Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2polvalN Structured version   Visualization version   GIF version

Theorem 2polvalN 35696
Description: Value of double polarity. (Contributed by NM, 25-Jan-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
2polval.u 𝑈 = (lub‘𝐾)
2polval.a 𝐴 = (Atoms‘𝐾)
2polval.m 𝑀 = (pmap‘𝐾)
2polval.p = (⊥𝑃𝐾)
Assertion
Ref Expression
2polvalN ((𝐾 ∈ HL ∧ 𝑋𝐴) → ( ‘( 𝑋)) = (𝑀‘(𝑈𝑋)))

Proof of Theorem 2polvalN
StepHypRef Expression
1 2polval.u . . . 4 𝑈 = (lub‘𝐾)
2 eqid 2813 . . . 4 (oc‘𝐾) = (oc‘𝐾)
3 2polval.a . . . 4 𝐴 = (Atoms‘𝐾)
4 2polval.m . . . 4 𝑀 = (pmap‘𝐾)
5 2polval.p . . . 4 = (⊥𝑃𝐾)
61, 2, 3, 4, 5polval2N 35688 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐴) → ( 𝑋) = (𝑀‘((oc‘𝐾)‘(𝑈𝑋))))
76fveq2d 6415 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐴) → ( ‘( 𝑋)) = ( ‘(𝑀‘((oc‘𝐾)‘(𝑈𝑋)))))
8 hlop 35144 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ OP)
98adantr 468 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐴) → 𝐾 ∈ OP)
10 hlclat 35140 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ CLat)
11 eqid 2813 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
1211, 3atssbase 35072 . . . . . 6 𝐴 ⊆ (Base‘𝐾)
13 sstr 3813 . . . . . 6 ((𝑋𝐴𝐴 ⊆ (Base‘𝐾)) → 𝑋 ⊆ (Base‘𝐾))
1412, 13mpan2 674 . . . . 5 (𝑋𝐴𝑋 ⊆ (Base‘𝐾))
1511, 1clatlubcl 17320 . . . . 5 ((𝐾 ∈ CLat ∧ 𝑋 ⊆ (Base‘𝐾)) → (𝑈𝑋) ∈ (Base‘𝐾))
1610, 14, 15syl2an 585 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐴) → (𝑈𝑋) ∈ (Base‘𝐾))
1711, 2opoccl 34976 . . . 4 ((𝐾 ∈ OP ∧ (𝑈𝑋) ∈ (Base‘𝐾)) → ((oc‘𝐾)‘(𝑈𝑋)) ∈ (Base‘𝐾))
189, 16, 17syl2anc 575 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐴) → ((oc‘𝐾)‘(𝑈𝑋)) ∈ (Base‘𝐾))
1911, 2, 4, 5polpmapN 35694 . . 3 ((𝐾 ∈ HL ∧ ((oc‘𝐾)‘(𝑈𝑋)) ∈ (Base‘𝐾)) → ( ‘(𝑀‘((oc‘𝐾)‘(𝑈𝑋)))) = (𝑀‘((oc‘𝐾)‘((oc‘𝐾)‘(𝑈𝑋)))))
2018, 19syldan 581 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐴) → ( ‘(𝑀‘((oc‘𝐾)‘(𝑈𝑋)))) = (𝑀‘((oc‘𝐾)‘((oc‘𝐾)‘(𝑈𝑋)))))
2111, 2opococ 34977 . . . 4 ((𝐾 ∈ OP ∧ (𝑈𝑋) ∈ (Base‘𝐾)) → ((oc‘𝐾)‘((oc‘𝐾)‘(𝑈𝑋))) = (𝑈𝑋))
229, 16, 21syl2anc 575 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐴) → ((oc‘𝐾)‘((oc‘𝐾)‘(𝑈𝑋))) = (𝑈𝑋))
2322fveq2d 6415 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐴) → (𝑀‘((oc‘𝐾)‘((oc‘𝐾)‘(𝑈𝑋)))) = (𝑀‘(𝑈𝑋)))
247, 20, 233eqtrd 2851 1 ((𝐾 ∈ HL ∧ 𝑋𝐴) → ( ‘( 𝑋)) = (𝑀‘(𝑈𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1637  wcel 2157  wss 3776  cfv 6104  Basecbs 16071  occoc 16164  lubclub 17150  CLatccla 17315  OPcops 34954  Atomscatm 35045  HLchlt 35132  pmapcpmap 35279  𝑃cpolN 35684
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2069  ax-7 2105  ax-8 2159  ax-9 2166  ax-10 2186  ax-11 2202  ax-12 2215  ax-13 2422  ax-ext 2791  ax-rep 4971  ax-sep 4982  ax-nul 4990  ax-pow 5042  ax-pr 5103  ax-un 7182  ax-riotaBAD 34734
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2062  df-mo 2635  df-eu 2638  df-clab 2800  df-cleq 2806  df-clel 2809  df-nfc 2944  df-ne 2986  df-nel 3089  df-ral 3108  df-rex 3109  df-reu 3110  df-rmo 3111  df-rab 3112  df-v 3400  df-sbc 3641  df-csb 3736  df-dif 3779  df-un 3781  df-in 3783  df-ss 3790  df-nul 4124  df-if 4287  df-pw 4360  df-sn 4378  df-pr 4380  df-op 4384  df-uni 4638  df-iun 4721  df-iin 4722  df-br 4852  df-opab 4914  df-mpt 4931  df-id 5226  df-xp 5324  df-rel 5325  df-cnv 5326  df-co 5327  df-dm 5328  df-rn 5329  df-res 5330  df-ima 5331  df-iota 6067  df-fun 6106  df-fn 6107  df-f 6108  df-f1 6109  df-fo 6110  df-f1o 6111  df-fv 6112  df-riota 6838  df-ov 6880  df-oprab 6881  df-undef 7637  df-proset 17136  df-poset 17154  df-plt 17166  df-lub 17182  df-glb 17183  df-join 17184  df-meet 17185  df-p0 17247  df-p1 17248  df-lat 17254  df-clat 17316  df-oposet 34958  df-ol 34960  df-oml 34961  df-covers 35048  df-ats 35049  df-atl 35080  df-cvlat 35104  df-hlat 35133  df-pmap 35286  df-polarityN 35685
This theorem is referenced by:  2polssN  35697  3polN  35698  sspmaplubN  35707  2pmaplubN  35708  paddunN  35709  pnonsingN  35715  pmapidclN  35724  poml4N  35735
  Copyright terms: Public domain W3C validator