Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > 2polatN | Structured version Visualization version GIF version |
Description: Double polarity of the singleton of an atom (i.e. a point). (Contributed by NM, 25-Jan-2012.) (New usage is discouraged.) |
Ref | Expression |
---|---|
2polat.a | ⊢ 𝐴 = (Atoms‘𝐾) |
2polat.p | ⊢ 𝑃 = (⊥𝑃‘𝐾) |
Ref | Expression |
---|---|
2polatN | ⊢ ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴) → (𝑃‘(𝑃‘{𝑄})) = {𝑄}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hlol 37679 | . . . 4 ⊢ (𝐾 ∈ HL → 𝐾 ∈ OL) | |
2 | eqid 2737 | . . . . 5 ⊢ (oc‘𝐾) = (oc‘𝐾) | |
3 | 2polat.a | . . . . 5 ⊢ 𝐴 = (Atoms‘𝐾) | |
4 | eqid 2737 | . . . . 5 ⊢ (pmap‘𝐾) = (pmap‘𝐾) | |
5 | 2polat.p | . . . . 5 ⊢ 𝑃 = (⊥𝑃‘𝐾) | |
6 | 2, 3, 4, 5 | polatN 38250 | . . . 4 ⊢ ((𝐾 ∈ OL ∧ 𝑄 ∈ 𝐴) → (𝑃‘{𝑄}) = ((pmap‘𝐾)‘((oc‘𝐾)‘𝑄))) |
7 | 1, 6 | sylan 581 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴) → (𝑃‘{𝑄}) = ((pmap‘𝐾)‘((oc‘𝐾)‘𝑄))) |
8 | 7 | fveq2d 6838 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴) → (𝑃‘(𝑃‘{𝑄})) = (𝑃‘((pmap‘𝐾)‘((oc‘𝐾)‘𝑄)))) |
9 | hlop 37680 | . . . . 5 ⊢ (𝐾 ∈ HL → 𝐾 ∈ OP) | |
10 | eqid 2737 | . . . . . 6 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
11 | 10, 3 | atbase 37607 | . . . . 5 ⊢ (𝑄 ∈ 𝐴 → 𝑄 ∈ (Base‘𝐾)) |
12 | 10, 2 | opoccl 37512 | . . . . 5 ⊢ ((𝐾 ∈ OP ∧ 𝑄 ∈ (Base‘𝐾)) → ((oc‘𝐾)‘𝑄) ∈ (Base‘𝐾)) |
13 | 9, 11, 12 | syl2an 597 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴) → ((oc‘𝐾)‘𝑄) ∈ (Base‘𝐾)) |
14 | 10, 2, 4, 5 | polpmapN 38231 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ ((oc‘𝐾)‘𝑄) ∈ (Base‘𝐾)) → (𝑃‘((pmap‘𝐾)‘((oc‘𝐾)‘𝑄))) = ((pmap‘𝐾)‘((oc‘𝐾)‘((oc‘𝐾)‘𝑄)))) |
15 | 13, 14 | syldan 592 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴) → (𝑃‘((pmap‘𝐾)‘((oc‘𝐾)‘𝑄))) = ((pmap‘𝐾)‘((oc‘𝐾)‘((oc‘𝐾)‘𝑄)))) |
16 | 10, 2 | opococ 37513 | . . . . . 6 ⊢ ((𝐾 ∈ OP ∧ 𝑄 ∈ (Base‘𝐾)) → ((oc‘𝐾)‘((oc‘𝐾)‘𝑄)) = 𝑄) |
17 | 9, 11, 16 | syl2an 597 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴) → ((oc‘𝐾)‘((oc‘𝐾)‘𝑄)) = 𝑄) |
18 | 17 | fveq2d 6838 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴) → ((pmap‘𝐾)‘((oc‘𝐾)‘((oc‘𝐾)‘𝑄))) = ((pmap‘𝐾)‘𝑄)) |
19 | 3, 4 | pmapat 38082 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴) → ((pmap‘𝐾)‘𝑄) = {𝑄}) |
20 | 18, 19 | eqtrd 2777 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴) → ((pmap‘𝐾)‘((oc‘𝐾)‘((oc‘𝐾)‘𝑄))) = {𝑄}) |
21 | 15, 20 | eqtrd 2777 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴) → (𝑃‘((pmap‘𝐾)‘((oc‘𝐾)‘𝑄))) = {𝑄}) |
22 | 8, 21 | eqtrd 2777 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴) → (𝑃‘(𝑃‘{𝑄})) = {𝑄}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1541 ∈ wcel 2106 {csn 4581 ‘cfv 6488 Basecbs 17014 occoc 17072 OPcops 37490 OLcol 37492 Atomscatm 37581 HLchlt 37668 pmapcpmap 37816 ⊥𝑃cpolN 38221 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-rep 5237 ax-sep 5251 ax-nul 5258 ax-pow 5315 ax-pr 5379 ax-un 7659 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rmo 3351 df-reu 3352 df-rab 3406 df-v 3445 df-sbc 3735 df-csb 3851 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4278 df-if 4482 df-pw 4557 df-sn 4582 df-pr 4584 df-op 4588 df-uni 4861 df-iun 4951 df-iin 4952 df-br 5101 df-opab 5163 df-mpt 5184 df-id 5525 df-xp 5633 df-rel 5634 df-cnv 5635 df-co 5636 df-dm 5637 df-rn 5638 df-res 5639 df-ima 5640 df-iota 6440 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-riota 7302 df-ov 7349 df-oprab 7350 df-proset 18115 df-poset 18133 df-plt 18150 df-lub 18166 df-glb 18167 df-join 18168 df-meet 18169 df-p0 18245 df-p1 18246 df-lat 18252 df-clat 18319 df-oposet 37494 df-ol 37496 df-oml 37497 df-covers 37584 df-ats 37585 df-atl 37616 df-cvlat 37640 df-hlat 37669 df-pmap 37823 df-polarityN 38222 |
This theorem is referenced by: atpsubclN 38264 |
Copyright terms: Public domain | W3C validator |