| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > doch2val2 | Structured version Visualization version GIF version | ||
| Description: Double orthocomplement for DVecH vector space. (Contributed by NM, 26-Jul-2014.) |
| Ref | Expression |
|---|---|
| doch2val2.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| doch2val2.i | ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) |
| doch2val2.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| doch2val2.v | ⊢ 𝑉 = (Base‘𝑈) |
| doch2val2.o | ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) |
| doch2val2.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| doch2val2.x | ⊢ (𝜑 → 𝑋 ⊆ 𝑉) |
| Ref | Expression |
|---|---|
| doch2val2 | ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘𝑋)) = ∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | doch2val2.k | . . . 4 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 2 | doch2val2.x | . . . 4 ⊢ (𝜑 → 𝑋 ⊆ 𝑉) | |
| 3 | eqid 2730 | . . . . 5 ⊢ (oc‘𝐾) = (oc‘𝐾) | |
| 4 | doch2val2.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 5 | doch2val2.i | . . . . 5 ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) | |
| 6 | doch2val2.u | . . . . 5 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
| 7 | doch2val2.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑈) | |
| 8 | doch2val2.o | . . . . 5 ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) | |
| 9 | 3, 4, 5, 6, 7, 8 | dochval2 41353 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ⊆ 𝑉) → ( ⊥ ‘𝑋) = (𝐼‘((oc‘𝐾)‘(◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧})))) |
| 10 | 1, 2, 9 | syl2anc 584 | . . 3 ⊢ (𝜑 → ( ⊥ ‘𝑋) = (𝐼‘((oc‘𝐾)‘(◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧})))) |
| 11 | 10 | fveq2d 6865 | . 2 ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘𝑋)) = ( ⊥ ‘(𝐼‘((oc‘𝐾)‘(◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧}))))) |
| 12 | 1 | simpld 494 | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ HL) |
| 13 | hlop 39362 | . . . . 5 ⊢ (𝐾 ∈ HL → 𝐾 ∈ OP) | |
| 14 | 12, 13 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐾 ∈ OP) |
| 15 | ssrab2 4046 | . . . . . . 7 ⊢ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧} ⊆ ran 𝐼 | |
| 16 | 15 | a1i 11 | . . . . . 6 ⊢ (𝜑 → {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧} ⊆ ran 𝐼) |
| 17 | 4, 5, 6, 7 | dih1rn 41288 | . . . . . . . . 9 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑉 ∈ ran 𝐼) |
| 18 | 1, 17 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝑉 ∈ ran 𝐼) |
| 19 | sseq2 3976 | . . . . . . . . 9 ⊢ (𝑧 = 𝑉 → (𝑋 ⊆ 𝑧 ↔ 𝑋 ⊆ 𝑉)) | |
| 20 | 19 | elrab 3662 | . . . . . . . 8 ⊢ (𝑉 ∈ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧} ↔ (𝑉 ∈ ran 𝐼 ∧ 𝑋 ⊆ 𝑉)) |
| 21 | 18, 2, 20 | sylanbrc 583 | . . . . . . 7 ⊢ (𝜑 → 𝑉 ∈ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧}) |
| 22 | 21 | ne0d 4308 | . . . . . 6 ⊢ (𝜑 → {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧} ≠ ∅) |
| 23 | 4, 5 | dihintcl 41345 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ({𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧} ⊆ ran 𝐼 ∧ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧} ≠ ∅)) → ∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧} ∈ ran 𝐼) |
| 24 | 1, 16, 22, 23 | syl12anc 836 | . . . . 5 ⊢ (𝜑 → ∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧} ∈ ran 𝐼) |
| 25 | eqid 2730 | . . . . . 6 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 26 | 25, 4, 5 | dihcnvcl 41272 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧} ∈ ran 𝐼) → (◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧}) ∈ (Base‘𝐾)) |
| 27 | 1, 24, 26 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧}) ∈ (Base‘𝐾)) |
| 28 | 25, 3 | opoccl 39194 | . . . 4 ⊢ ((𝐾 ∈ OP ∧ (◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧}) ∈ (Base‘𝐾)) → ((oc‘𝐾)‘(◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧})) ∈ (Base‘𝐾)) |
