Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2polatN Structured version   Visualization version   GIF version

Theorem 2polatN 38251
Description: Double polarity of the singleton of an atom (i.e. a point). (Contributed by NM, 25-Jan-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
2polat.a 𝐴 = (Atoms‘𝐾)
2polat.p 𝑃 = (⊥𝑃𝐾)
Assertion
Ref Expression
2polatN ((𝐾 ∈ HL ∧ 𝑄𝐴) → (𝑃‘(𝑃‘{𝑄})) = {𝑄})

Proof of Theorem 2polatN
StepHypRef Expression
1 hlol 37679 . . . 4 (𝐾 ∈ HL → 𝐾 ∈ OL)
2 eqid 2737 . . . . 5 (oc‘𝐾) = (oc‘𝐾)
3 2polat.a . . . . 5 𝐴 = (Atoms‘𝐾)
4 eqid 2737 . . . . 5 (pmap‘𝐾) = (pmap‘𝐾)
5 2polat.p . . . . 5 𝑃 = (⊥𝑃𝐾)
62, 3, 4, 5polatN 38250 . . . 4 ((𝐾 ∈ OL ∧ 𝑄𝐴) → (𝑃‘{𝑄}) = ((pmap‘𝐾)‘((oc‘𝐾)‘𝑄)))
71, 6sylan 581 . . 3 ((𝐾 ∈ HL ∧ 𝑄𝐴) → (𝑃‘{𝑄}) = ((pmap‘𝐾)‘((oc‘𝐾)‘𝑄)))
87fveq2d 6838 . 2 ((𝐾 ∈ HL ∧ 𝑄𝐴) → (𝑃‘(𝑃‘{𝑄})) = (𝑃‘((pmap‘𝐾)‘((oc‘𝐾)‘𝑄))))
9 hlop 37680 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ OP)
10 eqid 2737 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
1110, 3atbase 37607 . . . . 5 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
1210, 2opoccl 37512 . . . . 5 ((𝐾 ∈ OP ∧ 𝑄 ∈ (Base‘𝐾)) → ((oc‘𝐾)‘𝑄) ∈ (Base‘𝐾))
139, 11, 12syl2an 597 . . . 4 ((𝐾 ∈ HL ∧ 𝑄𝐴) → ((oc‘𝐾)‘𝑄) ∈ (Base‘𝐾))
1410, 2, 4, 5polpmapN 38231 . . . 4 ((𝐾 ∈ HL ∧ ((oc‘𝐾)‘𝑄) ∈ (Base‘𝐾)) → (𝑃‘((pmap‘𝐾)‘((oc‘𝐾)‘𝑄))) = ((pmap‘𝐾)‘((oc‘𝐾)‘((oc‘𝐾)‘𝑄))))
1513, 14syldan 592 . . 3 ((𝐾 ∈ HL ∧ 𝑄𝐴) → (𝑃‘((pmap‘𝐾)‘((oc‘𝐾)‘𝑄))) = ((pmap‘𝐾)‘((oc‘𝐾)‘((oc‘𝐾)‘𝑄))))
1610, 2opococ 37513 . . . . . 6 ((𝐾 ∈ OP ∧ 𝑄 ∈ (Base‘𝐾)) → ((oc‘𝐾)‘((oc‘𝐾)‘𝑄)) = 𝑄)
179, 11, 16syl2an 597 . . . . 5 ((𝐾 ∈ HL ∧ 𝑄𝐴) → ((oc‘𝐾)‘((oc‘𝐾)‘𝑄)) = 𝑄)
1817fveq2d 6838 . . . 4 ((𝐾 ∈ HL ∧ 𝑄𝐴) → ((pmap‘𝐾)‘((oc‘𝐾)‘((oc‘𝐾)‘𝑄))) = ((pmap‘𝐾)‘𝑄))
193, 4pmapat 38082 . . . 4 ((𝐾 ∈ HL ∧ 𝑄𝐴) → ((pmap‘𝐾)‘𝑄) = {𝑄})
2018, 19eqtrd 2777 . . 3 ((𝐾 ∈ HL ∧ 𝑄𝐴) → ((pmap‘𝐾)‘((oc‘𝐾)‘((oc‘𝐾)‘𝑄))) = {𝑄})
2115, 20eqtrd 2777 . 2 ((𝐾 ∈ HL ∧ 𝑄𝐴) → (𝑃‘((pmap‘𝐾)‘((oc‘𝐾)‘𝑄))) = {𝑄})
228, 21eqtrd 2777 1 ((𝐾 ∈ HL ∧ 𝑄𝐴) → (𝑃‘(𝑃‘{𝑄})) = {𝑄})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1541  wcel 2106  {csn 4581  cfv 6488  Basecbs 17014  occoc 17072  OPcops 37490  OLcol 37492  Atomscatm 37581  HLchlt 37668  pmapcpmap 37816  𝑃cpolN 38221
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-rep 5237  ax-sep 5251  ax-nul 5258  ax-pow 5315  ax-pr 5379  ax-un 7659
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-rmo 3351  df-reu 3352  df-rab 3406  df-v 3445  df-sbc 3735  df-csb 3851  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4278  df-if 4482  df-pw 4557  df-sn 4582  df-pr 4584  df-op 4588  df-uni 4861  df-iun 4951  df-iin 4952  df-br 5101  df-opab 5163  df-mpt 5184  df-id 5525  df-xp 5633  df-rel 5634  df-cnv 5635  df-co 5636  df-dm 5637  df-rn 5638  df-res 5639  df-ima 5640  df-iota 6440  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-riota 7302  df-ov 7349  df-oprab 7350  df-proset 18115  df-poset 18133  df-plt 18150  df-lub 18166  df-glb 18167  df-join 18168  df-meet 18169  df-p0 18245  df-p1 18246  df-lat 18252  df-clat 18319  df-oposet 37494  df-ol 37496  df-oml 37497  df-covers 37584  df-ats 37585  df-atl 37616  df-cvlat 37640  df-hlat 37669  df-pmap 37823  df-polarityN 38222
This theorem is referenced by:  atpsubclN  38264
  Copyright terms: Public domain W3C validator