Step | Hyp | Ref
| Expression |
1 | | doch2val2.k |
. . . 4
β’ (π β (πΎ β HL β§ π β π»)) |
2 | | doch2val2.x |
. . . 4
β’ (π β π β π) |
3 | | eqid 2731 |
. . . . 5
β’
(ocβπΎ) =
(ocβπΎ) |
4 | | doch2val2.h |
. . . . 5
β’ π» = (LHypβπΎ) |
5 | | doch2val2.i |
. . . . 5
β’ πΌ = ((DIsoHβπΎ)βπ) |
6 | | doch2val2.u |
. . . . 5
β’ π = ((DVecHβπΎ)βπ) |
7 | | doch2val2.v |
. . . . 5
β’ π = (Baseβπ) |
8 | | doch2val2.o |
. . . . 5
β’ β₯ =
((ocHβπΎ)βπ) |
9 | 3, 4, 5, 6, 7, 8 | dochval2 40527 |
. . . 4
β’ (((πΎ β HL β§ π β π») β§ π β π) β ( β₯ βπ) = (πΌβ((ocβπΎ)β(β‘πΌββ© {π§ β ran πΌ β£ π β π§})))) |
10 | 1, 2, 9 | syl2anc 583 |
. . 3
β’ (π β ( β₯ βπ) = (πΌβ((ocβπΎ)β(β‘πΌββ© {π§ β ran πΌ β£ π β π§})))) |
11 | 10 | fveq2d 6896 |
. 2
β’ (π β ( β₯ β( β₯
βπ)) = ( β₯
β(πΌβ((ocβπΎ)β(β‘πΌββ© {π§ β ran πΌ β£ π β π§}))))) |
12 | 1 | simpld 494 |
. . . . 5
β’ (π β πΎ β HL) |
13 | | hlop 38536 |
. . . . 5
β’ (πΎ β HL β πΎ β OP) |
14 | 12, 13 | syl 17 |
. . . 4
β’ (π β πΎ β OP) |
15 | | ssrab2 4078 |
. . . . . . 7
β’ {π§ β ran πΌ β£ π β π§} β ran πΌ |
16 | 15 | a1i 11 |
. . . . . 6
β’ (π β {π§ β ran πΌ β£ π β π§} β ran πΌ) |
17 | 4, 5, 6, 7 | dih1rn 40462 |
. . . . . . . . 9
β’ ((πΎ β HL β§ π β π») β π β ran πΌ) |
18 | 1, 17 | syl 17 |
. . . . . . . 8
β’ (π β π β ran πΌ) |
19 | | sseq2 4009 |
. . . . . . . . 9
β’ (π§ = π β (π β π§ β π β π)) |
20 | 19 | elrab 3684 |
. . . . . . . 8
β’ (π β {π§ β ran πΌ β£ π β π§} β (π β ran πΌ β§ π β π)) |
21 | 18, 2, 20 | sylanbrc 582 |
. . . . . . 7
β’ (π β π β {π§ β ran πΌ β£ π β π§}) |
22 | 21 | ne0d 4336 |
. . . . . 6
β’ (π β {π§ β ran πΌ β£ π β π§} β β
) |
23 | 4, 5 | dihintcl 40519 |
. . . . . 6
β’ (((πΎ β HL β§ π β π») β§ ({π§ β ran πΌ β£ π β π§} β ran πΌ β§ {π§ β ran πΌ β£ π β π§} β β
)) β β© {π§
β ran πΌ β£ π β π§} β ran πΌ) |
24 | 1, 16, 22, 23 | syl12anc 834 |
. . . . 5
β’ (π β β© {π§
β ran πΌ β£ π β π§} β ran πΌ) |
25 | | eqid 2731 |
. . . . . 6
β’
(BaseβπΎ) =
(BaseβπΎ) |
