Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2polvalN Structured version   Visualization version   GIF version

Theorem 2polvalN 39862
Description: Value of double polarity. (Contributed by NM, 25-Jan-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
2polval.u 𝑈 = (lub‘𝐾)
2polval.a 𝐴 = (Atoms‘𝐾)
2polval.m 𝑀 = (pmap‘𝐾)
2polval.p = (⊥𝑃𝐾)
Assertion
Ref Expression
2polvalN ((𝐾 ∈ HL ∧ 𝑋𝐴) → ( ‘( 𝑋)) = (𝑀‘(𝑈𝑋)))

Proof of Theorem 2polvalN
StepHypRef Expression
1 2polval.u . . . 4 𝑈 = (lub‘𝐾)
2 eqid 2734 . . . 4 (oc‘𝐾) = (oc‘𝐾)
3 2polval.a . . . 4 𝐴 = (Atoms‘𝐾)
4 2polval.m . . . 4 𝑀 = (pmap‘𝐾)
5 2polval.p . . . 4 = (⊥𝑃𝐾)
61, 2, 3, 4, 5polval2N 39854 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐴) → ( 𝑋) = (𝑀‘((oc‘𝐾)‘(𝑈𝑋))))
76fveq2d 6877 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐴) → ( ‘( 𝑋)) = ( ‘(𝑀‘((oc‘𝐾)‘(𝑈𝑋)))))
8 hlop 39309 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ OP)
98adantr 480 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐴) → 𝐾 ∈ OP)
10 hlclat 39305 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ CLat)
11 eqid 2734 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
1211, 3atssbase 39237 . . . . . 6 𝐴 ⊆ (Base‘𝐾)
13 sstr 3965 . . . . . 6 ((𝑋𝐴𝐴 ⊆ (Base‘𝐾)) → 𝑋 ⊆ (Base‘𝐾))
1412, 13mpan2 691 . . . . 5 (𝑋𝐴𝑋 ⊆ (Base‘𝐾))
1511, 1clatlubcl 18500 . . . . 5 ((𝐾 ∈ CLat ∧ 𝑋 ⊆ (Base‘𝐾)) → (𝑈𝑋) ∈ (Base‘𝐾))
1610, 14, 15syl2an 596 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐴) → (𝑈𝑋) ∈ (Base‘𝐾))
1711, 2opoccl 39141 . . . 4 ((𝐾 ∈ OP ∧ (𝑈𝑋) ∈ (Base‘𝐾)) → ((oc‘𝐾)‘(𝑈𝑋)) ∈ (Base‘𝐾))
189, 16, 17syl2anc 584 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐴) → ((oc‘𝐾)‘(𝑈𝑋)) ∈ (Base‘𝐾))
1911, 2, 4, 5polpmapN 39860 . . 3 ((𝐾 ∈ HL ∧ ((oc‘𝐾)‘(𝑈𝑋)) ∈ (Base‘𝐾)) → ( ‘(𝑀‘((oc‘𝐾)‘(𝑈𝑋)))) = (𝑀‘((oc‘𝐾)‘((oc‘𝐾)‘(𝑈𝑋)))))
2018, 19syldan 591 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐴) → ( ‘(𝑀‘((oc‘𝐾)‘(𝑈𝑋)))) = (𝑀‘((oc‘𝐾)‘((oc‘𝐾)‘(𝑈𝑋)))))
2111, 2opococ 39142 . . . 4 ((𝐾 ∈ OP ∧ (𝑈𝑋) ∈ (Base‘𝐾)) → ((oc‘𝐾)‘((oc‘𝐾)‘(𝑈𝑋))) = (𝑈𝑋))
229, 16, 21syl2anc 584 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐴) → ((oc‘𝐾)‘((oc‘𝐾)‘(𝑈𝑋))) = (𝑈𝑋))
2322fveq2d 6877 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐴) → (𝑀‘((oc‘𝐾)‘((oc‘𝐾)‘(𝑈𝑋)))) = (𝑀‘(𝑈𝑋)))
247, 20, 233eqtrd 2773 1 ((𝐾 ∈ HL ∧ 𝑋𝐴) → ( ‘( 𝑋)) = (𝑀‘(𝑈𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  wss 3924  cfv 6528  Basecbs 17215  occoc 17266  lubclub 18308  CLatccla 18495  OPcops 39119  Atomscatm 39210  HLchlt 39297  pmapcpmap 39445  𝑃cpolN 39850
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5247  ax-sep 5264  ax-nul 5274  ax-pow 5333  ax-pr 5400  ax-un 7724
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rmo 3357  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4882  df-iun 4967  df-iin 4968  df-br 5118  df-opab 5180  df-mpt 5200  df-id 5546  df-xp 5658  df-rel 5659  df-cnv 5660  df-co 5661  df-dm 5662  df-rn 5663  df-res 5664  df-ima 5665  df-iota 6481  df-fun 6530  df-fn 6531  df-f 6532  df-f1 6533  df-fo 6534  df-f1o 6535  df-fv 6536  df-riota 7357  df-ov 7403  df-oprab 7404  df-proset 18293  df-poset 18312  df-plt 18327  df-lub 18343  df-glb 18344  df-join 18345  df-meet 18346  df-p0 18422  df-p1 18423  df-lat 18429  df-clat 18496  df-oposet 39123  df-ol 39125  df-oml 39126  df-covers 39213  df-ats 39214  df-atl 39245  df-cvlat 39269  df-hlat 39298  df-pmap 39452  df-polarityN 39851
This theorem is referenced by:  2polssN  39863  3polN  39864  sspmaplubN  39873  2pmaplubN  39874  paddunN  39875  pnonsingN  39881  pmapidclN  39890  poml4N  39901
  Copyright terms: Public domain W3C validator