![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > doch2val2 | Structured version Visualization version GIF version |
Description: Double orthocomplement for DVecH vector space. (Contributed by NM, 26-Jul-2014.) |
Ref | Expression |
---|---|
doch2val2.h | ⊢ 𝐻 = (LHyp‘𝐾) |
doch2val2.i | ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) |
doch2val2.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
doch2val2.v | ⊢ 𝑉 = (Base‘𝑈) |
doch2val2.o | ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) |
doch2val2.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
doch2val2.x | ⊢ (𝜑 → 𝑋 ⊆ 𝑉) |
Ref | Expression |
---|---|
doch2val2 | ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘𝑋)) = ∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | doch2val2.k | . . . 4 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
2 | doch2val2.x | . . . 4 ⊢ (𝜑 → 𝑋 ⊆ 𝑉) | |
3 | eqid 2731 | . . . . 5 ⊢ (oc‘𝐾) = (oc‘𝐾) | |
4 | doch2val2.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
5 | doch2val2.i | . . . . 5 ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) | |
6 | doch2val2.u | . . . . 5 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
7 | doch2val2.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑈) | |
8 | doch2val2.o | . . . . 5 ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) | |
9 | 3, 4, 5, 6, 7, 8 | dochval2 40690 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ⊆ 𝑉) → ( ⊥ ‘𝑋) = (𝐼‘((oc‘𝐾)‘(◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧})))) |
10 | 1, 2, 9 | syl2anc 583 | . . 3 ⊢ (𝜑 → ( ⊥ ‘𝑋) = (𝐼‘((oc‘𝐾)‘(◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧})))) |
11 | 10 | fveq2d 6895 | . 2 ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘𝑋)) = ( ⊥ ‘(𝐼‘((oc‘𝐾)‘(◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧}))))) |
12 | 1 | simpld 494 | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ HL) |
13 | hlop 38699 | . . . . 5 ⊢ (𝐾 ∈ HL → 𝐾 ∈ OP) | |
14 | 12, 13 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐾 ∈ OP) |
15 | ssrab2 4077 | . . . . . . 7 ⊢ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧} ⊆ ran 𝐼 | |
16 | 15 | a1i 11 | . . . . . 6 ⊢ (𝜑 → {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧} ⊆ ran 𝐼) |
17 | 4, 5, 6, 7 | dih1rn 40625 | . . . . . . . . 9 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑉 ∈ ran 𝐼) |
18 | 1, 17 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝑉 ∈ ran 𝐼) |
19 | sseq2 4008 | . . . . . . . . 9 ⊢ (𝑧 = 𝑉 → (𝑋 ⊆ 𝑧 ↔ 𝑋 ⊆ 𝑉)) | |
20 | 19 | elrab 3683 | . . . . . . . 8 ⊢ (𝑉 ∈ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧} ↔ (𝑉 ∈ ran 𝐼 ∧ 𝑋 ⊆ 𝑉)) |
21 | 18, 2, 20 | sylanbrc 582 | . . . . . . 7 ⊢ (𝜑 → 𝑉 ∈ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧}) |
22 | 21 | ne0d 4335 | . . . . . 6 ⊢ (𝜑 → {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧} ≠ ∅) |
23 | 4, 5 | dihintcl 40682 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ({𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧} ⊆ ran 𝐼 ∧ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧} ≠ ∅)) → ∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧} ∈ ran 𝐼) |
24 | 1, 16, 22, 23 | syl12anc 834 | . . . . 5 ⊢ (𝜑 → ∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧} ∈ ran 𝐼) |
25 | eqid 2731 | . . . . . 6 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
26 | 25, 4, 5 | dihcnvcl 40609 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧} ∈ ran 𝐼) → (◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧}) ∈ (Base‘𝐾)) |
27 | 1, 24, 26 | syl2anc 583 | . . . 4 ⊢ (𝜑 → (◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧}) ∈ (Base‘𝐾)) |
28 | 25, 3 | opoccl 38531 | . . . 4 ⊢ ((𝐾 ∈ OP ∧ (◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧}) ∈ (Base‘𝐾)) → ((oc‘𝐾)‘(◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧})) ∈ (Base‘𝐾)) |
29 | 14, 27, 28 | syl2anc 583 | . . 3 ⊢ (𝜑 → ((oc‘𝐾)‘(◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧})) ∈ (Base‘𝐾)) |
