Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2polatN Structured version   Visualization version   GIF version

Theorem 2polatN 39926
Description: Double polarity of the singleton of an atom (i.e. a point). (Contributed by NM, 25-Jan-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
2polat.a 𝐴 = (Atoms‘𝐾)
2polat.p 𝑃 = (⊥𝑃𝐾)
Assertion
Ref Expression
2polatN ((𝐾 ∈ HL ∧ 𝑄𝐴) → (𝑃‘(𝑃‘{𝑄})) = {𝑄})

Proof of Theorem 2polatN
StepHypRef Expression
1 hlol 39354 . . . 4 (𝐾 ∈ HL → 𝐾 ∈ OL)
2 eqid 2729 . . . . 5 (oc‘𝐾) = (oc‘𝐾)
3 2polat.a . . . . 5 𝐴 = (Atoms‘𝐾)
4 eqid 2729 . . . . 5 (pmap‘𝐾) = (pmap‘𝐾)
5 2polat.p . . . . 5 𝑃 = (⊥𝑃𝐾)
62, 3, 4, 5polatN 39925 . . . 4 ((𝐾 ∈ OL ∧ 𝑄𝐴) → (𝑃‘{𝑄}) = ((pmap‘𝐾)‘((oc‘𝐾)‘𝑄)))
71, 6sylan 580 . . 3 ((𝐾 ∈ HL ∧ 𝑄𝐴) → (𝑃‘{𝑄}) = ((pmap‘𝐾)‘((oc‘𝐾)‘𝑄)))
87fveq2d 6862 . 2 ((𝐾 ∈ HL ∧ 𝑄𝐴) → (𝑃‘(𝑃‘{𝑄})) = (𝑃‘((pmap‘𝐾)‘((oc‘𝐾)‘𝑄))))
9 hlop 39355 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ OP)
10 eqid 2729 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
1110, 3atbase 39282 . . . . 5 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
1210, 2opoccl 39187 . . . . 5 ((𝐾 ∈ OP ∧ 𝑄 ∈ (Base‘𝐾)) → ((oc‘𝐾)‘𝑄) ∈ (Base‘𝐾))
139, 11, 12syl2an 596 . . . 4 ((𝐾 ∈ HL ∧ 𝑄𝐴) → ((oc‘𝐾)‘𝑄) ∈ (Base‘𝐾))
1410, 2, 4, 5polpmapN 39906 . . . 4 ((𝐾 ∈ HL ∧ ((oc‘𝐾)‘𝑄) ∈ (Base‘𝐾)) → (𝑃‘((pmap‘𝐾)‘((oc‘𝐾)‘𝑄))) = ((pmap‘𝐾)‘((oc‘𝐾)‘((oc‘𝐾)‘𝑄))))
1513, 14syldan 591 . . 3 ((𝐾 ∈ HL ∧ 𝑄𝐴) → (𝑃‘((pmap‘𝐾)‘((oc‘𝐾)‘𝑄))) = ((pmap‘𝐾)‘((oc‘𝐾)‘((oc‘𝐾)‘𝑄))))
1610, 2opococ 39188 . . . . . 6 ((𝐾 ∈ OP ∧ 𝑄 ∈ (Base‘𝐾)) → ((oc‘𝐾)‘((oc‘𝐾)‘𝑄)) = 𝑄)
179, 11, 16syl2an 596 . . . . 5 ((𝐾 ∈ HL ∧ 𝑄𝐴) → ((oc‘𝐾)‘((oc‘𝐾)‘𝑄)) = 𝑄)
1817fveq2d 6862 . . . 4 ((𝐾 ∈ HL ∧ 𝑄𝐴) → ((pmap‘𝐾)‘((oc‘𝐾)‘((oc‘𝐾)‘𝑄))) = ((pmap‘𝐾)‘𝑄))
193, 4pmapat 39757 . . . 4 ((𝐾 ∈ HL ∧ 𝑄𝐴) → ((pmap‘𝐾)‘𝑄) = {𝑄})
2018, 19eqtrd 2764 . . 3 ((𝐾 ∈ HL ∧ 𝑄𝐴) → ((pmap‘𝐾)‘((oc‘𝐾)‘((oc‘𝐾)‘𝑄))) = {𝑄})
2115, 20eqtrd 2764 . 2 ((𝐾 ∈ HL ∧ 𝑄𝐴) → (𝑃‘((pmap‘𝐾)‘((oc‘𝐾)‘𝑄))) = {𝑄})
228, 21eqtrd 2764 1 ((𝐾 ∈ HL ∧ 𝑄𝐴) → (𝑃‘(𝑃‘{𝑄})) = {𝑄})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {csn 4589  cfv 6511  Basecbs 17179  occoc 17228  OPcops 39165  OLcol 39167  Atomscatm 39256  HLchlt 39343  pmapcpmap 39491  𝑃cpolN 39896
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-proset 18255  df-poset 18274  df-plt 18289  df-lub 18305  df-glb 18306  df-join 18307  df-meet 18308  df-p0 18384  df-p1 18385  df-lat 18391  df-clat 18458  df-oposet 39169  df-ol 39171  df-oml 39172  df-covers 39259  df-ats 39260  df-atl 39291  df-cvlat 39315  df-hlat 39344  df-pmap 39498  df-polarityN 39897
This theorem is referenced by:  atpsubclN  39939
  Copyright terms: Public domain W3C validator