| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 2polatN | Structured version Visualization version GIF version | ||
| Description: Double polarity of the singleton of an atom (i.e. a point). (Contributed by NM, 25-Jan-2012.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| 2polat.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| 2polat.p | ⊢ 𝑃 = (⊥𝑃‘𝐾) |
| Ref | Expression |
|---|---|
| 2polatN | ⊢ ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴) → (𝑃‘(𝑃‘{𝑄})) = {𝑄}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hlol 39361 | . . . 4 ⊢ (𝐾 ∈ HL → 𝐾 ∈ OL) | |
| 2 | eqid 2730 | . . . . 5 ⊢ (oc‘𝐾) = (oc‘𝐾) | |
| 3 | 2polat.a | . . . . 5 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 4 | eqid 2730 | . . . . 5 ⊢ (pmap‘𝐾) = (pmap‘𝐾) | |
| 5 | 2polat.p | . . . . 5 ⊢ 𝑃 = (⊥𝑃‘𝐾) | |
| 6 | 2, 3, 4, 5 | polatN 39932 | . . . 4 ⊢ ((𝐾 ∈ OL ∧ 𝑄 ∈ 𝐴) → (𝑃‘{𝑄}) = ((pmap‘𝐾)‘((oc‘𝐾)‘𝑄))) |
| 7 | 1, 6 | sylan 580 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴) → (𝑃‘{𝑄}) = ((pmap‘𝐾)‘((oc‘𝐾)‘𝑄))) |
| 8 | 7 | fveq2d 6865 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴) → (𝑃‘(𝑃‘{𝑄})) = (𝑃‘((pmap‘𝐾)‘((oc‘𝐾)‘𝑄)))) |
| 9 | hlop 39362 | . . . . 5 ⊢ (𝐾 ∈ HL → 𝐾 ∈ OP) | |
| 10 | eqid 2730 | . . . . . 6 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 11 | 10, 3 | atbase 39289 | . . . . 5 ⊢ (𝑄 ∈ 𝐴 → 𝑄 ∈ (Base‘𝐾)) |
| 12 | 10, 2 | opoccl 39194 | . . . . 5 ⊢ ((𝐾 ∈ OP ∧ 𝑄 ∈ (Base‘𝐾)) → ((oc‘𝐾)‘𝑄) ∈ (Base‘𝐾)) |
| 13 | 9, 11, 12 | syl2an 596 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴) → ((oc‘𝐾)‘𝑄) ∈ (Base‘𝐾)) |
| 14 | 10, 2, 4, 5 | polpmapN 39913 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ ((oc‘𝐾)‘𝑄) ∈ (Base‘𝐾)) → (𝑃‘((pmap‘𝐾)‘((oc‘𝐾)‘𝑄))) = ((pmap‘𝐾)‘((oc‘𝐾)‘((oc‘𝐾)‘𝑄)))) |
| 15 | 13, 14 | syldan 591 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴) → (𝑃‘((pmap‘𝐾)‘((oc‘𝐾)‘𝑄))) = ((pmap‘𝐾)‘((oc‘𝐾)‘((oc‘𝐾)‘𝑄)))) |
| 16 | 10, 2 | opococ 39195 | . . . . . 6 ⊢ ((𝐾 ∈ OP ∧ 𝑄 ∈ (Base‘𝐾)) → ((oc‘𝐾)‘((oc‘𝐾)‘𝑄)) = 𝑄) |
| 17 | 9, 11, 16 | syl2an 596 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴) → ((oc‘𝐾)‘((oc‘𝐾)‘𝑄)) = 𝑄) |
| 18 | 17 | fveq2d 6865 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴) → ((pmap‘𝐾)‘((oc‘𝐾)‘((oc‘𝐾)‘𝑄))) = ((pmap‘𝐾)‘𝑄)) |
| 19 | 3, 4 | pmapat 39764 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴) → ((pmap‘𝐾)‘𝑄) = {𝑄}) |
| 20 | 18, 19 | eqtrd 2765 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴) → ((pmap‘𝐾)‘((oc‘𝐾)‘((oc‘𝐾)‘𝑄))) = {𝑄}) |
| 21 | 15, 20 | eqtrd 2765 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴) → (𝑃‘((pmap‘𝐾)‘((oc‘𝐾)‘𝑄))) = {𝑄}) |
| 22 | 8, 21 | eqtrd 2765 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴) → (𝑃‘(𝑃‘{𝑄})) = {𝑄}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {csn 4592 ‘cfv 6514 Basecbs 17186 occoc 17235 OPcops 39172 OLcol 39174 Atomscatm 39263 HLchlt 39350 pmapcpmap 39498 ⊥𝑃cpolN 39903 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-iin 4961 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-proset 18262 df-poset 18281 df-plt 18296 df-lub 18312 df-glb 18313 df-join 18314 df-meet 18315 df-p0 18391 df-p1 18392 df-lat 18398 df-clat 18465 df-oposet 39176 df-ol 39178 df-oml 39179 df-covers 39266 df-ats 39267 df-atl 39298 df-cvlat 39322 df-hlat 39351 df-pmap 39505 df-polarityN 39904 |
| This theorem is referenced by: atpsubclN 39946 |
| Copyright terms: Public domain | W3C validator |