![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 2polvalN | Structured version Visualization version GIF version |
Description: Value of double polarity. (Contributed by NM, 25-Jan-2012.) (New usage is discouraged.) |
Ref | Expression |
---|---|
2polval.u | ⊢ 𝑈 = (lub‘𝐾) |
2polval.a | ⊢ 𝐴 = (Atoms‘𝐾) |
2polval.m | ⊢ 𝑀 = (pmap‘𝐾) |
2polval.p | ⊢ ⊥ = (⊥𝑃‘𝐾) |
Ref | Expression |
---|---|
2polvalN | ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → ( ⊥ ‘( ⊥ ‘𝑋)) = (𝑀‘(𝑈‘𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2polval.u | . . . 4 ⊢ 𝑈 = (lub‘𝐾) | |
2 | eqid 2740 | . . . 4 ⊢ (oc‘𝐾) = (oc‘𝐾) | |
3 | 2polval.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
4 | 2polval.m | . . . 4 ⊢ 𝑀 = (pmap‘𝐾) | |
5 | 2polval.p | . . . 4 ⊢ ⊥ = (⊥𝑃‘𝐾) | |
6 | 1, 2, 3, 4, 5 | polval2N 39863 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → ( ⊥ ‘𝑋) = (𝑀‘((oc‘𝐾)‘(𝑈‘𝑋)))) |
7 | 6 | fveq2d 6924 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → ( ⊥ ‘( ⊥ ‘𝑋)) = ( ⊥ ‘(𝑀‘((oc‘𝐾)‘(𝑈‘𝑋))))) |
8 | hlop 39318 | . . . . 5 ⊢ (𝐾 ∈ HL → 𝐾 ∈ OP) | |
9 | 8 | adantr 480 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → 𝐾 ∈ OP) |
10 | hlclat 39314 | . . . . 5 ⊢ (𝐾 ∈ HL → 𝐾 ∈ CLat) | |
11 | eqid 2740 | . . . . . . 7 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
12 | 11, 3 | atssbase 39246 | . . . . . 6 ⊢ 𝐴 ⊆ (Base‘𝐾) |
13 | sstr 4017 | . . . . . 6 ⊢ ((𝑋 ⊆ 𝐴 ∧ 𝐴 ⊆ (Base‘𝐾)) → 𝑋 ⊆ (Base‘𝐾)) | |
14 | 12, 13 | mpan2 690 | . . . . 5 ⊢ (𝑋 ⊆ 𝐴 → 𝑋 ⊆ (Base‘𝐾)) |
15 | 11, 1 | clatlubcl 18573 | . . . . 5 ⊢ ((𝐾 ∈ CLat ∧ 𝑋 ⊆ (Base‘𝐾)) → (𝑈‘𝑋) ∈ (Base‘𝐾)) |
16 | 10, 14, 15 | syl2an 595 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → (𝑈‘𝑋) ∈ (Base‘𝐾)) |
17 | 11, 2 | opoccl 39150 | . . . 4 ⊢ ((𝐾 ∈ OP ∧ (𝑈‘𝑋) ∈ (Base‘𝐾)) → ((oc‘𝐾)‘(𝑈‘𝑋)) ∈ (Base‘𝐾)) |
18 | 9, 16, 17 | syl2anc 583 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → ((oc‘𝐾)‘(𝑈‘𝑋)) ∈ (Base‘𝐾)) |
19 | 11, 2, 4, 5 | polpmapN 39869 | . . 3 ⊢ ((𝐾 ∈ HL ∧ ((oc‘𝐾)‘(𝑈‘𝑋)) ∈ (Base‘𝐾)) → ( ⊥ ‘(𝑀‘((oc‘𝐾)‘(𝑈‘𝑋)))) = (𝑀‘((oc‘𝐾)‘((oc‘𝐾)‘(𝑈‘𝑋))))) |
20 | 18, 19 | syldan 590 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → ( ⊥ ‘(𝑀‘((oc‘𝐾)‘(𝑈‘𝑋)))) = (𝑀‘((oc‘𝐾)‘((oc‘𝐾)‘(𝑈‘𝑋))))) |
21 | 11, 2 | opococ 39151 | . . . 4 ⊢ ((𝐾 ∈ OP ∧ (𝑈‘𝑋) ∈ (Base‘𝐾)) → ((oc‘𝐾)‘((oc‘𝐾)‘(𝑈‘𝑋))) = (𝑈‘𝑋)) |
22 | 9, 16, 21 | syl2anc 583 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → ((oc‘𝐾)‘((oc‘𝐾)‘(𝑈‘𝑋))) = (𝑈‘𝑋)) |
23 | 22 | fveq2d 6924 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → (𝑀‘((oc‘𝐾)‘((oc‘𝐾)‘(𝑈‘𝑋)))) = (𝑀‘(𝑈‘𝑋))) |
24 | 7, 20, 23 | 3eqtrd 2784 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → ( ⊥ ‘( ⊥ ‘𝑋)) = (𝑀‘(𝑈‘𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ⊆ wss 3976 ‘cfv 6573 Basecbs 17258 occoc 17319 lubclub 18379 CLatccla 18568 OPcops 39128 Atomscatm 39219 HLchlt 39306 pmapcpmap 39454 ⊥𝑃cpolN 39859 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-proset 18365 df-poset 18383 df-plt 18400 df-lub 18416 df-glb 18417 df-join 18418 df-meet 18419 df-p0 18495 df-p1 18496 df-lat 18502 df-clat 18569 df-oposet 39132 df-ol 39134 df-oml 39135 df-covers 39222 df-ats 39223 df-atl 39254 df-cvlat 39278 df-hlat 39307 df-pmap 39461 df-polarityN 39860 |
This theorem is referenced by: 2polssN 39872 3polN 39873 sspmaplubN 39882 2pmaplubN 39883 paddunN 39884 pnonsingN 39890 pmapidclN 39899 poml4N 39910 |
Copyright terms: Public domain | W3C validator |