![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > doch2val2 | Structured version Visualization version GIF version |
Description: Double orthocomplement for DVecH vector space. (Contributed by NM, 26-Jul-2014.) |
Ref | Expression |
---|---|
doch2val2.h | ⊢ 𝐻 = (LHyp‘𝐾) |
doch2val2.i | ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) |
doch2val2.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
doch2val2.v | ⊢ 𝑉 = (Base‘𝑈) |
doch2val2.o | ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) |
doch2val2.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
doch2val2.x | ⊢ (𝜑 → 𝑋 ⊆ 𝑉) |
Ref | Expression |
---|---|
doch2val2 | ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘𝑋)) = ∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | doch2val2.k | . . . 4 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
2 | doch2val2.x | . . . 4 ⊢ (𝜑 → 𝑋 ⊆ 𝑉) | |
3 | eqid 2740 | . . . . 5 ⊢ (oc‘𝐾) = (oc‘𝐾) | |
4 | doch2val2.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
5 | doch2val2.i | . . . . 5 ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) | |
6 | doch2val2.u | . . . . 5 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
7 | doch2val2.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑈) | |
8 | doch2val2.o | . . . . 5 ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) | |
9 | 3, 4, 5, 6, 7, 8 | dochval2 41309 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ⊆ 𝑉) → ( ⊥ ‘𝑋) = (𝐼‘((oc‘𝐾)‘(◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧})))) |
10 | 1, 2, 9 | syl2anc 583 | . . 3 ⊢ (𝜑 → ( ⊥ ‘𝑋) = (𝐼‘((oc‘𝐾)‘(◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧})))) |
11 | 10 | fveq2d 6924 | . 2 ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘𝑋)) = ( ⊥ ‘(𝐼‘((oc‘𝐾)‘(◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧}))))) |
12 | 1 | simpld 494 | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ HL) |
13 | hlop 39318 | . . . . 5 ⊢ (𝐾 ∈ HL → 𝐾 ∈ OP) | |
14 | 12, 13 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐾 ∈ OP) |
15 | ssrab2 4103 | . . . . . . 7 ⊢ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧} ⊆ ran 𝐼 | |
16 | 15 | a1i 11 | . . . . . 6 ⊢ (𝜑 → {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧} ⊆ ran 𝐼) |
17 | 4, 5, 6, 7 | dih1rn 41244 | . . . . . . . . 9 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑉 ∈ ran 𝐼) |
18 | 1, 17 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝑉 ∈ ran 𝐼) |
19 | sseq2 4035 | . . . . . . . . 9 ⊢ (𝑧 = 𝑉 → (𝑋 ⊆ 𝑧 ↔ 𝑋 ⊆ 𝑉)) | |
20 | 19 | elrab 3708 | . . . . . . . 8 ⊢ (𝑉 ∈ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧} ↔ (𝑉 ∈ ran 𝐼 ∧ 𝑋 ⊆ 𝑉)) |
21 | 18, 2, 20 | sylanbrc 582 | . . . . . . 7 ⊢ (𝜑 → 𝑉 ∈ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧}) |
22 | 21 | ne0d 4365 | . . . . . 6 ⊢ (𝜑 → {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧} ≠ ∅) |
23 | 4, 5 | dihintcl 41301 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ({𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧} ⊆ ran 𝐼 ∧ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧} ≠ ∅)) → ∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧} ∈ ran 𝐼) |
24 | 1, 16, 22, 23 | syl12anc 836 | . . . . 5 ⊢ (𝜑 → ∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧} ∈ ran 𝐼) |
25 | eqid 2740 | . . . . . 6 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
26 | 25, 4, 5 | dihcnvcl 41228 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧} ∈ ran 𝐼) → (◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧}) ∈ (Base‘𝐾)) |
27 | 1, 24, 26 | syl2anc 583 | . . . 4 ⊢ (𝜑 → (◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧}) ∈ (Base‘𝐾)) |
28 | 25, 3 | opoccl 39150 | . . . 4 ⊢ ((𝐾 ∈ OP ∧ (◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧}) ∈ (Base‘𝐾)) → ((oc‘𝐾)‘(◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧})) ∈ (Base‘𝐾)) |