30 | 25, 3, 4, 5, 8 | dochvalr2 40700 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((oc‘𝐾)‘(◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧})) ∈ (Base‘𝐾)) → ( ⊥ ‘(𝐼‘((oc‘𝐾)‘(◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧})))) = (𝐼‘((oc‘𝐾)‘((oc‘𝐾)‘(◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧}))))) |
31 | 1, 29, 30 | syl2anc 583 | . 2 ⊢ (𝜑 → ( ⊥ ‘(𝐼‘((oc‘𝐾)‘(◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧})))) = (𝐼‘((oc‘𝐾)‘((oc‘𝐾)‘(◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧}))))) |
32 | 25, 3 | opococ 38532 | . . . . 5 ⊢ ((𝐾 ∈ OP ∧ (◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧}) ∈ (Base‘𝐾)) → ((oc‘𝐾)‘((oc‘𝐾)‘(◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧}))) = (◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧})) |
33 | 14, 27, 32 | syl2anc 583 | . . . 4 ⊢ (𝜑 → ((oc‘𝐾)‘((oc‘𝐾)‘(◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧}))) = (◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧})) |
34 | 33 | fveq2d 6895 | . . 3 ⊢ (𝜑 → (𝐼‘((oc‘𝐾)‘((oc‘𝐾)‘(◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧})))) = (𝐼‘(◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧}))) |
35 | 4, 5 | dihcnvid2 40611 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧} ∈ ran 𝐼) → (𝐼‘(◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧})) = ∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧}) |
36 | 1, 24, 35 | syl2anc 583 | . . 3 ⊢ (𝜑 → (𝐼‘(◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧})) = ∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧}) |
37 | 34, 36 | eqtrd 2771 | . 2 ⊢ (𝜑 → (𝐼‘((oc‘𝐾)‘((oc‘𝐾)‘(◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧})))) = ∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧}) |
38 | 11, 31, 37 | 3eqtrd 2775 | 1 ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘𝑋)) = ∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2105 ≠ wne 2939 {crab 3431 ⊆ wss 3948 ∅c0 4322 ∩ cint 4950 ◡ccnv 5675 ran crn 5677 ‘cfv 6543 Basecbs 17151 occoc 17212 OPcops 38509 HLchlt 38687 LHypclh 39322 DVecHcdvh 40416 DIsoHcdih 40566 ocHcoch 40685 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11172 ax-resscn 11173 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-mulcom 11180 ax-addass 11181 ax-mulass 11182 ax-distr 11183 ax-i2m1 11184 ax-1ne0 11185 ax-1rid 11186 ax-rnegex 11187 ax-rrecex 11188 ax-cnre 11189 ax-pre-lttri 11190 ax-pre-lttrn 11191 ax-pre-ltadd 11192 ax-pre-mulgt0 11193 ax-riotaBAD 38290 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-iin 5000 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-1st 7979 df-2nd 7980 df-tpos 8217 df-undef 8264 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-1o 8472 df-er 8709 df-map 8828 df-en 8946 df-dom 8947 df-sdom 8948 df-fin 8949 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 df-le 11261 df-sub 11453 df-neg 11454 df-nn 12220 df-2 12282 df-3 12283 df-4 12284 df-5 12285 df-6 12286 df-n0 12480 df-z 12566 df-uz 12830 df-fz 13492 df-struct 17087 df-sets 17104 df-slot 17122 df-ndx 17134 df-base 17152 df-ress 17181 df-plusg 17217 df-mulr 17218 df-sca 17220 df-vsca 17221 df-0g 17394 df-proset 18258 df-poset 18276 df-plt 18293 df-lub 18309 df-glb 18310 df-join 18311 df-meet 18312 df-p0 18388 df-p1 18389 df-lat 18395 df-clat 18462 df-mgm 18571 df-sgrp 18650 df-mnd 18666 df-submnd 18712 df-grp 18864 df-minusg 18865 df-sbg 18866 df-subg 19046 df-cntz 19229 df-lsm 19552 df-cmn 19698 df-abl 19699 df-mgp 20036 df-rng 20054 df-ur 20083 df-ring 20136 df-oppr 20232 df-dvdsr 20255 df-unit 20256 df-invr 20286 df-dvr 20299 df-drng 20585 df-lmod 20704 df-lss 20775 df-lsp 20815 df-lvec 20947 df-lsatoms 38313 df-oposet 38513 df-ol 38515 df-oml 38516 df-covers 38603 df-ats 38604 df-atl 38635 df-cvlat 38659 df-hlat 38688 df-llines 38836 df-lplanes 38837 df-lvols 38838 df-lines 38839 df-psubsp 38841 df-pmap 38842 df-padd 39134 df-lhyp 39326 df-laut 39327 df-ldil 39442 df-ltrn 39443 df-trl 39497 df-tendo 40093 df-edring 40095 df-disoa 40367 df-dvech 40417 df-dib 40477 df-dic 40511 df-dih 40567 df-doch 40686 |
This theorem is referenced by: dochspss 40716 |
Copyright terms: Public domain | W3C validator |