26 | 25, 4, 5 | dihcnvcl 40446 |
. . . . 5
β’ (((πΎ β HL β§ π β π») β§ β© {π§ β ran πΌ β£ π β π§} β ran πΌ) β (β‘πΌββ© {π§ β ran πΌ β£ π β π§}) β (BaseβπΎ)) |
27 | 1, 24, 26 | syl2anc 583 |
. . . 4
β’ (π β (β‘πΌββ© {π§ β ran πΌ β£ π β π§}) β (BaseβπΎ)) |
28 | 25, 3 | opoccl 38368 |
. . . 4
β’ ((πΎ β OP β§ (β‘πΌββ© {π§ β ran πΌ β£ π β π§}) β (BaseβπΎ)) β ((ocβπΎ)β(β‘πΌββ© {π§ β ran πΌ β£ π β π§})) β (BaseβπΎ)) |
29 | 14, 27, 28 | syl2anc 583 |
. . 3
β’ (π β ((ocβπΎ)β(β‘πΌββ© {π§ β ran πΌ β£ π β π§})) β (BaseβπΎ)) |
30 | 25, 3, 4, 5, 8 | dochvalr2 40537 |
. . 3
β’ (((πΎ β HL β§ π β π») β§ ((ocβπΎ)β(β‘πΌββ© {π§ β ran πΌ β£ π β π§})) β (BaseβπΎ)) β ( β₯ β(πΌβ((ocβπΎ)β(β‘πΌββ© {π§ β ran πΌ β£ π β π§})))) = (πΌβ((ocβπΎ)β((ocβπΎ)β(β‘πΌββ© {π§ β ran πΌ β£ π β π§}))))) |
31 | 1, 29, 30 | syl2anc 583 |
. 2
β’ (π β ( β₯ β(πΌβ((ocβπΎ)β(β‘πΌββ© {π§ β ran πΌ β£ π β π§})))) = (πΌβ((ocβπΎ)β((ocβπΎ)β(β‘πΌββ© {π§ β ran πΌ β£ π β π§}))))) |
32 | 25, 3 | opococ 38369 |
. . . . 5
β’ ((πΎ β OP β§ (β‘πΌββ© {π§ β ran πΌ β£ π β π§}) β (BaseβπΎ)) β ((ocβπΎ)β((ocβπΎ)β(β‘πΌββ© {π§ β ran πΌ β£ π β π§}))) = (β‘πΌββ© {π§ β ran πΌ β£ π β π§})) |
33 | 14, 27, 32 | syl2anc 583 |
. . . 4
β’ (π β ((ocβπΎ)β((ocβπΎ)β(β‘πΌββ© {π§ β ran πΌ β£ π β π§}))) = (β‘πΌββ© {π§ β ran πΌ β£ π β π§})) |
34 | 33 | fveq2d 6896 |
. . 3
β’ (π β (πΌβ((ocβπΎ)β((ocβπΎ)β(β‘πΌββ© {π§ β ran πΌ β£ π β π§})))) = (πΌβ(β‘πΌββ© {π§ β ran πΌ β£ π β π§}))) |
35 | 4, 5 | dihcnvid2 40448 |
. . . 4
β’ (((πΎ β HL β§ π β π») β§ β© {π§ β ran πΌ β£ π β π§} β ran πΌ) β (πΌβ(β‘πΌββ© {π§ β ran πΌ β£ π β π§})) = β© {π§ β ran πΌ β£ π β π§}) |
36 | 1, 24, 35 | syl2anc 583 |
. . 3
β’ (π β (πΌβ(β‘πΌββ© {π§ β ran πΌ β£ π β π§})) = β© {π§ β ran πΌ β£ π β π§}) |
37 | 34, 36 | eqtrd 2771 |
. 2
β’ (π β (πΌβ((ocβπΎ)β((ocβπΎ)β(β‘πΌββ© {π§ β ran πΌ β£ π β π§})))) = β© {π§ β ran πΌ β£ π β π§}) |
38 | 11, 31, 37 | 3eqtrd 2775 |
1
β’ (π β ( β₯ β( β₯
βπ)) = β© {π§
β ran πΌ β£ π β π§}) |