| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 2polvalN | Structured version Visualization version GIF version | ||
| Description: Value of double polarity. (Contributed by NM, 25-Jan-2012.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| 2polval.u | ⊢ 𝑈 = (lub‘𝐾) |
| 2polval.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| 2polval.m | ⊢ 𝑀 = (pmap‘𝐾) |
| 2polval.p | ⊢ ⊥ = (⊥𝑃‘𝐾) |
| Ref | Expression |
|---|---|
| 2polvalN | ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → ( ⊥ ‘( ⊥ ‘𝑋)) = (𝑀‘(𝑈‘𝑋))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2polval.u | . . . 4 ⊢ 𝑈 = (lub‘𝐾) | |
| 2 | eqid 2729 | . . . 4 ⊢ (oc‘𝐾) = (oc‘𝐾) | |
| 3 | 2polval.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 4 | 2polval.m | . . . 4 ⊢ 𝑀 = (pmap‘𝐾) | |
| 5 | 2polval.p | . . . 4 ⊢ ⊥ = (⊥𝑃‘𝐾) | |
| 6 | 1, 2, 3, 4, 5 | polval2N 39893 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → ( ⊥ ‘𝑋) = (𝑀‘((oc‘𝐾)‘(𝑈‘𝑋)))) |
| 7 | 6 | fveq2d 6844 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → ( ⊥ ‘( ⊥ ‘𝑋)) = ( ⊥ ‘(𝑀‘((oc‘𝐾)‘(𝑈‘𝑋))))) |
| 8 | hlop 39348 | . . . . 5 ⊢ (𝐾 ∈ HL → 𝐾 ∈ OP) | |
| 9 | 8 | adantr 480 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → 𝐾 ∈ OP) |
| 10 | hlclat 39344 | . . . . 5 ⊢ (𝐾 ∈ HL → 𝐾 ∈ CLat) | |
| 11 | eqid 2729 | . . . . . . 7 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 12 | 11, 3 | atssbase 39276 | . . . . . 6 ⊢ 𝐴 ⊆ (Base‘𝐾) |
| 13 | sstr 3952 | . . . . . 6 ⊢ ((𝑋 ⊆ 𝐴 ∧ 𝐴 ⊆ (Base‘𝐾)) → 𝑋 ⊆ (Base‘𝐾)) | |
| 14 | 12, 13 | mpan2 691 | . . . . 5 ⊢ (𝑋 ⊆ 𝐴 → 𝑋 ⊆ (Base‘𝐾)) |
| 15 | 11, 1 | clatlubcl 18444 | . . . . 5 ⊢ ((𝐾 ∈ CLat ∧ 𝑋 ⊆ (Base‘𝐾)) → (𝑈‘𝑋) ∈ (Base‘𝐾)) |
| 16 | 10, 14, 15 | syl2an 596 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → (𝑈‘𝑋) ∈ (Base‘𝐾)) |
| 17 | 11, 2 | opoccl 39180 | . . . 4 ⊢ ((𝐾 ∈ OP ∧ (𝑈‘𝑋) ∈ (Base‘𝐾)) → ((oc‘𝐾)‘(𝑈‘𝑋)) ∈ (Base‘𝐾)) |
| 18 | 9, 16, 17 | syl2anc 584 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → ((oc‘𝐾)‘(𝑈‘𝑋)) ∈ (Base‘𝐾)) |
| 19 | 11, 2, 4, 5 | polpmapN 39899 | . . 3 ⊢ ((𝐾 ∈ HL ∧ ((oc‘𝐾)‘(𝑈‘𝑋)) ∈ (Base‘𝐾)) → ( ⊥ ‘(𝑀‘((oc‘𝐾)‘(𝑈‘𝑋)))) = (𝑀‘((oc‘𝐾)‘((oc‘𝐾)‘(𝑈‘𝑋))))) |
| 20 | 18, 19 | syldan 591 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → ( ⊥ ‘(𝑀‘((oc‘𝐾)‘(𝑈‘𝑋)))) = (𝑀‘((oc‘𝐾)‘((oc‘𝐾)‘(𝑈‘𝑋))))) |
| 21 | 11, 2 | opococ 39181 | . . . 4 ⊢ ((𝐾 ∈ OP ∧ (𝑈‘𝑋) ∈ (Base‘𝐾)) → ((oc‘𝐾)‘((oc‘𝐾)‘(𝑈‘𝑋))) = (𝑈‘𝑋)) |
| 22 | 9, 16, 21 | syl2anc 584 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → ((oc‘𝐾)‘((oc‘𝐾)‘(𝑈‘𝑋))) = (𝑈‘𝑋)) |
| 23 | 22 | fveq2d 6844 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → (𝑀‘((oc‘𝐾)‘((oc‘𝐾)‘(𝑈‘𝑋)))) = (𝑀‘(𝑈‘𝑋))) |
| 24 | 7, 20, 23 | 3eqtrd 2768 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → ( ⊥ ‘( ⊥ ‘𝑋)) = (𝑀‘(𝑈‘𝑋))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⊆ wss 3911 ‘cfv 6499 Basecbs 17155 occoc 17204 lubclub 18250 CLatccla 18439 OPcops 39158 Atomscatm 39249 HLchlt 39336 pmapcpmap 39484 ⊥𝑃cpolN 39889 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-iin 4954 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-proset 18235 df-poset 18254 df-plt 18269 df-lub 18285 df-glb 18286 df-join 18287 df-meet 18288 df-p0 18364 df-p1 18365 df-lat 18373 df-clat 18440 df-oposet 39162 df-ol 39164 df-oml 39165 df-covers 39252 df-ats 39253 df-atl 39284 df-cvlat 39308 df-hlat 39337 df-pmap 39491 df-polarityN 39890 |
| This theorem is referenced by: 2polssN 39902 3polN 39903 sspmaplubN 39912 2pmaplubN 39913 paddunN 39914 pnonsingN 39920 pmapidclN 39929 poml4N 39940 |
| Copyright terms: Public domain | W3C validator |