| 29 | 14, 27, 28 | syl2anc 584 | . . 3 ⊢ (𝜑 → ((oc‘𝐾)‘(◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧})) ∈ (Base‘𝐾)) |
| 30 | 25, 3, 4, 5, 8 | dochvalr2 41363 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((oc‘𝐾)‘(◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧})) ∈ (Base‘𝐾)) → ( ⊥ ‘(𝐼‘((oc‘𝐾)‘(◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧})))) = (𝐼‘((oc‘𝐾)‘((oc‘𝐾)‘(◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧}))))) |
| 31 | 1, 29, 30 | syl2anc 584 | . 2 ⊢ (𝜑 → ( ⊥ ‘(𝐼‘((oc‘𝐾)‘(◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧})))) = (𝐼‘((oc‘𝐾)‘((oc‘𝐾)‘(◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧}))))) |
| 32 | 25, 3 | opococ 39195 | . . . . 5 ⊢ ((𝐾 ∈ OP ∧ (◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧}) ∈ (Base‘𝐾)) → ((oc‘𝐾)‘((oc‘𝐾)‘(◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧}))) = (◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧})) |
| 33 | 14, 27, 32 | syl2anc 584 | . . . 4 ⊢ (𝜑 → ((oc‘𝐾)‘((oc‘𝐾)‘(◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧}))) = (◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧})) |
| 34 | 33 | fveq2d 6865 | . . 3 ⊢ (𝜑 → (𝐼‘((oc‘𝐾)‘((oc‘𝐾)‘(◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧})))) = (𝐼‘(◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧}))) |
| 35 | 4, 5 | dihcnvid2 41274 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧} ∈ ran 𝐼) → (𝐼‘(◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧})) = ∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧}) |
| 36 | 1, 24, 35 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝐼‘(◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧})) = ∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧}) |
| 37 | 34, 36 | eqtrd 2765 | . 2 ⊢ (𝜑 → (𝐼‘((oc‘𝐾)‘((oc‘𝐾)‘(◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧})))) = ∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧}) |
| 38 | 11, 31, 37 | 3eqtrd 2769 | 1 ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘𝑋)) = ∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 {crab 3408 ⊆ wss 3917 ∅c0 4299 ∩ cint 4913 ◡ccnv 5640 ran crn 5642 ‘cfv 6514 Basecbs 17186 occoc 17235 OPcops 39172 HLchlt 39350 LHypclh 39985 DVecHcdvh 41079 DIsoHcdih 41229 ocHcoch 41348 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-riotaBAD 38953 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-iin 4961 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-tpos 8208 df-undef 8255 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-map 8804 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-n0 12450 df-z 12537 df-uz 12801 df-fz 13476 df-struct 17124 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-mulr 17241 df-sca 17243 df-vsca 17244 df-0g 17411 df-proset 18262 df-poset 18281 df-plt 18296 df-lub 18312 df-glb 18313 df-join 18314 df-meet 18315 df-p0 18391 df-p1 18392 df-lat 18398 df-clat 18465 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-submnd 18718 df-grp 18875 df-minusg 18876 df-sbg 18877 df-subg 19062 df-cntz 19256 df-lsm 19573 df-cmn 19719 df-abl 19720 df-mgp 20057 df-rng 20069 df-ur 20098 df-ring 20151 df-oppr 20253 df-dvdsr 20273 df-unit 20274 df-invr 20304 df-dvr 20317 df-drng 20647 df-lmod 20775 df-lss 20845 df-lsp 20885 df-lvec 21017 df-lsatoms 38976 df-oposet 39176 df-ol 39178 df-oml 39179 df-covers 39266 df-ats 39267 df-atl 39298 df-cvlat 39322 df-hlat 39351 df-llines 39499 df-lplanes 39500 df-lvols 39501 df-lines 39502 df-psubsp 39504 df-pmap 39505 df-padd 39797 df-lhyp 39989 df-laut 39990 df-ldil 40105 df-ltrn 40106 df-trl 40160 df-tendo 40756 df-edring 40758 df-disoa 41030 df-dvech 41080 df-dib 41140 df-dic 41174 df-dih 41230 df-doch 41349 |
| This theorem is referenced by: dochspss 41379 |
| Copyright terms: Public domain | W3C validator |