29 | 14, 27, 28 | syl2anc 583 | . . 3 ⊢ (𝜑 → ((oc‘𝐾)‘(◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧})) ∈ (Base‘𝐾)) |
30 | 25, 3, 4, 5, 8 | dochvalr2 41319 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((oc‘𝐾)‘(◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧})) ∈ (Base‘𝐾)) → ( ⊥ ‘(𝐼‘((oc‘𝐾)‘(◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧})))) = (𝐼‘((oc‘𝐾)‘((oc‘𝐾)‘(◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧}))))) |
31 | 1, 29, 30 | syl2anc 583 | . 2 ⊢ (𝜑 → ( ⊥ ‘(𝐼‘((oc‘𝐾)‘(◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧})))) = (𝐼‘((oc‘𝐾)‘((oc‘𝐾)‘(◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧}))))) |
32 | 25, 3 | opococ 39151 | . . . . 5 ⊢ ((𝐾 ∈ OP ∧ (◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧}) ∈ (Base‘𝐾)) → ((oc‘𝐾)‘((oc‘𝐾)‘(◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧}))) = (◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧})) |
33 | 14, 27, 32 | syl2anc 583 | . . . 4 ⊢ (𝜑 → ((oc‘𝐾)‘((oc‘𝐾)‘(◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧}))) = (◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧})) |
34 | 33 | fveq2d 6924 | . . 3 ⊢ (𝜑 → (𝐼‘((oc‘𝐾)‘((oc‘𝐾)‘(◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧})))) = (𝐼‘(◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧}))) |
35 | 4, 5 | dihcnvid2 41230 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧} ∈ ran 𝐼) → (𝐼‘(◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧})) = ∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧}) |
36 | 1, 24, 35 | syl2anc 583 | . . 3 ⊢ (𝜑 → (𝐼‘(◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧})) = ∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧}) |
37 | 34, 36 | eqtrd 2780 | . 2 ⊢ (𝜑 → (𝐼‘((oc‘𝐾)‘((oc‘𝐾)‘(◡𝐼‘∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧})))) = ∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧}) |
38 | 11, 31, 37 | 3eqtrd 2784 | 1 ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘𝑋)) = ∩ {𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 {crab 3443 ⊆ wss 3976 ∅c0 4352 ∩ cint 4970 ◡ccnv 5699 ran crn 5701 ‘cfv 6573 Basecbs 17258 occoc 17319 OPcops 39128 HLchlt 39306 LHypclh 39941 DVecHcdvh 41035 DIsoHcdih 41185 ocHcoch 41304 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-riotaBAD 38909 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-tpos 8267 df-undef 8314 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-er 8763 df-map 8886 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-n0 12554 df-z 12640 df-uz 12904 df-fz 13568 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-mulr 17325 df-sca 17327 df-vsca 17328 df-0g 17501 df-proset 18365 df-poset 18383 df-plt 18400 df-lub 18416 df-glb 18417 df-join 18418 df-meet 18419 df-p0 18495 df-p1 18496 df-lat 18502 df-clat 18569 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-submnd 18819 df-grp 18976 df-minusg 18977 df-sbg 18978 df-subg 19163 df-cntz 19357 df-lsm 19678 df-cmn 19824 df-abl 19825 df-mgp 20162 df-rng 20180 df-ur 20209 df-ring 20262 df-oppr 20360 df-dvdsr 20383 df-unit 20384 df-invr 20414 df-dvr 20427 df-drng 20753 df-lmod 20882 df-lss 20953 df-lsp 20993 df-lvec 21125 df-lsatoms 38932 df-oposet 39132 df-ol 39134 df-oml 39135 df-covers 39222 df-ats 39223 df-atl 39254 df-cvlat 39278 df-hlat 39307 df-llines 39455 df-lplanes 39456 df-lvols 39457 df-lines 39458 df-psubsp 39460 df-pmap 39461 df-padd 39753 df-lhyp 39945 df-laut 39946 df-ldil 40061 df-ltrn 40062 df-trl 40116 df-tendo 40712 df-edring 40714 df-disoa 40986 df-dvech 41036 df-dib 41096 df-dic 41130 df-dih 41186 df-doch 41305 |
This theorem is referenced by: dochspss 41335 |
Copyright terms: Public domain | W3C validator |