eqid 2730 | . . . . . . 7 β’ (BaseβπΎ) = (BaseβπΎ) | |
10 | 9, 2, 3 | dihcnvcl 40447 | . . . . . 6 β’ (((πΎ β HL β§ π β π») β§ π β ran πΌ) β (β‘πΌβπ) β (BaseβπΎ)) |
11 | 9, 1 | opoccl 38369 | . . . . . 6 β’ ((πΎ β OP β§ (β‘πΌβπ) β (BaseβπΎ)) β ((ocβπΎ)β(β‘πΌβπ)) β (BaseβπΎ)) |
12 | 8, 10, 11 | syl2anc 582 | . . . . 5 β’ (((πΎ β HL β§ π β π») β§ π β ran πΌ) β ((ocβπΎ)β(β‘πΌβπ)) β (BaseβπΎ)) |
13 | 9, 2, 3 | dihcl 40446 | . . . . 5 β’ (((πΎ β HL β§ π β π») β§ ((ocβπΎ)β(β‘πΌβπ)) β (BaseβπΎ)) β (πΌβ((ocβπΎ)β(β‘πΌβπ))) β ran πΌ) |
14 | 12, 13 | syldan 589 | . . . 4 β’ (((πΎ β HL β§ π β π») β§ π β ran πΌ) β (πΌβ((ocβπΎ)β(β‘πΌβπ))) β ran πΌ) |
15 | 1, 2, 3, 4 | dochvalr 40533 | . . . 4 β’ (((πΎ β HL β§ π β π») β§ (πΌβ((ocβπΎ)β(β‘πΌβπ))) β ran πΌ) β ( β₯ β(πΌβ((ocβπΎ)β(β‘πΌβπ)))) = (πΌβ((ocβπΎ)β(β‘πΌβ(πΌβ((ocβπΎ)β(β‘πΌβπ))))))) |
16 | 14, 15 | syldan 589 | . . 3 β’ (((πΎ β HL β§ π β π») β§ π β ran πΌ) β ( β₯ β(πΌβ((ocβπΎ)β(β‘πΌβπ)))) = (πΌβ((ocβπΎ)β(β‘πΌβ(πΌβ((ocβπΎ)β(β‘πΌβπ))))))) |
17 | 9, 2, 3 | dihcnvid1 40448 | . . . . . . . 8 β’ (((πΎ β HL β§ π β π») β§ ((ocβπΎ)β(β‘πΌβπ)) β (BaseβπΎ)) β (β‘πΌβ(πΌβ((ocβπΎ)β(β‘πΌβπ)))) = ((ocβπΎ)β(β‘πΌβπ))) |
18 | 12, 17 | syldan 589 | . . . . . . 7 β’ (((πΎ β HL β§ π β π») β§ π β ran πΌ) β (β‘πΌβ(πΌβ((ocβπΎ)β(β‘πΌβπ)))) = ((ocβπΎ)β(β‘πΌβπ))) |
19 | 18 | fveq2d 6896 | . . . . . 6 β’ (((πΎ β HL β§ π β π») β§ π β ran πΌ) β ((ocβπΎ)β(β‘πΌβ(πΌβ((ocβπΎ)β(β‘πΌβπ))))) = ((ocβπΎ)β((ocβπΎ)β(β‘πΌβπ)))) |
20 | 9, 1 | opococ 38370 | . . . . . . 7 β’ ((πΎ β OP β§ (β‘πΌβπ) β (BaseβπΎ)) β ((ocβπΎ)β((ocβπΎ)β(β‘πΌβπ))) = (β‘πΌβπ)) |
21 | 8, 10, 20 | syl2anc 582 | . . . . . 6 β’ (((πΎ β HL β§ π β π») β§ π β ran πΌ) β ((ocβπΎ)β((ocβπΎ)β(β‘πΌβπ))) = (β‘πΌβπ)) |
22 | 19, 21 | eqtrd 2770 | . . . . 5 β’ (((πΎ β HL β§ π β π») β§ π β ran πΌ) β ((ocβπΎ)β(β‘πΌβ(πΌβ((ocβπΎ)β(β‘πΌβπ))))) = (β‘πΌβπ)) |
23 | 22 | fveq2d 6896 | . . . 4 β’ (((πΎ β HL β§ π β π») β§ π β ran πΌ) β (πΌβ((ocβπΎ)β(β‘πΌβ(πΌβ((ocβπΎ)β(β‘πΌβπ)))))) = (πΌβ(β‘πΌβπ))) |
24 | 2, 3 | dihcnvid2 40449 | . . . 4 β’ (((πΎ β HL β§ π β π») β§ π β ran πΌ) β (πΌβ(β‘πΌβπ)) = π) |
25 | 23, 24 | eqtrd 2770 | . . 3 β’ (((πΎ β HL β§ π β π») β§ π β ran πΌ) β (πΌβ((ocβπΎ)β(β‘πΌβ(πΌβ((ocβπΎ)β(β‘πΌβπ)))))) = π) |
26 | 16, 25 | eqtrd 2770 | . 2 β’ (((πΎ β HL β§ π β π») β§ π β ran πΌ) β ( β₯ β(πΌβ((ocβπΎ)β(β‘πΌβπ)))) = π) |
