Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > 2polatN | Structured version Visualization version GIF version |
Description: Double polarity of the singleton of an atom (i.e. a point). (Contributed by NM, 25-Jan-2012.) (New usage is discouraged.) |
Ref | Expression |
---|---|
2polat.a | ⊢ 𝐴 = (Atoms‘𝐾) |
2polat.p | ⊢ 𝑃 = (⊥𝑃‘𝐾) |
Ref | Expression |
---|---|
2polatN | ⊢ ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴) → (𝑃‘(𝑃‘{𝑄})) = {𝑄}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hlol 37302 | . . . 4 ⊢ (𝐾 ∈ HL → 𝐾 ∈ OL) | |
2 | eqid 2738 | . . . . 5 ⊢ (oc‘𝐾) = (oc‘𝐾) | |
3 | 2polat.a | . . . . 5 ⊢ 𝐴 = (Atoms‘𝐾) | |
4 | eqid 2738 | . . . . 5 ⊢ (pmap‘𝐾) = (pmap‘𝐾) | |
5 | 2polat.p | . . . . 5 ⊢ 𝑃 = (⊥𝑃‘𝐾) | |
6 | 2, 3, 4, 5 | polatN 37872 | . . . 4 ⊢ ((𝐾 ∈ OL ∧ 𝑄 ∈ 𝐴) → (𝑃‘{𝑄}) = ((pmap‘𝐾)‘((oc‘𝐾)‘𝑄))) |
7 | 1, 6 | sylan 579 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴) → (𝑃‘{𝑄}) = ((pmap‘𝐾)‘((oc‘𝐾)‘𝑄))) |
8 | 7 | fveq2d 6760 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴) → (𝑃‘(𝑃‘{𝑄})) = (𝑃‘((pmap‘𝐾)‘((oc‘𝐾)‘𝑄)))) |
9 | hlop 37303 | . . . . 5 ⊢ (𝐾 ∈ HL → 𝐾 ∈ OP) | |
10 | eqid 2738 | . . . . . 6 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
11 | 10, 3 | atbase 37230 | . . . . 5 ⊢ (𝑄 ∈ 𝐴 → 𝑄 ∈ (Base‘𝐾)) |
12 | 10, 2 | opoccl 37135 | . . . . 5 ⊢ ((𝐾 ∈ OP ∧ 𝑄 ∈ (Base‘𝐾)) → ((oc‘𝐾)‘𝑄) ∈ (Base‘𝐾)) |
13 | 9, 11, 12 | syl2an 595 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴) → ((oc‘𝐾)‘𝑄) ∈ (Base‘𝐾)) |
14 | 10, 2, 4, 5 | polpmapN 37853 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ ((oc‘𝐾)‘𝑄) ∈ (Base‘𝐾)) → (𝑃‘((pmap‘𝐾)‘((oc‘𝐾)‘𝑄))) = ((pmap‘𝐾)‘((oc‘𝐾)‘((oc‘𝐾)‘𝑄)))) |
15 | 13, 14 | syldan 590 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴) → (𝑃‘((pmap‘𝐾)‘((oc‘𝐾)‘𝑄))) = ((pmap‘𝐾)‘((oc‘𝐾)‘((oc‘𝐾)‘𝑄)))) |
16 | 10, 2 | opococ 37136 | . . . . . 6 ⊢ ((𝐾 ∈ OP ∧ 𝑄 ∈ (Base‘𝐾)) → ((oc‘𝐾)‘((oc‘𝐾)‘𝑄)) = 𝑄) |
17 | 9, 11, 16 | syl2an 595 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴) → ((oc‘𝐾)‘((oc‘𝐾)‘𝑄)) = 𝑄) |
18 | 17 | fveq2d 6760 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴) → ((pmap‘𝐾)‘((oc‘𝐾)‘((oc‘𝐾)‘𝑄))) = ((pmap‘𝐾)‘𝑄)) |
19 | 3, 4 | pmapat 37704 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴) → ((pmap‘𝐾)‘𝑄) = {𝑄}) |
20 | 18, 19 | eqtrd 2778 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴) → ((pmap‘𝐾)‘((oc‘𝐾)‘((oc‘𝐾)‘𝑄))) = {𝑄}) |
21 | 15, 20 | eqtrd 2778 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴) → (𝑃‘((pmap‘𝐾)‘((oc‘𝐾)‘𝑄))) = {𝑄}) |
22 | 8, 21 | eqtrd 2778 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴) → (𝑃‘(𝑃‘{𝑄})) = {𝑄}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 {csn 4558 ‘cfv 6418 Basecbs 16840 occoc 16896 OPcops 37113 OLcol 37115 Atomscatm 37204 HLchlt 37291 pmapcpmap 37438 ⊥𝑃cpolN 37843 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-riotaBAD 36894 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-undef 8060 df-proset 17928 df-poset 17946 df-plt 17963 df-lub 17979 df-glb 17980 df-join 17981 df-meet 17982 df-p0 18058 df-p1 18059 df-lat 18065 df-clat 18132 df-oposet 37117 df-ol 37119 df-oml 37120 df-covers 37207 df-ats 37208 df-atl 37239 df-cvlat 37263 df-hlat 37292 df-pmap 37445 df-polarityN 37844 |
This theorem is referenced by: atpsubclN 37886 |
Copyright terms: Public domain | W3C validator |