Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2polvalN Structured version   Visualization version   GIF version

Theorem 2polvalN 40023
Description: Value of double polarity. (Contributed by NM, 25-Jan-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
2polval.u 𝑈 = (lub‘𝐾)
2polval.a 𝐴 = (Atoms‘𝐾)
2polval.m 𝑀 = (pmap‘𝐾)
2polval.p = (⊥𝑃𝐾)
Assertion
Ref Expression
2polvalN ((𝐾 ∈ HL ∧ 𝑋𝐴) → ( ‘( 𝑋)) = (𝑀‘(𝑈𝑋)))

Proof of Theorem 2polvalN
StepHypRef Expression
1 2polval.u . . . 4 𝑈 = (lub‘𝐾)
2 eqid 2731 . . . 4 (oc‘𝐾) = (oc‘𝐾)
3 2polval.a . . . 4 𝐴 = (Atoms‘𝐾)
4 2polval.m . . . 4 𝑀 = (pmap‘𝐾)
5 2polval.p . . . 4 = (⊥𝑃𝐾)
61, 2, 3, 4, 5polval2N 40015 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐴) → ( 𝑋) = (𝑀‘((oc‘𝐾)‘(𝑈𝑋))))
76fveq2d 6826 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐴) → ( ‘( 𝑋)) = ( ‘(𝑀‘((oc‘𝐾)‘(𝑈𝑋)))))
8 hlop 39471 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ OP)
98adantr 480 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐴) → 𝐾 ∈ OP)
10 hlclat 39467 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ CLat)
11 eqid 2731 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
1211, 3atssbase 39399 . . . . . 6 𝐴 ⊆ (Base‘𝐾)
13 sstr 3938 . . . . . 6 ((𝑋𝐴𝐴 ⊆ (Base‘𝐾)) → 𝑋 ⊆ (Base‘𝐾))
1412, 13mpan2 691 . . . . 5 (𝑋𝐴𝑋 ⊆ (Base‘𝐾))
1511, 1clatlubcl 18409 . . . . 5 ((𝐾 ∈ CLat ∧ 𝑋 ⊆ (Base‘𝐾)) → (𝑈𝑋) ∈ (Base‘𝐾))
1610, 14, 15syl2an 596 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐴) → (𝑈𝑋) ∈ (Base‘𝐾))
1711, 2opoccl 39303 . . . 4 ((𝐾 ∈ OP ∧ (𝑈𝑋) ∈ (Base‘𝐾)) → ((oc‘𝐾)‘(𝑈𝑋)) ∈ (Base‘𝐾))
189, 16, 17syl2anc 584 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐴) → ((oc‘𝐾)‘(𝑈𝑋)) ∈ (Base‘𝐾))
1911, 2, 4, 5polpmapN 40021 . . 3 ((𝐾 ∈ HL ∧ ((oc‘𝐾)‘(𝑈𝑋)) ∈ (Base‘𝐾)) → ( ‘(𝑀‘((oc‘𝐾)‘(𝑈𝑋)))) = (𝑀‘((oc‘𝐾)‘((oc‘𝐾)‘(𝑈𝑋)))))
2018, 19syldan 591 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐴) → ( ‘(𝑀‘((oc‘𝐾)‘(𝑈𝑋)))) = (𝑀‘((oc‘𝐾)‘((oc‘𝐾)‘(𝑈𝑋)))))
2111, 2opococ 39304 . . . 4 ((𝐾 ∈ OP ∧ (𝑈𝑋) ∈ (Base‘𝐾)) → ((oc‘𝐾)‘((oc‘𝐾)‘(𝑈𝑋))) = (𝑈𝑋))
229, 16, 21syl2anc 584 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐴) → ((oc‘𝐾)‘((oc‘𝐾)‘(𝑈𝑋))) = (𝑈𝑋))
2322fveq2d 6826 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐴) → (𝑀‘((oc‘𝐾)‘((oc‘𝐾)‘(𝑈𝑋)))) = (𝑀‘(𝑈𝑋)))
247, 20, 233eqtrd 2770 1 ((𝐾 ∈ HL ∧ 𝑋𝐴) → ( ‘( 𝑋)) = (𝑀‘(𝑈𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wss 3897  cfv 6481  Basecbs 17120  occoc 17169  lubclub 18215  CLatccla 18404  OPcops 39281  Atomscatm 39372  HLchlt 39459  pmapcpmap 39606  𝑃cpolN 40011
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-proset 18200  df-poset 18219  df-plt 18234  df-lub 18250  df-glb 18251  df-join 18252  df-meet 18253  df-p0 18329  df-p1 18330  df-lat 18338  df-clat 18405  df-oposet 39285  df-ol 39287  df-oml 39288  df-covers 39375  df-ats 39376  df-atl 39407  df-cvlat 39431  df-hlat 39460  df-pmap 39613  df-polarityN 40012
This theorem is referenced by:  2polssN  40024  3polN  40025  sspmaplubN  40034  2pmaplubN  40035  paddunN  40036  pnonsingN  40042  pmapidclN  40051  poml4N  40062
  Copyright terms: Public domain W3C validator