27 | 6, 26 | eqtrd 2770 | 1 β’ (((πΎ β HL β§ π β π») β§ π β ran πΌ) β ( β₯ β( β₯ βπ)) = π) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 394 = wceq 1539 β wcel 2104 β‘ccnv 5676 ran crn 5678 βcfv 6544 Basecbs 17150 occoc 17211 OPcops 38347 HLchlt 38525 LHypclh 39160 DIsoHcdih 40404 ocHcoch 40523 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7729 ax-cnex 11170 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-mulcom 11178 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 ax-pre-mulgt0 11191 ax-riotaBAD 38128 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-iin 5001 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7369 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7860 df-1st 7979 df-2nd 7980 df-tpos 8215 df-undef 8262 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-1o 8470 df-er 8707 df-map 8826 df-en 8944 df-dom 8945 df-sdom 8946 df-fin 8947 df-pnf 11256 df-mnf 11257 df-xr 11258 df-ltxr 11259 df-le 11260 df-sub 11452 df-neg 11453 df-nn 12219 df-2 12281 df-3 12282 df-4 12283 df-5 12284 df-6 12285 df-n0 12479 df-z 12565 df-uz 12829 df-fz 13491 df-struct 17086 df-sets 17103 df-slot 17121 df-ndx 17133 df-base 17151 df-ress 17180 df-plusg 17216 df-mulr 17217 df-sca 17219 df-vsca 17220 df-0g 17393 df-proset 18254 df-poset 18272 df-plt 18289 df-lub 18305 df-glb 18306 df-join 18307 df-meet 18308 df-p0 18384 df-p1 18385 df-lat 18391 df-clat 18458 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-submnd 18708 df-grp 18860 df-minusg 18861 df-sbg 18862 df-subg 19041 df-cntz 19224 df-lsm 19547 df-cmn 19693 df-abl 19694 df-mgp 20031 df-rng 20049 df-ur 20078 df-ring 20131 df-oppr 20227 df-dvdsr 20250 df-unit 20251 df-invr 20281 df-dvr 20294 df-drng 20504 df-lmod 20618 df-lss 20689 df-lsp 20729 df-lvec 20860 df-oposet 38351 df-ol 38353 df-oml 38354 df-covers 38441 df-ats 38442 df-atl 38473 df-cvlat 38497 df-hlat 38526 df-llines 38674 df-lplanes 38675 df-lvols 38676 df-lines 38677 df-psubsp 38679 df-pmap 38680 df-padd 38972 df-lhyp 39164 df-laut 39165 df-ldil 39280 df-ltrn 39281 df-trl 39335 df-tendo 39931 df-edring 39933 df-disoa 40205 df-dvech 40255 df-dib 40315 df-dic 40349 df-dih 40405 df-doch 40524 |
This theorem is referenced by: dochsscl 40544 dochoccl 40545 dochord 40546 dochord2N 40547 dochord3 40548 dochn0nv 40551 dihoml4 40553 dochocsp 40555 dochocsn 40557 dochsat 40559 dochdmj1 40566 dochnoncon 40567 dochdmm1 40586 djhexmid 40587 djhlsmcl 40590 dochsatshpb 40628 dochsnkr2cl 40650 dochpolN 40666 lcfl7lem 40675 lcfl6 40676 lcfl8 40678 lcfl9a 40681 lclkrlem2e 40687 lclkrlem2j 40692 lclkrlem2s 40701 lcfrlem14 40732 lcfrlem23 40741 mapdordlem2 40813 |
Copyright terms: Public domain | W3C validator |